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A two-dimensional simulation model of the ‘‘magnetohydrodynamic (MHD)” vortex method,
current-vortex method, is developed. The concept is based on the previously developed
current-vortex filament model in three-dimensional space. It is assumed that electric current and
vorticity have discontinuous filamentary (point) distributions on the two-dimensional plane, and
both the point electric current and the point vortex are confined in a filament. In other words, they
share the same point on the two-dimensional plane, which is called the ““current-vortex filament.”
The spatial profiles of the electric current and the vorticity are determined by the sum of such
filaments. Time development equations for a filament are obtained by integrating the
two-dimensional MHD equations around the filament. It is found that a special-purpose computer,
MDGRAPE-2, is capable not only of molecular dynamics simulations but also of MHD simulations,
because MDGRAPE-2 accelerates calculations of the Biot—Savart integral. The current-vortex
method on MDGRAPE-2 reproduces the result obtained by the traditional MHD code on a

general-purpose computer. © 2003 American Institute of Physics. [DOIL: 10.1063/ 1.1594725]

I. INTRODUCTION

The vortex method is one of the most famous techniques
in hydrodynamic simulations.'™ This method has some ad-
vantages. Kinetic pressure is not necessary for the simula-
tions and can be obtained explicitly from flow velocity after-
ward if needed. The fine structure of the vorticity can be
traced by the method, because a time evolution of the vor-
ticity profile is directly calculated by the vorticity equation,
while the vorticity profile is obtained by the rotational differ-
entiation of the velocity field in simulations using the equa-
tion of motion.

It is well known that magnetohydrodynamics (MHD)
and incompressible hydrodynamics share many features in
mathematical formulations, for example,

V.-B=0, V-u=0,

VXB:M()j. qu:w,

where B, u, j, and w are magnetic field, velocity field, elec-
tric current density, and vorticity, respectively. Thus, a lot of
research effort has been devoted to develop a model where
electric current and vorticity coexist. The first current-vortex
model for two-dimensional MHD was presented by Fyfe
et al.* The filamentary MHD model in terms of the Elsasser
variables was presented by Kinney et al.® On the other hand,
the current-vortex filament model based on the two-fluid
equations was developed by Lakhin er al.” However, a MHD
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model where the vortex method is applied straightforwardly
has not been presented. Thus we extend the vortex method
to the two-dimensional MHD model, which we call the
“current-vortex method.”

In the current-vortex method, we assume that the electric
current and the vorticity have discontinuous filamentary
(point) distributions on the two-dimensional plane, and a
current-vortex filament contains both the point electric cur-
rent and the point vortex. The spatial profiles of the electric
current and the vorticity are determined by the sum of the
point electric currents and the point vortices in the current-
vortex filaments, respectively. Magnetic and velocity fields
are obtained by the Biot—Savart integrals. It is remarkable
that simulations under high magnetic Reynolds number can
be carried out stably by the current-vortex method, even-if
the electric resistivity equals zero, because the profiles of the
electric current and the vorticity are obtained without the
differentiation, and spatial meshes are not necessary to trace
the motions of the current-vortex filaments.

However, one must notice the calculation cost of the
Biot—Savart integral. It is proportional to N2, where N is the
number of points on which the electric current and the vor-
ticity exist. It is likely that simulation time is dominated by
calculation time for the Biot—Savart integral. Thus, fast cal-
culations of the Biot—Savart integral successfully yield short
simulation time. To improve the calculation performance of
the Biot-Savart integral, we use MDGRAPE-2.2 It is a
special-purpose computer for classical molecular dynamics
simulations. It originates from the GRAPE (GRAvity PipE)
system.”'” MDGRAPE-2 accelerates calculations of non-

© 2003 American Institute of Physics



3182 Phys. Plasmas, Vol. 10, No. 8, August 2003

bonding forces, i.e., Coulomb force, van der Waals force and
so on. Rewriting the Biot—Savart integral, one finds that
MDGRAPE-2 can calculate the Biot—Savart integral.

