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Abstract. We demonstrate fast mixing of vortex–current filaments by means of
numerical simulations of collision (strong interaction) between two straight fila-
ments. The two filaments mutually approach, collide, and are rapidly tangled with
each other. In fact, the instantaneous Lyapunov exponent shows that the dynamics
becomes chaotic. Then there appear many small regions where the two filaments
overlap. We consider each overlapping region to be equivalent to the traditional
resistive diffusion region. We assume that the overall ‘reconnection rate’ of the two
filaments is proportional to the product of the traditional (non-chaotic) resistive
reconnection rate and the normalized overlapping volume. The overlapping volume
rapidly increases on the time scale of ideal MHD. When many overlapping regions
are produced, the overall reconnection probability, i.e. the sum of the probabilities
of reconnection in every overlapping region, should be increased compared with that
of the single overlapping region. Thus the overall reconnection rate becomes suffi-
ciently large, although the basic reconnection process in each overlapping region is
resistive and slow. We conclude that the fast mixing due to chaos may enhance the
conventional resistive reconnection. We call this process ‘chaotic reconnection’.

1. Introduction
Our investigations have been mainly motivated by the study of solar flares. Re-
cently, much research effort has been devoted to studying solar flares because a
considerable amount of observational data is available from the artificial satellite
Yohkoh (Tsuneta 1997; Sterling and Hudson 1997). The energy emitted by a solar
flare in one burst is in the range of 1020 ∼ 1025 J. When one considers that the
total energy consumption of fossil fuels in a year in Japan is approximately 1019 J,
one can see how large an amount of energy is emitted by a solar flare. It would
be interesting to know how such sudden and fast energy releases in solar flares are
triggered.

Many researchers now share a common understanding that magnetic reconnec-
tion is a fundamental process in solar flares (Kusano et al. 1995; Fushika and Sakai
1995; Shibata 1996; Priest 1997; Sudan and Spicer 1997). For many years, electri-
cal resistivity was considered to be a crucial mechanism in magnetic reconnection
(Parker 1957; Newcomb 1958; Sweet 1958; White 1986), but it has now come to
be realized that the time scale of reconnection in a solar flare cannot be explained
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Figure 1. (a) Schematic of a solar flare. Magnetic flux tubes are entangled and chaotic in
the magnetically neutral layer, which is shown by the shaded box. The simulation region is
shown by the open box. (b) Illustration of the initial condition for the simulations.

by traditional resistive reconnection theory. It is now accepted that in most cases
electrical resistivity plays only a minor role, and much theoretical work on recon-
nection to date has dealt with the time-scale problem (Petschek 1964; Vasyliunas
1975; Hu 1983; Ichimaru 1996; Lau and Finn 1996; Tanaka 1996; Biskamp 1997;
Horiuchi and Sato 1997).

We believe that the study of fast magnetic reconnection gives us a clue to clarify
the mechanism of solar flares. The direct approach to analysing the fast reconnec-
tion mechanism in solar flares entails three-dimensional full magnetohydrodynam-
ical (MHD) simulation. In our scenario, magnetic flux tubes may be entangled in
the magnetically neutral layer in the solar corona, owing to the fast dynamics with
high magnetic Reynolds number (see Fig. 1). It is, however, too difficult to run
three-dimensional simulations because of the lack of computer resources and the
high magnetic Reynolds number. As a first step, a simplified model is preferable to
demonstrate the essential mechanism of magnetic reconnection due to fast mixing,
and we decided to use a vortex–current filament model instead of a flux-tube model
(Yatsuyanagi et al. 1996). The physical quantities to be reconnected are magnetic
field lines in the traditional theory and mainly electric currents in the present work.
However, we presume that essentially the same phenomenon may be demonstrated
by our filament model. Note that the circulation is conserved if the vortex–current
filament model is assumed. The total electric current is also conserved up to O(ρ−2)
where ρ is a local radius of curvature of the filament (Yatsuyanagi et al. 1998). This
is because neither vorticity nor electric current exist outside the filament.

In this paper, we demonstrate fast mixing of the vortex–current filaments by
means of ‘collision’ between two straight filaments. The term collision means a
strong interaction between the two filaments when they mutually approach. It will
be seen that the ‘reconnection rate’ of the filaments is enhanced by the chaotic fast
mixing.

