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 Use of spectral reflectance from a compact spectrometer to assess 

chlorophyll content in Zizania latifolia 

Hyperspectral remote sensing is frequently used to monitor chlorophyll content, 

an important characteristic for assessing photosynthetic ability, health and 

defence against a variety of degenerative diseases. To obtain hyperspectral data, 

field portable spectroradiometers, such as Ocean Optics Hyperspectral Vis-NIR 

spectroradiometers and Analytical Spectral Devices FieldSpec series, have been 

widely used. However, the prices of these devices are above consumer levels, 

which prevents practical use. The development of an affordable hyperspectral 

remote sensing system would be advantageous. Highly sensitive, affordable and 

finger-tip size spectrometers have recently been released. In this study we 

investigate the potential of hyperspectral data obtained from such a compact 

spectrometer (C12880MA-10, Hamamatsu Photonics) for estimating chlorophyll 

content in Zizania latifolia. We also tested the efficacy of five pre-processing 

techniques (first derivative reflectance, continuum-removal transformation, de-

trending, multiplicative scatter correction and standard normal variate) in 

conjunction with five machine learning algorithms. 
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1. Introduction 

The close relationship between primary production and chlorophyll content is well-

known. Of all biochemical variables, chlorophyll content is a most important indicator 

of photosynthetic activity (Peng et al., 2011). Furthermore, chlorophyll content has been 

used for evaluating various plant stresses since changes in chlorophyll content of leaves 

are related to the effects of disease as well as nutritional and environmental stresses 

(Zhu et al., 2019). Estimating chlorophyll content is therefore useful for monitoring 

growth rates and managing fertilizing schedules. 

Although spectrophotometric measurements using ultraviolet and visible (UV-VIS) 

spectroscopy or high-performance liquid chromatography (HPLC) measurements have 



been widely adopted to accurately measure chlorophyll content (Prado-Cabrero et al., 

2016), these techniques are expensive, labour-intensive and require bulky equipment 

(Kalaji et al., 2017). Portable equipment, such as the SPAD-502 Leaf Chlorophyll 

Meter (Konica Minolta), provide a simpler method for quantifying chlorophyll by 

measuring leaf absorbance at specific wavelengths. However, the light transmittance of 

a leaf is also influenced by leaf structure, water content and leaf pigment distribution 

(Padilla et al., 2018). Portable chlorophyll meters were shown to be unsuitable for 

quantifying chlorophyll content in Manchurian wild rice (Zizania latifolia) since it is 

silica-rich, and silica content is correlated with leaf structure (Kindomihou et al., 2006). 

Hyperspectral remote sensing, which provides spectral information on continuous 

wavelengths, has played an important role in evaluating vegetation characteristics and is 

a technique that assists in management of agricultural fields (Huang et al., 2016). 

Chlorophyll absorbs energy strongly in the ultraviolet, blue and red regions, resulting in 

weak reflectance and transmittance (Roy, 1989). Reflectance from vegetation is thus 

low in the blue (400 to 500 nm) and red (650 to 690 nm) spectral regions (Datt, 1999). 

Wavelengths at the green peak (540 to 560 nm) and the red edge (680 to 750 nm) in 

particular have been used for estimating chlorophyll content (Carter and Knapp, 2001, 

Zarco-Tejada et al., 2001). 

Field portable spectroradiometers are expensive and there are practical difficulties in 

using them, thus development of an affordable hyperspectral remote sensing system 

would be advantageous (Uto et al., 2016). Recently, affordable fingertip-sized 

spectrometers for obtaining hyperspectral data have been developed, which may be 

attached to unmanned aerial vehicles or used for sensing over a large area (Chen et al., 

2018). In the present study, a compact spectrometer (C12880MA-10, Hamamatsu 

Photonics) was used to evaluate chlorophyll content in Zizania latifolia. 