The paper is organized as follows. In Sec. II, we describe
the basic equations. Basic physical quantities are rewritten in
two-dimensional filamentary representations. In Sec. III, we
derive equations for filamentary MHD simulations. In Sec.
IV, we present our simulation method, and compare the re-
sult obtained by the current-vortex method on MDGRAPE-2
with the one obtained by the ordinary MHD code on the
general-purpose computer. In Sec. V, we give discussions
and conclusions.

Il. BASIC EQUATIONS

We use the two-dimensional ideal MHD equations

Jw.

—=—(u-V)ow.+(B-V)j., (1)

at <

A _ V)A 2)

?_ (u' ) 0 ( )

V-u=0, (3)

E+uxXB=0, (4)

B=—-3XVA._, (5)

w,(r,t)=2-V Xu, (6)
Z

J.(ri)=— -VXB, 7
Mo

where B and u are the magnetic field and the velocity on the
x—y plane, A,, j., and w. are the ; components of the
magnetic vector potential, the electric current density, and
the vorticity, respectively. The unit vector in z direction is
denoted by Z. The mass density is normalized to unity.

We assume that the electric current and the vorticity
have discontinuous distributions, and they are confined in
each filament coaxially. At first, let us define explicit formu-
las of the magnetic vector potential A_(r,7) and the stream
function (r,1):

A(r0)=2 J(DG(r—r(1)), (8)

Yr.)=2 Q1)Gr—rin), 9)

where (r,t) determines the velocity u(r,t) in the following
form:

u(r,t)=—2XVi(rt). (10)

The notations r,(¢), J;(t), and ),(z) are the position vector,
the total electric current, and the circulation inside the ith
current-vortex filament, respectively. The function G(r) is
the two-dimensional Green function for the Poisson equation
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1
G(r)=— Elnlr}. (11)

The electric current density j.(r,¢) and the vorticity w (r,f)
are obtained by

Jry==V2A (r.)= 2 J (1) 8(r—r(1)), (12)

w.(r,1)==V2(r)=2 Q(1)8(r—r(1), (13)

where &(r) is the two-dimensional Dirac delta function and
obeys

V2G(r)=—6(r). (14)

Equations (12) and (13) directly show that there is a current-
vortex filament at r;(7). Magnetic field B(r,7) and velocity
field u(r,t) are obtained by

B(r.1)=—£xXVA_(r,1)=2, J()VG(r—ri(1)) X%,
(15)

u(r,0)=—=2XVy(r.)= 2 Q(NVG(r—r(n))X2.
(16)

The right-hand sides of Eqs. (15) and (16) are the Biot—
Savart integrals in the discretized form.

At this point, all the basic quantities are explicitly given
by the filamentary representations.

ill. FILAMENTARY MAGNETOHYDRODYNAMICS

In this section, we show the vorticity equation (1) and
the magnetic induction equation (2) rewritten by the filamen-
tary representations. From now on, we use a notation r; in-
stead of r;(¢) for simplicity.

A. Vorticity equation

Now we rewrite the vorticity equation (1) in terms of the
filamentary representations (8)—(16). One finds that the vor-
ticity equation becomes o

dQ;
2 d’,“)awr,-)‘E QDY -[U;8(r=r)]=0,
(17)
where U,(r) is defined by
_dr; Ji(1) |
Ui_zlﬂ;Au(riJ)_ﬁ—i(—t;B(ri’r)’ ( 8)
u(ri,t):lz Q)Y G(ri~r) X3, (19)
#i
B(r;.t)=2, J(1)VG(ri—r)X3. (20)
[#i
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Note that the self-induced field by the ith filament is ex-
cluded in U;. To solve Eq. (17), we split the equation to the
part that consists of even functions and the one of odd func-
tions.