Electric current and vorticity share many features in their mathematical formu-
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lations, and much research has been done on systems in which vorticity and electric
current coexist (Greene 1992; Kinney et al. 1995). On the other hand, much effort
has also been devoted to studying the vortex filament and its reconnection (Moore
and Saffman 1972, 1975; Fernandez et al. 1995; Zabusky et al. 1995). Motivated
by the results of this work, we decided to extend the vortex filament into a vortex–
current filament (Yatsuyanagi et al. 1996). This consists of vorticity and electric
current coaxially along its axis. This model has the significant advantage that the
motion of the filament is determined by very simple cutoff Biot–Savart integrals.

In our simulations, the two filaments are driven by three types of velocity: the
first is a gravitational drift velocity, and the second and third are self- and mutually
induced velocities by the electric current and vorticity in the filaments. Simulation
results show that the filaments are tangled with each other in the collisional region
where the strong interaction between them is dominant. Then their configuration
is complicated because the local cylindrical symmetry of the magnetic and velocity
fields induced by a filament is destroyed by the fields induced by the other filament.
In the collisional region, a more asymmetrical initial configuration of the filaments
yields a more complicated configuration with time.

Computations of the instantaneous Lyapunov exponents show that when the
initial configuration of the filaments is asymmetrical, the exponents are positive
after the collision. We find that the complicated configuration of the filaments is
brought about by the chaos in the dynamical system. We call the complicated
configuration ‘chaotic configuration’ from here on. We consider that the chaotic
configuration is induced by the collision of the two vortex–current filaments, which
are initially positioned asymmetrically in three-dimensional space. This is in good
agreement with the results on magnetic chaos previously by one of us (Hatori and
Irie 1987; Hatori et al. 1989; Urata 1990). The magnetic chaos is not observed in a
two-dimensional system that is axisymmetry or has another symmetry, while it is
observed in a three-dimensional system that has no symmetry. This is an important
aspect of the magnetic chaos.

When the configuration of the filaments is chaotic, there appear many small
regions where the filaments overlap. We consider each overlapping region to be
equivalent to the conventional resistive diffusion region of magnetic reconnection.
In an overlapping region, antiparallel electric currents should cancel each other.
Consequently there remains a net electric current only, and the trajectory of the
net electric current may have a different configuration. To obtain a new consistent
trajectory of the net electric current, we introduce a three-dimensional space av-
eraging. This is a kind of ‘coarse-graining’, or microscopic mixing of molecules. It
is well known that coarse-graining increases the entropy of a system. This implies
that coarse-graining is an irreversible process. Thus the space averaging is consid-
ered to introduce a kind of artificial dissipation process. Tracing the trajectory by
the space-averaged distribution of the electric current, we obtain a reconnected
configuration of the filament. If the effect of electric current on the filament mo-
tion is stronger than that of vorticity, the filaments are reconnected following the
directions of the electric currents, and vice versa.

We introduce a new concept, normalized overlapping volume, to solve the time-
scale problem. The normalized overlapping volume is defined as the volume of the
overlapping region divided by the volume of the non-chaotic one. We assume that
the overall ‘reconnection rate’ of the filaments is proportional to the product of the
traditional (non-chaotic) resistive reconnection rate and the normalized overlapping
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volume. Simulation results show that the overlapping volume rapidly increases
owing to the chaotic dynamics based on ideal MHD. When many overlapping
regions are produced, the overall reconnection probability, i.e. the sum of the prob-
abilities of reconnection in every overlapping region, should be increased compared
with that of a single overlapping region. Thus the reconnection rate becomes suf-
ficiently large, although the basic reconnection process in each overlapping region
is resistive and slow. We conclude that fast mixing due to chaos may enhance the
conventional resistive reconnection that has a simple configuration of the magnetic
field, for example the Sweet–Parker model, and no effective enhancement by the
overlapping volume. We call this process ‘chaotic reconnection’ (Yatsuyanagi 1998).

This paper is organized as follows. In Sec. 2, we give basic equations, brief expla-
nations of the vortex–current filament, and an approximation of the cutoff Biot–
Savart integral. In Sec. 3, we give results of the numerical simulations of the collision
of the two filaments, and diagnoses through the instantaneous Lyapunov exponent.
In Sec. 4, we explain how the filaments are reconnected through the chaotic con-
figuration of the filament induced by the collision. Finally, in Sec. 5, we present a
discussion and our conclusions.