Pre-processing techniques are used to remove physical phenomena in the spectra in 

order to improve subsequent multivariate regression, classification model or exploratory 

analysis (Rinnan et al., 2009). A first derivative reflectance (FDR) or continuum-

removal (CR) transformation may be run to emphasise spectral features, such as the red 

edge and green peak (Demetriadesshah et al., 1990, Schmidt and Skidmore, 2003). De-

trending (DT), multiplicative scatter correction (MSC) and standard normal variate 

(SNV) are also known to reduce noise or baseline shift caused by light scattering in raw 

reflectance data (Barnes et al., 1989, Liang et al., 2020). However, the advantages of 

some techniques may be obscured depending on the characteristics of objective 

variables, such as chemical variations (Wu et al., 2019). We therefore tested these 

techniques and evaluated their potential for improving estimation accuracies. 

The benefits of machine learning algorithms for identifying vegetation characteristics 

have also been demonstrated. Cubist-based regression, stochastic gradient boosting 

(SGB; (Fernandez-Delgado et al., 2019, Breunig et al., 2020), deep belief nets 

(DBN;(Sonobe et al., 2020a), kernel-based extreme learning machines (KELM; 

(Sonobe et al., 2018b), random forests (RF; (Cui et al., 2019) and support vector 

machines (SVM; (Yang et al., 2011, Wang et al., 2013) performed well during studies 

assessing biochemical or physiological features of vegetation. A challenge of applying 

machine learning algorithms is optimizing their hyperparameters and selecting a 

combination of hyperparameters that corresponds to a convex optimization problem 

(Abedi et al., 2012). Although grid search strategies have been adopted to solve this 

problem (Puertas et al., 2013), these strategies are inadequate for configuring 

algorithms for new data sets, and a random search is considered a superior approach 

(Bergstra and Bengio, 2012). Furthermore, Bayesian optimization, which is a 

framework used to optimize hyperparameters of noisy, expansive black-box functions, 



constitutes a structured approach to modelling uncertainty and may offer better 

selections (Xia et al., 2017). We therefore used Bayesian optimization to optimize the 

hyperparameters of machine learning algorithms. 

The main objectives of this study were (1) to evaluate the potential of hyperspectral data 

derived from a C12880MA-10 device for estimating chlorophyll content in Zizania 

latifolia, and (2) to identify which combination of pre-processing technique and 

machine learning algorithms is the most suitable for constructing chlorophyll content 

estimation models. 

 

2. Materials and methods 

2.1. Measurements and datasets 

Manchurian wild rice (Zizania latifolia) plants were cultivated in flooded conditions 

with inter-row and within-row spacing 100 cm apart, on a paddy field at Shizuoka 

University, Shizuoka, Japan (Figure 1). A total of 200 leaves were measured for 

reflectance and chlorophyll content on 2 and 5 October, 2020. 

A complementary metal-oxide-semiconductor (CMOS) sensor (C12880MA-10, 

Hamamatsu Photonics, Table 1) and a shape memory alloy (SMA) to SMA fiber patch 

cable (M25L05, Thorlabs, Inc.) with numerical aperture 0.22, were assembled and 

hyperspectral reflectance was measured at nadir, 3 cm above the samples. The grating 

equations provided by Hamamatsu Photonics were used to convert pixel number to 

wavelength and the data were resampled in 5-nm bands across the wavelength domain 

from 340 to 850 nm. 

<Figure 1> 



<Table 1> 

Reflectance of the target was calculated using the following equation: 

𝜌𝜆 =
𝑆𝜆−𝐷𝜆

𝑊𝜆−𝐷𝜆
,   (1) 

where S, W and D are the target, a diffuse reflectance standard (WS-1, Ocean Optics) 

and dark current at wavelength λ nm. 

A dual-beam scanning ultra violet-visible spectrophotometer (UV–1900, Shimadzu, 

Japan), dimethylformamide extraction and Porra’s method (Porra et al., 1989) were 

used to obtain real chlorophyll content values. 

2.2.Spectral pre-processing 

The combinations of software and packages used for applying various processes are 

listed in Table 2. Spectral pre-processing techniques were used to reduce noise and 

insignificant signals in the spectra and to improve the subsequent multivariate 

regression, classification model or exploratory analysis. They were mainly divided to 

two groups: scatter-correction methods and spectral derivatives (Rinnan et al., 2009). 