To obtain the solution concerning the specific filament,
say kth filament, we integrate Eq. (17) over a circle area
whose center and radius are r, and e, respectively. We as-
sume that the radius € is small enough and that the distances
between the filaments are much larger than e. The integrated
equation is given by

d€Qy(1)
dt

—Qk(t)f V- [US8(r—r)]d*r=0. (21)
Tk

Here we have used the following relations:

f S(r—ri(1))d*r=1, (22)
Tk
> QO -[Ud(r—r)]d?r
l'k I
=Qk(t)f V- [US(r—r,)]d?r. (23)
"k .
From Eq. (21), the even part solution of Eq. (17) is obtained,

dQ(1) B
dr

(24)

which gives the conservation of circulation inside the kth
filament. The second term in Eq. (21) vanishes because of
the symmetry around r=r, .

To obtain the odd part solution of Eq. (17), we multiply
Eq. (17) by (r—ry) and get

dQ (I)
2 ——

i

——(r=r)&(r—r;)

=2 Q0)(r=r)V-[U;8(r—r,)]=0. (25)
Integrating Eq. (25), we obtain

dQ(1)

f (r—ry) 8(r—r))d*r
Tk

Tk

In this equation, the first term on left-hand side vanishes
because of the symmetry around r=r, . The remaining term
is

Qk(r)f (r=r)V-[U.8(r—ry)]d*r=0. (27)

Thus, the odd part solution of Eq. (17) becomes
U,=0, (28)

or, in the explicit form,
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dr

dtk u(ry,t)— QA(( )) B(r ,1). (29)
This equation gives the equation of motion of the kth fila-
ment. Now we have the solutions of Eq. (17). They are Egs.
(24) and (29).

In our previous work, we obtained the macroscopic force
balance equation and macroscopic Faraday’s law for the
current-vortex filament in three-dimensional configuration
correct to the order of p~2, where p is a local radius of
curvature of the filament.!! If the order is limited to p~ ! the
obtained force balance equation is reduced to

[ dr J
Z =ug(r)— aBE(")
. wot? (r—r")Xdr'
47Q ) [|r=r' |+ &*(1)a’(1)]?
QO (r—r’)Xxdr'

[lr—r'|2+,82(t)a2(t)]3/2 + O(P-z), (30)
where r is a position vector of the filament, a(¢) is a radius
of the filament, J and () are the total electric current and the
circulation in the filament, By and u are the external mag-
netic field and the velocity field which do not include the
self-induced field by the filament. The notation L denotes the
direction perpendicular to the axis of the filament. The pa-
rameters a(r) and B(t) are the cutoff parameters for the
Biot—Savart integral. The details of the cutoff parameter are
described in Refs. 11 and 12. Note that the first and second
terms on right-hand side in Eq. (30) are O(p"), and the third
and the fourth terms are O(p”). In the two-dimensional
case, Eq. (30) is reduced to

[dr J

(\a—r i:uE(r)— ﬁBE(r)’ (31
because the radius of curvature p is infinite in the two-
dimensional case. Thus the third and fourth terms in Eq. (30)
are no more needed, and the self-induced field never affects

the self-motion. We see that the Eq. (31) perfectly agrees
with Eq. (29).

B. Magnetic induction equation

In the following, we rewrite the magnetic induction
equation (2) in terms of the filamentary representations. One
finds that the magnetic induction equation becomes

dJ(t)
>

7 dt

dr;
=)= 2 (1) -V G(r=r)

== J{t)(u-V)G(r—r,). (32)

We integrate Eq. (32) over the circle area whose center and
radius are ry and €, respectively. In this case also. we assume
the parameter € is small enough. The terms on left-hand side
in Eq. (32) are rewritten as
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> ‘”(’ Glr—r)dir 21(:)

fl\l rkl

dJ (1) ) dJi(1)
= J'rkG(r—rk)d r+i§{ T

VG(r r)d*r

2 drk 2
X | Glr—r)dr —J.(r) W-VG(r—rk)d r
Tk T

—2 OF LV G(r—r)d?r
dJ (1) 1 2( 1 dJ (1) 5
T \ln6~ 5)+;( P G(r,—r)me
dr;
— D J{(1) == -VG(r,—r;,) me. (33)
i#k d
Here we have used the following relations:
fVG(r—-rk)dzr:O, (34)
Tk
fG(r—r,.)dzrzc(rk—r,.)J d*r. (35)
Tk Tk

The second formula (35) stands on the assumption that the
distance |r,—r;| is large enough, and G(r,—r;) is approxi-
mately constant.