2. Basic equations
We introduced the vortex–current filament model in our previous papers (Yat-
suyanagi et al. 1996, 1998). The vortex–current filament consists of electric current
and vorticity in the filament, and there is neither electric current nor vorticity out-
side. Schematics of the vortex–current filament are shown in Fig. 2. We denote a
core radius and a local radius of curvature of the filament as a and ρ, respectively.
To identify a point on the filament, a position vector R is used. We use the natural
coordinates defined by unit vectors (s,n, b), where s is tangential, n is normal and b
is binormal to the filament. We consider a small volume element ∆ in the filament,
with length ds surrounded by a curved surface C and plane ends E1 at s and E2 at
s + ds. The plane ends E1 and E2 are perpendicular to s.

As basic equations, we use the ideal MHD equations with gravitational acceler-
ation g:

∂u
∂t

+ (u ·∇)u = j× B−∇p + g, (2.1a)

∇ · u = 0, (2.1b)

∇× u = ω, (2.1c)
∂B
∂t

= −∇× E, (2.1d)

∇ · B = 0, (2.1e)

∇× B = µ0j, (2.1f)

E + u× B = 0. (2.1g)

Here the mass density is constant and normalized to unity. The scale length of the
system is taken as x̂ = a, which is initially normalized to unity in the simulations.
The characteristic value of the magnetic field is taken as B̂. The Alfvén velocity
and time scale are given by û = B̂/

√
µ0 and t̂ = x̂/û respectively. The characteristic

values of the electric current density and vorticity are denoted by ĵ = B̂/x̂µ0 and
ω̂ = B̂/x̂

√
µ0. In numerical simulations, we introduce dimensionless variables and
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Figure 2. Schematics of the vortex–current filament and the volume element ∆ of the fila-
ment, with length ds surrounded by a curved surface C and bounded by planes E1 and E2

respectively. The core radius of the filament is a and the local radius of curvature at R is ρ.

all the above-mentioned quantities are utilized as scaling factors. It is noticeable
that the ratio ω̂/ĵ has a magnitude of

√
µ0 ≈ 10−3.

We now give the working formulae used in the simulations. Let us consider an
interaction between filament 1 at R1 and filament 2 at R2. We use the following
dimensionless equations, which give the velocities of the filaments:(

∂R1

∂t

)
⊥

=
J2

1

4πκ1

∫
(R1 − x1)× dx1

(|R1 − x1|2 + α2
1a

2
1)3/2

− κ1

4π

∫
(R1 − x1)× dx1

(|R1 − x1|2 + β2
1a

2
1)3/2

+
J1J2

4πκ1

∫
(R1 − x2)× dx2

(|R1 − x2|2 + α2
2a

2
2)3/2

− κ2

4π

∫
(R1 − x2)× dx2

(|R1 − x2|2 + β2
2a

2
2)3/2

+
πa2

κ1
g× s1, (2.2a)(

∂R2

∂t

)
⊥

=
J2

2

4πκ2

∫
(R2 − x2)× dx2

(|R2 − x2|2 + α2
2a

2
2)3/2

− κ2

4π

∫
(R2 − x2)× dx2

(|R2 − x2|2 + β2
2a

2
2)3/2

+
J1J2

4πκ2

∫
(R2 − x1)× dx1

(|R2 − x1|2 + α2
1a

2
1)3/2

− κ1

4π

∫
(R2 − x1)× dx1

(|R2 − x1|2 + β2
1a

2
1)3/2

+
πa2

κ2
g× s2, (2.2b)

where subscripts 1 and 2 indicate quantities with respect to filaments 1 and 2
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respectively. κn and Jn are the circulation and total electric current in filament n.
Details are given in Appendix A.

3. Chaotic configuration induced by the collision of two filaments

3.1. Collision of two filaments

We present simulation results for the collision of two filaments. An illustration of
the initial condition for the simulations is given in Fig. 1(b). The two filaments are
initially parallel to the (x, z) plane. The distance between the filaments is 5 scaled
in the initial core radius of the filament. The gravitational acceleration is in the −z
direction, and we can control the mutual velocity at the collision by introducing
this acceleration. The signs of the total electric current and the circulation are
positive if the directions of the electric current density and the vorticity are the
same as the arrows in the figure.

The most crucial parameter in our simulations is the symmetry of the initial con-
figuration of the filaments. The symmetry of the initial configuration is determined
by the initial angle θ between the two filaments projected onto the (x, z) plane. The
values of the initial angle are chosen as 1

2π, 2 arctan 1
2 and 0, which we shall call

types (i), (ii) and (iii), respectively. The most symmetrical case is θ = 0 and the
most asymmetrical case is θ = 1

2π.
The values of the total electric currents J1 and J2 are chosen as 2 and those of

the circulations κ1 and κ2 as 1. These values are constant. The initial values of w,
v0, B|| and B0 are chosen as 1.58, 1.0, 2.85 and 0.5 respectively. These parameters
are chosen such that the initial values of the cutoff parameters α and β are equal
to 1. The ends of the filament are a free boundary, and we use extrapolation to
satisfy the free-boundary condition. Time in the simulation is denoted by T , which
is in multiples of ∆t = 10−5.