De-trending (DT), multiplicative scatter correction (MSC) and standard normal variate 

(SNV) belong in the first group and first derivative reflectance (FDR) belongs in the 

latter. Further, continuum removal (CR), which is a brightness normalization technique 

that models water stress comparatively well (Boloorani et al. 2020), was also applied to 

enhance associated changes (Clark and Roush, 1984). These five pre-processing 

techniques were evaluated together with the original reflectance (OR) from the compact 

spectrometer. 

<Table 2> 



2.3. Regression model generation based on machine learning algorithms 

Cubist is a rule-based model tree method; a multivariate linear regression model is used 

for fitting at each leaf node on the tree (Quinlan, 1992). Committee models and 

instance-based corrections using nearest neighbours were also used to improve 

predictive accuracy. Cubist has the ability to deal with nonlinear and complex 

relationships between dependent and independent variables using both continuous and 

categorical input variables (Chen et al., 2020). Further, Cubist is known to select 

spectral variables efficiently (Sonobe et al., 2020b). 

Deep belief nets (DBN) consist of stacked modules of restricted Boltzmann machines 

(RBMs), which is an undirected energy-based model with two layers of visible and 

hidden units. Each RBM module is trained individually in an unsupervised manner 

using a contrastive divergence procedure (Hinton et al., 2006). Dropout is used as an 

input of the subsequent RBM stage during the training phase to facilitate high-quality 

predictions, and the whole network is commonly trained using a supervised learning 

approach called the fine-tuning method. 

Kernel-based extreme learning machine, which is expressed as a single hidden layer 

feed-forward neural network, has been widely applied with an RBF kernel for many 

practical tasks, such as prediction, fault diagnosis, recognition, classification and signal 

processing (Li et al., 2016, Sonobe, 2019a, Sonobe, 2019b). The method has been 

further developed, and improvements have increased the number of hyperparameters 

included, thereby reducing the advantages gained from limiting their number. In the 

present study, we used KELM as proposed by (Huang et al., 2012). 

Random forests (RF) is an ensemble learning algorithm composed of many decision 

tree models. These trees are combined to provide more accurate prediction results 



(Breiman, 2001). It performs well for both classification (Caglayan et al., 2020, 

Mansaray et al., 2020a)  and regression(Mansaray et al., 2020b). 

Stochastic gradient boosting (SGB) has both boosting and bagging advantages as well 

as the ability to model nonlinear relationships, manage qualitative and quantitative 

variables and remain robust despite missing values and data outliers (Friedman, 2002). 

Furthermore, its limited number of hyperparameters (i.e. total number of trees to fit, 

maximum depth of each tree, learning rate and minimum number of observations in the 

terminal nodes of the trees) makes it effective for generating robust models (Greenwell 

et al., 2020). However, a trade-off between the number of trees and learning rate has 

been identified (Friedman, 2002). 

Support vector machines (SVM) have been used to solve non-linear problems by 

mapping the input variables into higher dimensional feature space using a Gaussian 

radial basis function (RBF) kernel(Al-Fugara et al., 2020). However, it is necessary to 

optimize the hyperparameters to avoid overfitting (Reda et al., 2020). There are two 

hyperparameters: C, which controls the trade-off between the smooth decision limit and 

the regression training points, and gamma, which defines how far the influence of a 

single training sample reaches. 

2.4.Performance assessment 

The performance of each algorithms was evaluated based on the ratio of performance to 

deviation (RPD, Equation (2); (Williams and Norris, 1987). (Chang et al., 2001) 

grouped results into three categories according to RPD values: ‘A’ (RPD > 2.0), ‘B’ 

(1.4 ≤ RPD ≤ 2.0) and ‘C’ (RPD < 1.4). Regression models classified into ‘A’ or ‘B’ 

were assumed to have the potential to estimate chlorophyll content. 