We split the term on right-hand side in Eq. (32) into
terms associated with the kth filament and the others. The
integrated form is given by

> T (u-V)G(r—r)d*r

r,

=—Jk(t)J (u-V)G(r—r,)d*r
Tk
—2 J,-(t)f (u-V)G(r—r)d>*r. (36)
i#k Ty
We split the velocity field u into two parts,

u=2, Q()VG(r-r)xz
= ()VG(r—r)XZ+u(ry), (37)
where u(ry) is defined by

u(rk>=; QVG(r,—r) X3, (38)

in the same manner as Eq. (19). Substituting the above ex-
pression for u in Eq. (36), we obtain
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—Jk(t)f {[Qk(t)VG(r—-rk) X2+u(rk)] . V}G(r—rk)dzr
re()

{{Q()VG(r—r)xz+u(r)]-V}

ri(1)

_2 Ji(t)
i+k

XG(r—r))d*r

=—J (1) [QUVG(r—r)X5]-VG(r—r)d*r
rilt)

—J (1) u(r,)-VG(r—r)dr

rk(l)

- 2 J,-(t)f [Q (VG (r—r)XZ]- VG(rHr,)dzr
iFk (1)

i#k

—2 Ji(t)J u(rk)-VG(r—r,»)dzr
ri(r)
= —Ek J{(u(r)-VG(r—r)me. (39)
i#

The relations (34) and (35) have been used here.
From Eqgs. (33) and (39), the explicit formula of the
magnetic induction Eq. (32) is obtained. Let A be
A=—(lne— $)>0, : (40)
and then Eq. (32) becomes

dJ (1) 2 dJ; (r) 2ar
dt ; (rk r!) N “~ 1()
dr;
X u(r,\,)—g—t- -VG(r,—r). (41)
In the limit of e—0, we obtain
dJ (1)
dr (42)

This gives the conservation of total electric current inside the
kth filament. Now we have a set of equations that determine
the motion of the current-vortex filaments. They are given in
Eqgs. (24), (29), and (42). -

IV. SIMULATION METHOD AND RESULTS

In this section, we give two topics. The first one is a
method to calculate the Biot—Savart integral by
MDGRAPE-2. The second one is a comparison between the
results obtained by the current-vortex method on
MDGRAPE-2 and by the ordinary MHD code on a general-
purpose computer.

A. Biot-Savart integral on MDGRAPE-2

As is shown in the Introduction, the main purpose of
MDGRAPE-2 is to calculate the Coulomb force very fast.
MDGRAPE-2 has a capability to calculate the Biot—Savart
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integral also. However, some manipulations of the formulas
are required to show how to calculate the Biot—Savart inte-
gral by MDGRAPE-2.

The gravitational acceleration at r in three-dimensional
space is given by

—r;

a(r)———GE m; = (43)

where r; is a position vector of the ith star whose mass is
given by m;. The summation is performed for all the stars
concerned. The calculation of Eq. (43) can be accelerated by
MDGRAPE-2.

On the other hand, the magnetic field induced by the
electric current filament is obtained by the Biot—Savart inte-
gral,

B(r)y=—

p,ojf (r—r’)Xdr” (44)

4 r—r'|?

which gives the magnetic field in three-dimensional space at
r. The vector r' is the position vector of the small element of
the filament. The total electric current inside the filament is
denoted by J. The integral is performed for all the elements
dr’ in the filament. Equation (44) is discretized in the fol-
lowing form:

wol < (r—r)Xdr!
Bir=-7-2 Eame

i |"_"i|3

Mot ,
g Z &Xdr;
(45)

where we introduce the vector & for simplicity, which is
defined by

!

r—r
=1 4
gl |r_rill3 ( 6)
The components of & and dr; are denoted by
gi:(gix ’gi_v ’gi;)v (47)
dri=(dri dr] dr]). (48)

Incorporating Eqs. (47) and (48) into Eq. (45), the compo-
nents of Eq. (45) become