We show typical results of the simulations in Figs 3–5. We verify our simulation
code; and the validity is discussed in Appendix B. Although the results in Figs 3
and 4 show complicated configurations near the collisional region, the result in
Fig. 5 shows a non-complicated configuration. This is because the initial configu-
rations for Figs 3 and 4 are more asymmetrical than that for Fig. 5. If the initial
configuration is asymmetrical, the local cylindrical symmetry of the magnetic and
velocity fields induced by a filament is destroyed by the fields induced by the other
filament. Thus we conclude that, in the collisional region, a more asymmetrical
initial configuration of the filaments yields a more complicated configuration with
time.

3.2. Diagnoses via the instantaneous Lyapunov exponents

In the previous subsection, we have shown the complicated configuration caused
by the collision of the two vortex–current filaments. The next step is to diagnose
whether or not the complicated configuration in the collisional region is chaotic. To
carry out the diagnosis, we use the instantaneous Lyapunov exponent. Details are
given in Appendix C. In Fig. 6 we show the time development of the instantaneous
Lyapunov exponent from T = 0 to 100× 104∆t.
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Figure 3. Time evolution of filament motion for type (i). The initial angle θ = 1
2π in

(a). Time develops from (a) to (d): (a) T = 0; (b) T = 25 × 104∆t; (c) T = 50 × 104∆t;
(d) T = 75× 104∆t.

The type (iii) curve (dotted) has a spike-like peak at T = 25.5 × 104∆t. On the
other hand, the two filaments in Fig. 5 are gradually attracted to each other by
gravitational drift, collide and then leave in the opposite direction. The computed
value of the collision time is 25.4 × 104∆t, when the mean distance between the
filaments becomes zero. This time coincides with the time of the peak of the ex-
ponents for type (iii). We consider this peak to be caused by the collision of the
filaments, because the two filaments are initially parallel and the collision occurs
everywhere along the filament simultaneously. The peaks of the other curves at
about T = 25× 104∆t can be explained by the same reason.

Here special attention should be paid to the values during the period from
T = 50 × 104∆t to 80 × 104∆t. The types (i) and (ii) curves show non-zero val-
ues during this period while the type (iii) curve shows near-zero values. This result
shows that the instantaneous Lyapunov exponents are positive after the collision
only for the initially low-symmetry configurations. That is, the collision involves
the orbital instability that is observed in general chaotic dynamical systems. We
therefore conclude that the chaotic configuration is induced by the collision of the
two filaments with initially low-symmetry configuration. This is in good agree-
ment with the results for magnetic chaos, which is not observed in the symmetrical
system.
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Figure 4. Time evolution of the filament motion for type (ii). The initial angle θ = 2 arctan 1
2

in (a). Time develops from (a) to (d): (a) T = 0; (b) T = 25 × 104∆t; (c) T = 50 × 104∆t;
(d) T = 75× 104∆t.

4. Chaotic reconnection
The short time scale of the reconnection processes is an important issue. In this
section, we propose a new fast reconnection mechanism of the filaments – a (resistive)
chaotic reconnection.

In the simulations, initial volume elements inside a filament stay in the same
filament eternally, even if the two filaments are tangled with each other, i.e. the
position vector R1 always points to filament 1 and R2 points to filament 2. This
means that the filaments do not merge with each other in our simulations.

We do, however, consider that when filament 1 approaches filament 2 and the
electric currents are antiparallel to each other, the net electric current must be
nearly zero. (Of course, the magnitudes of the electric currents must be the same.)
In the same manner, the vorticities are annihilated. This means that the filaments
should be locally annihilated by each other in such a region. How can we resolve the
inconsistency? An answer we obtain involves a three-dimensional space averaging.
This is a kind of ‘coarse-graining’, or microscopic mixing of molecules. It is well
known that coarse-graining increases the entropy of a system. This implies that
the coarse-graining is an irreversible process. Thus the space averaging introduces
an artificial dissipation process into the system. Note that the time scale of chaotic



Fast mixing mechanism of two vortex–current filaments 501

20

10

0

–10

–20

–20
–10

0
10

20
x

z

20
10

0
–10

–20
y

20

10

0

–10

–20

–20
–10

0
10

20
x

z

20
10

0
–10

–20
y

(b)(a)

20

10

0

–10

–20

–20
–10

0
10

20
x

z

20
10

0
–10

–20
y

20

10

0

–10

–20

–20
–10

0
10

20
x

z

20
10

0
–10

–20
y

(d)(c)

Figure 5. Time evolution of the filament motion for type (iii). The initial angle θ = 0 at
(a). Time develops from (a) to (d): (a) T = 0; (b) T = 25 × 104∆t; (c) T = 50 × 104∆t;
(d) T = 75× 104∆t.
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dynamics should be determined by the Alfvén transit time and that the dissipation
process introduced here does not affect the main chaotic dynamics of the filaments.