B (r)=- —2 (ndri.—&idr]), (49)
B,(r)=— “—""E (&.dr}— & dr}) (50)
y 477 T [ X L 127
ol
B.(r >———2 (&.drl,—&.dr]). (51)

Now, we compare the following formulas that are the com-
ponents of Eq. (43) with Egs. (49), (50), and (51):

a(r)=-— —E Endrl,, (52)

a,(r)=— —2 Endr],, (53)
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FIG. 1. Initial condition of the simulation is shown.

a(r>~—’i2§d,.. (54)

Formulas (52)—(54) are obtained by substituting w,J/(47)
for G and dr/, for m; in Eq. (43). Equations (52)—(54) have
the forms suitable for MDGRAPE-2. You will find that the
components a,(r) and a_(r) appear in formulas (51) and
(50), respectively. All the terms in Eqs (49 (51), therefore,
can be obtained by substituting dr/ , d riv. and dr]_ for m;
respectively. Thus, the Biot—Savart integral (45) can be cal-
culated by MDGRAPE-2.

The above-mentioned method is for the three-
dimensional case. If the two-dimensional problem is consid-
ered, the Biot—Savart integral is as follows:

r—r'YXj.(r')z
Mof ( /2 Ly (55)
2 lr—r'|"

MDGRAPE-2 is also able to calculate this kind of integral.
The only thing needed is to rewrite the function table in
MDGRAPE-2 that determines the formula of the integrand &

in Eq. (45). For two-dimensional case, we use the following
form of &

B(r)=

e ~(56)

B. Simulations by MDGRAPE-2 and general-purpose
computer

In this subsection, we show a simulation result obtained
by the current-vortex method on MDGRAPE-2, and compare
it with the one obtained by the ordinary MHD code on a
general-purpose computer. The details of the latter result
have been given in Ref. 13. Illustrations of the initial condi-
tion are shown in Fig. 1. There are three vortex sheets and an
electron current sheet in the system. Initial widths of the
current and the vortex sheet are denoted by L. The size of
the simulation box is 4L, in the x direction and 40L,, in the
y direction. Both the current and the vortex sheet have finite
lengths in the v direction. The initial length of the current
sheet is 36.8L. Initial lengths of the vortex sheets are re-
duced to 1/5 each, compared with that of current sheet. Ini-
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tial current density and vorticity are given by jo and w,,
respectively, and uniform inside the sheet. We adopt the free
boundary condition at all the edges of the simulation box,
because the sheets do not deform in x direction near the
upper and lower boundaries, if periodic boundary conditions
are used. The time scale of simulations is normalized by the
Alfvén transit time 7, . The resistive time scale is given by
7r=10007, .

In the simulations done by MDGRAPE-2, we use the
following equations:

ary_ 2do) o (57
‘(F*u(’k,f) Q00 (ry,t), 57)
dJ; (1) =

F T (58)
dQ(1) 3

de (59)
B(ry,1)= 2 Ji(t)VG(r—ri(1)) Xz, (60)
u(ry,t)= kQ,-(r)VG(rk—ri(t))Xz‘. (61)

i#

The last two Egs. (60) and (61) are calculated by
MDGRAPE-2. The magnitudes of the parameters are as fol-
lows. The electric current and the circulation of the ith fila-
ment are J;(0)=€,;(0)=0.16. The total number of the
current-vortex filaments is 10°. The magnitudes of the cur-
rent density and the vorticity depend on the number of the
filaments. They are j,=w;=3.4. Time step is 5.0X 1077,
The number of total time steps calculated is 1.6X 10°. Four
MDGRAPE-2 boards are used in the simulation.

In the simulations done by the general-purpose computer
we use the following equations:

;‘: = —(u-V)w,+(B-V)j., (62)
IA.