We calculate a three-dimensional space-averaged distribution of the electric cur-
rents (or vorticities) numerically, and trace the trajectory by its distribution. The
procedure to obtain the trajectory is as follows:

∂R
∂s
∝ 〈j〉, (4.1a)

or
∂R
∂s
∝ 〈ω〉. (4.1b)

where 〈A〉 denotes the space-averaged distribution of A. In the simulation region, we
make cubic meshes of side 2α(t)a(t), which is the effective diameter of the filament.
In each mesh, we calculate 〈A〉. Our working formulae consist of the cutoff Biot–
Savart integrals. From (A 3) and (A 4), the internal structure of the filament is
determined by B||, B0, w and v0, and its contribution is included in the cutoff
parameters α(t) and β(t). So, the effective radius of the filament should be either
α(t)a(t) or β(t)a(t), while the material (actual) radius of the filament is a(t). Now we
consider a system with electric current and vorticity. In such a system, the effect of
electric current is dominant. Thus we choose the effective radius of the filament to
be α(t)a(t), which is mainly determined by the magnetic field inside the filament.

The results are shown in Figs 7(a–c), in which the traced trajectories of the
electric currents are shown. In Figs 7(a,b), the macroscopic filaments, which mean
the reconstructed filaments obtained by tracing the distribution of the electric
current, are reconnected with each other. The reconnection is due to the chaotic
configuration induced by the collision of the two filaments in the low-symmetry
system. Thus it is obvious that reconnection is not observed for type (iii) because
the initial configuration is symmetrical and the configuration does not evolve into
a chaotic one. We call this reconnection mechanism ‘chaotic reconnection’.

One can estimate the efficiency of the reconnection process by the reconnection
rate. We assume that the overall ‘reconnection rate’ of the filaments Rf (t) is given
by

Rf (t) = D(t)Ω(t, θ), (4.2)

where D(t) is the conventional (non-chaotic) reconnection rate determined by the
resistive dissipation process of the system. Ω(t, θ) represents the normalized over-
lapping volume. D(t) is zero in the case of ideal MHD and positive in the case of
non-ideal MHD. It is well known that a kind of dissipation process is necessary for
magnetic reconnection. Thus a dissipation process, three-dimensional space aver-
aging, has been introduced in the present paper because D(t) should be finite.

With regard to fast reconnection, there has been considerable research interest in
new dissipation processes, microscopic collisionless dissipation (Vekstein and Priest
1995; Priest 1997), and anomalous resistivity (Kulsrud 1998), instead of the con-
ventional electric resistivity. Here we introduce another mesoscopic enhancement
factor, normalized overlapping volume, to solve the time-scale problem for the fast
reconnection. The term ‘mesoscopic’ means the scale that is describable by MHD
but is much less than the scale length of the phenomena, while the collisionless
process is microscopic. The normalized overlapping volume Ω(t, θ) in (4.2) is intro-
duced because the greater the number of overlapping regions, the more efficient
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Figure 7. Trajectories of the three-dimensional space-averaged distribution of the electric
current. Original data are given in Fig. 3(d) for (a), Fig. 4(d) for (b) and Fig. 5(d) for (c).

is the reconnection process evolving via the annihilation of electric currents and
vorticities. Thus large Ω(t, θ) yields fast reconnection.

The unnormalized (actual) overlapping volume is defined as the volume in which
filament 1 with effective radius α1(t)a1(t) overlaps with filament 2 with effective
radius α2(t)a2(t), i.e. the total volume of the overlapping regions. We must compare
the resulting overlapping volumes starting from different initial configurations and
investigate their magnitudes quantitatively. The magnitude for each initial configu-
ration at the instant of collision depends on the initial angle θ. We should therefore
normalize their magnitudes using the non-chaotic overlapping volume derived from
the initial angle. Let us consider two straight filaments that collide without mag-
netic or hydrodynamic interactions and mutually intrude without deformation.
The overlapping volume for any initial angle is maximum when the axes of the
filaments cross, provided that the radii of the filaments are the same. We adopt
the maximum volume as the non-chaotic overlapping volume in the normaliza-
tion and denote it by Vnc(θ). The normalized overlapping volume Ω(t, θ) is defined
as

Ω(t, θ) =
Va(t)
Vnc(θ)

, (4.3)

where Va(t) is the unnormalized overlapping volume. The non-chaotic overlapping
volume is approximately proportional to [α(0)a(0)]3/ sin θ for types (i) and (ii) and
[α(0)a(0)]2L(0) for type (iii), where L(0) is the initial length of the filament. The
values of α(0), a(0) and L(0) are 1, 1 and 40, respectively. The value of Vnc(θ) is 1
for type (i), 1.25 for type (ii) and 40 for type (iii). We thus obtain the normalized
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overlapping volume as follows:

Ω(t, θ) =

 Va(t) for type (i),
0.8Va(t) for type (ii),
0.025Va(t) for type (iii).

(4.4)

The time evolution of the normalized overlapping volume Ω(t, θ) is plotted in
Fig. 8. For each type, there is a peak at about T = 25 × 104∆T , and this time
coincides with the time of the first peak of the instantaneous Lyapunov exponents.
Thus we conclude that these peaks are due to the collision of the filaments.

At later times, the values of the normalized overlapping volume become large
for types (i) and (ii) but zero for type (iii). There are many overlapping regions,
i.e. the normalized overlapping volume is large, everywhere in the collisional re-
gion along the tangled filaments as a result of the chaotic dynamics based on ideal
MHD. We consider each overlapping region to be equivalent to the conventional
resistive diffusion region of magnetic reconnection (see Fig. 9). Then the overall
reconnection probability, i.e. the sum of the probabilities of reconnection in every
overlapping region, should be increased compared with that of a single overlapping
region. Thus, if the factor D(t) in (4.2) is non-zero, the reconnection rate Rf (t)
becomes sufficiently large, although the basic reconnection process in each overlap-
ping region is resistive and slow. We conclude that the fast mixing due to chaos may
enhance the conventional resistive reconnection with a simple configuration of the
magnetic field, for example the Sweet–Parker model, and no effective enhancement
by the overlapping volume. This is the main mechanism of chaotic reconnection.
If the normalized overlapping volume Ω(t, θ) = 1 then the reconnection time scale
is the same as that of conventional (non-chaotic) resistive reconnection, which is
determined only by the factor D(t).

We examine the non-chaotic reconnection by changing the direction of the vortic-
ity in filament 2. Then the directions of the gravitational drift of the two filaments
are the same, and the filaments do not collide with each other. Thus the interaction
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(a) (b)

Figure 9. Illustrations of the diffusion region. (a) The diffusion region of conventional
(non-chaotic) resistive reconnection. (b) The diffusion region of chaotic reconnection.

between the filaments is not as strong as the case shown in Fig. 3, and the motion is
slow and non-chaotic. From computation of the instantaneous Lyapunov exponent,
we find that the configuration is not chaotic. The normalized overlapping volume
is also relatively small. In the case of the chaotic configuration, we can observe the
reconnected configuration about 10 or more times out of 200 snapshots of the con-
figuration, which are obtained every 5000 time-steps. In the case of the non-chaotic
configuration, however, it is hard to observe the reconnected configuration. This is
a good reason for us to consider that the large overlapping volume enhances the
reconnection process. Thus we consider the non-chaotic reconnection to be a rare
case and not to provide an efficient mechanism of fast reconnection.

Here the question arises as to which effect of electric current or vorticity is dom-
inant in the reconnection. To answer this question, we examine a case for which the
contribution of vorticity is stronger than that of electric current and the direction
of the electric current in filament 2 is opposite. The result is shown in Fig. 10. The
initial angle is 1

2π. The values of the circulations are κ1 = κ2 = 5 and the electric
currents are J1 = 2 and J2 = −2. In this figure, we trace the trajectories of the
vorticities. We find that the filaments are reconnected following the direction of
electric current or vorticity, whichever makes the larger contribution. The direc-
tion of the reconnection in Fig. 10 is reasonable because vorticity makes a larger
contribution. Where, however, is the electric current? If the magnitudes of the elec-
tric currents are the same and the directions are antiparallel then the two electric
currents perfectly annihilate each other and there remains no electric current (see
Fig. 11). In this case, we cannot determine the detailed structure of the vortex–
current filaments after the reconnection. We consider this to be a limitation of our
vortex–current filament model.