—=—(u-V)A, +—V2A (63)
at Mo
j.=—V?3A,, (64)
u=f 0 ZXVG(r—r')dr'. (65)

The magnitudes of the current density and the vorticity are
Jo=wy=0.5. The time step is 2.0X 10 *. Because of the
limitation of the simulation code, the electric resistivity # is
introduced in the simulations on the general-purpose com-
puter. The magnitude of 7 is 0.1. However, we consider that
the resistivity does not alter the result because the time scale
concerned is shorter than the resistive time scale. The num-
ber of the meshes is 3.3X10*. We use the FUJITSU
VPP700E and the number of processors (PEs) is four. To
compare the results obtained by MDGRAPE-2 and the
general-purpose computer, we must normalize the typical
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(a) Electric current (b) Vorticity

e

i
|
|
{
|
|
|
|
I
;

i
|
|
|
4

fl\‘

T=0.0 3.0x 102

T=0.0 3.0x 102 6.0 102 6.0x102

FIG. 2. A simulation result done by the general-purpose computer is shown.
The snapshots of the distribution of (a) electric current and (b) vorticity at
T=0.0, 1.5X10%7,, 3.0X 1077, , 4.5 10’7, , and 6.0X 10°7, are given.

time scales for both the simulations, because the values of
the current density and the vorticity for MDGRAPE-2 are
different from those for the general-purpose computer. Let
the time scale for the general purpose computer be 7. Then
the time scale for MDGRAPE-2 T, is given by A

=Ty/(1.09X10"). From now on time scale for
MDGRAPE-2 is normalized by T,.

Time evolutions of the current and vortex sheets are
shown in Fig. 2. The result shown in Fig. 2 is obtained by the
general-purpose computer. In Fig. 2, we can see that the
electric current sheet splits into some pieces with time, fol-
lowmg the distribution of the vorticity. After 7=1.5
X 10’7, , new configurations appear in both the dlsmbutlons
of the electric current and the vorticity. They exhibit the very
similar forms. The electric current and the vorticity evolve to
create more overlapping regions where they coexist. The
structure is rather filament-like than sheet-like. Once the fila-
ments are formed, they survive stably. This is due to the
strong correlation between the electric current and the vor-
ticity. The above comments are for the result obtained by the
general-purpose computer.'”® One finds that basically the
same phenomenon can be demonstrated by MDGRAPE-2
that is shown in Fig. 3. The time-evolved distributions of the
electric current and the vorticity show very similar results.
The calculation time is 110 min for MDGRAPE-2 and 350
min for the general-purpose computer. Because the number
of the filaments for MDGRAPE-2 is larger than the number
of the meshes for the general-purpose computer, we cannot
compare the calculation time directly. However, it gives
evidence that even the MHD simulation using 10° filaments

(a) Electric current (b) Vortlcny

W
l
1

L
o
Lk

T=0.0 3.0x 102

6.0%10° T=0.0 :so><1o2 6.0x 102

FIG. 3. A simulation result done by MDGRAPE-2 is shown. The snapshots
of the distribution of (a) electric current and (b) vorticity at 7=0.0, 1.5
X10%7,, 3.0X10%7,, 45X 10’7, , 6.0X 107, are given.
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can be carried out by MDGRAPE-2 within realistic calcula-
tion time.

V. DISCUSSIONS AND CONCLUSIONS

We present the simulation model where the electric cur-
rent and the vorticity are discretized in the same manner as
the traditional vortex method in hydrodynamics. The model
is suitable for the simulations of the high magnetic Reynolds
number. The special-purpose computer, MDGRAPE-2, ac-
celerates the calculation of the Biot—Savart integral. Because
the Biot—Savart integral is used in every time step in the
current-vortex method, the fast calculation of the Biot—
Savart integral successfully yields short simulation time.
There may be many other applications of MDGRAPE-2.

In this model, we neglect all the viscous parameters,
namely, the electric resistivity and the kinetic viscosity. To
incorporate these effects, the parameter e should be finite.
However, if € is finite and constant, a problem arises that the
electric current and the vorticity in all the filaments dump at
the same rate. Thus we must develop the method to deter-
mine € for each filament appropriately. The other viscous
effect may arise from the interactions between many fila-
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ments. This is just like collisions between the particles. To
incorporate these kinds of viscous effects, further investiga-
tions are needed.
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