5. Discussion and conclusion
The study reported in this paper may be summarized as follows. We have proposed
a new fast reconnection mechanism, a resistive ‘chaotic reconnection’ of filaments,
due to the mixing of vortex–current filaments. Note that the basic dynamics is
based on nonlinear ideal MHD in which the time scale is mainly determined by
the Alfvén transit time. Although we have introduced a dissipation process, i.e.
three-dimensional space averaging, this does not affect the main chaotic dynamics
of the filament. We have assumed the reconnection rate to be proportional to the
conventional (non-chaotic) resistive reconnection rate and the overlapping volume.
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Figure 10. Trajectories of the three-dimensional space-averaged distribution of ‘vorticity’.
(a) The configuration of the filament at T = 75×104∆T . The initial angle is 1

2π and the values
of the electric currents and the circulations are κ1 = κ2 = 5, J1 = 2 and J2 = −2, respectively.
(b) The traced trajectory of the vorticity. The reconnected configuration is observed.

(a)

(b)

?

Figure 11. In which direction are the filaments reconnected and where is the electric cur-
rent? The thin solid arrows show the directions of the electric currents and the dashed arrows
the directions of the vorticities. In (a), the direction of the reconnection is reasonable be-
cause the directions of the electric current and vorticity inside the filament are the same.
In (b), we cannot determine the detailed structure of the vortex–current filaments after the
reconnection.

The simulation results show that the overlapping volume increases rapidly, owing to
the chaotic dynamics based on ideal MHD. Then the reconnection rate becomes suf-
ficiently large because the large overlapping volume enhances the reconnection pro-
cess. Thus chaotic reconnection is a faster process than conventional (non-chaotic)
resistive reconnection.

One of the most important physical issues concerning solar flares concerns the
time scale of fast reconnection. Although the chaotic reconnection model presented
in this paper is identified in using a model of the collision of two filaments and is
too simplified for real solar flares, we consider that a chaotic reconnection model
can be applied to fast reconnection of solar flares. In our scenario, magnetic flux
tubes may be entangled in the magnetically neutral layer in the solar corona, owing
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to the fast dynamics of the high-magnetic-Reynolds-number system. The chaotic
configuration of the flux tubes is considered to have a sufficiently large overlapping
volume. Then a large number of diffusion regions are formed, and the probability of
reconnection of the flux tubes is enhanced in the turbulent diffusion region. We must
make the present model more realistic and apply it to solar flares. Further progress
in understanding chaotic reconnection dynamics requires fully three-dimensional
MHD simulations at high magnetic Reynolds number.
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Appendix A. Cutoff Biot–Savart integral
Here we give some procedures to derive the working formulae (2.2a,b) for the
numerical simulations.

Integrating the equation of motion (2.1a) over the small volume element ∆, we
obtain a macroscopic force balance equation for the vortex–current filament cor-
rect to O(ρ−2). The force balance equation can be rewritten in terms of Biot–Savart
integrals with cutoff parameters if the order of the equation is limited to O(ρ−1).
The cutoff Biot–Savart integral has a positive cutoff parameter in the denominator
of the integrand, and is a useful way to integrate the Biot–Savart integral numer-
ically because the integral does not diverge, even if a source point where electric
current exists coincides with a target point where a magnetic field is induced.

The following formula is the well-known result for the cutoff Biot–Savart integral
that gives the velocity at a position R (Moore and Saffman 1972, 1975; Siggia 1985):

− κ

4π

∫
(R− x)× dx

(|R− x|2 + β2a2)3/2
= uI − κb

4πρ

(
1− β2a2

2l2

)
+
κb
4πρ

ln
8ρ
βa

+O(ρ−2), (A 1)

where β is a cutoff parameter, l is the length along an osculating circle of a cutoff
path, κ is the circulation of the filament, and uI is the velocity field induced by the
filament itself except in a cutoff region. Comparing our explicit version of the force
balance equation with (A 1) up to O(ρ−1), our force balance equation is reduced to
the following cutoff Biot–Savart integrals (Yatsuyanagi et al. 1996):(

∂R
∂t

)
⊥

= −J
κ

(BE)⊥ + (uE)⊥

+
µ0J

2

4πκ

∫
(R− x)× dx

(|R− x|2 + α2a2)3/2
− κ

4π

∫
(R− x)× dx

(|R− x|2 + β2a2)3/2

+
πa2

κ
g× s +O(ρ−2), (A 2)
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where the cutoff parameters α and β are chosen such that
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2

4πρκ

(
ln

8ρ
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− 1

2

)
− πa2

ρκ

(
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0

2µ0
−
B2
||
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)
= −µ0J

2

4πρκ

(
ln

8ρ
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− 1
)
, (A 3)

κ

4πρ

(
ln

8ρ
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− 1

2

)
+
πa2

ρκ

(
v2

0

2
− w2

)
=

κ

4πρ

(
ln

8ρ
βa
− 1
)
. (A 4)

The subscript ⊥ denotes the component perpendicular to s, B|| and w are the
components parallel to s of the magnetic and velocity fields in the filament, B0 and
v0 are the leading-order components of the azimuthal magnetic and velocity fields
in the filament, and J is the total electric current in the filament. A denotes the
mean value of A over the cross-section of the filament. The effects of the external
magnetic and velocity fields are included in the terms BE and uE respectively.
The fifth term on the right-hand side of (A 2) is the gravitational drift by which the
filament is driven perpendicular to the filament axis. The working formulae (2.2a,b)
are obtained by substituting the magnetic and velocity fields induced by the other
filaments for BE and uE into (A 2).

Note that the integral is not only introduced to avoid numerical divergence, but
also derived from our force balance equation analytically. Furthermore, the velocity
field determined by the cutoff Biot–Savart integral is a divergence-free field; in
other words, the dynamical system is conservative (Yatsuyanagi et al. 1998).

The cutoff parameters α and β are time-dependent, and are determined by three
conservation laws:

L(t)a2(t) = constant, (A 5)

W (t)L(t) = constant, (A 6)

B||(t)a2(t) = constant. (A 7)

Equation (A 5) represents conservation of volume, (A 6) conservation of angular
impulse or of circulation, and (A 7) conservation of magnetic flux. Details of the
conservation laws are given in Yatsuyanagi et al. (1998).

Appendix B. Validity check of the simulations
In Figs 3 and 4, the filaments at T = 75 × 104∆t are bent strongly and become
tangled with each other. On the other hand, our cutoff Biot–Savart approximation
is only valid up to O(ρ−1). To verify our simulation results, we must test whether
the local radii of curvature of the filaments are not so small as to violate the limit
of the approximation. The time evolution of the percentages of mesh points where
the local radius of curvature is smaller than the effective core radius of the filament
α(t)a(t) is plotted in Fig. B.1. In this figure, the type (i) curve (solid) shows a larger
rate than the other two types for most of the time, but the maximum value is not
larger than 8%. We conclude that our simulation results do not violate the limit of
the approximation throughout the simulation time.

Appendix C. Instantaneous Lyapunov exponent
One of the most important indices used to analyse chaotic dynamical systems is
the Lyapunov exponent. Recently, a great deal of research effort has been devoted
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Figure B.1. The time evolution of the percentage of mesh points where the local radius of
curvature is smaller than the core radius of the filament α(t)a(t) for type (i) (solid line), type
(ii) (dashed line) and type (iii) (dotted line).

to finding the relation between Lyapunov exponents and macroscopic statistical
quantities. Lyapunov exponents in phase space are dynamical characteristic quan-
tities and are valid even in non-equilibrium situations where statistical quantities
are hard to define. To analyse the complicated configuration induced by the col-
lision of two filaments, we should calculate the Lyapunov exponents by giving a
small initial displacement. In general, however, it is difficult to calculate the Lya-
punov exponents numerically for a long time because of the overflow problem in the
computer. To overcome this difficulty, we use a rescaling technique instead of direct
calculation of the Lyapunov exponents. This provides a convenient way of calculat-
ing the instantaneous Lyapunov exponents numerically. The method is presented
by Wiesel (1993) and Ueshima et al. (1997).

In our simulations of the collision of the filaments, we use 200 meshes per filament,
and each mesh has three coordinates (x, y, z). We consider that the edges of the
filaments may be affected by numerical errors and that the most important regions
for the collision are the centres of the filaments. Thus the instantaneous Lyapunov
exponents are calculated using the 100 meshes at the centre of each filament. The
total number of variables is 100 (meshes) × 3 (coordinates) × 2 (filaments) = 600.
We therefore consider a 600-dimensional phase space. From a configuration of the
filaments at an instant, a point in this 600-dimensional phase space is defined.
In this phase space, we calculate the instantaneous Lyapunov exponent using the
rescaling method. We give an initial displacement such that filament 2 is near
filament 1 by 0.01a(0) in the −y direction, and rescale the displacement every 5000
time-steps, rather than every one time-step.
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