RPD = SD/RMSE  (2) 



RMSE = √
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)2
𝑛
𝑖=0  (3) 

where SD is the standard deviation of chlorophyll content in the test data, RMSE is 

root-mean-square error, n is number of samples, 𝑦𝑖 is measured chlorophyll content and 

𝑦𝑖̂ is estimated chlorophyll content. 

3. Results 

3.1.Chlorophyll content and composition 

The chlorophyll content per leaf area (cm²) ranged from 17.53 to 58.0 μg for total 

chlorophyll, 14.47 to 45.84 μg for chlorophyll-a and 3.06 to 12.19 μg for chlorophyll-b 

(Figure 2). The chlorophyll-a to chlorophyll-b ratio ranged from 3.47 to 5.24 (Figure 2). 

<Figure 2> 

3.2. Spectral patterns after pre-processing 

Figure 3 shows the correlation coefficients between chlorophyll content and original 

reflectance of the pre-processed spectra. A significant positive correlation (r=0.641, p < 

0.001) was confirmed at 585 nm for FDR. Generally, however, the pre-processing 

techniques weakened the correlations. The lowest negative correlation coefficient was -

0.875 for OR. The wavelengths showing the strongest negative correlation coefficients 

varied along the spectrum: near the green peak (520 nm) for OR, and near the red edge 

for FDR, CR, DT, MSC and SNV (690 (r=-0.750), 730 (r=-0.379), 710 (r=-0.350), 715 

nm (r=-0.335) and 715 nm (r=0.349), respectively). 

3.3.Accuracy validation 

The chlorophyll content estimation accuracy for each combination of pre-processing 

technique and machine learning algorithm was calculated from 100 repetitions (i.e. 25 



measurements × 100 repetitions). The best pre-processing and algorithm combination 

were OR and Cubist with an RPD of 2.01 (in the ‘A’ category) and an RMSE of 3.80 μg 

cm² (Tables 3 and 4). OR performed satisfactorily with the other machine learning 

algorithms except for SVM. FDR also performed adequately with Cubist, KELM and 

RF. However, the scatter-correction methods and CR were not effective for enhancing 

the spectral features related to chlorophyll content from reflectance data from a 

C12880MA-10 device. 

Among the 100 repetitions, the lowest RPD value was 1.4 for the OR-Cubist 

combination, implying that it was always suitable for estimating chlorophyll content in 

Zizania latifolia using the compact spectrometer. RPDs of the other combinations, 

however, were below 1.1.  

<Table 3> 

<Table 4> 

3.4.Sensitivity analysis 

The importance of each wavelength of OR was evaluated with data-based sensitivity 

analysis (DSA) for each algorithm at 20 nm intervals (Figure 4). The highest 

importance was identified near the green peak (540-560 nm for Cubist, DBN, KELM 

and SVM, 570 nm for RF and 520-540 nm for SGB) and the highest values were 11.3, 

8.99, 8.07, 10.16, 14.16 and 7.62% for Cubist, DBN, KELM, RF, SGB and SVM, 

respectively. Smaller peaks were also confirmed at the start of the red edge near 630 nm 

(5.21, 5.89, 5.49, 6.71 and 8.39% for Cubist, DBN, KELM, RF and SGB, respectively); 

however, this was obscure for SVM (4.55% at 620-640 nm). Importance was almost 

zero for SGB (0.76%) at wavelengths greater than 720 nm but was still present for other 

algorithms (10.74, 10.81, 14.87, 7.00 and 19.16% for Cubist, DBN, KELM, RF, SGB 

and SVM, respectively). Above 760 nm, however, importance values were below 10%, 



with the exception of KELM and SVM (10.52 and 13.81%, respectively). 

<Figure 4> 

4. Discussion 

4.1.Spectral features of a compact spectrometer 

For the compact spectrometer, C12880MA, outputs below 400 nm were low and noisy 

since at that wavelength sensitivity was low and sunlight illumination poor (Uto et al., 

2016). During our investigation of the C12880MA-10, we also recorded low reflectance 

values from our samples, but noise below the wavelength of 400 nm was negligible. In 

our study, the distance between the tip of the fiber and the target was only 3 cm, which 

might reduce diffuse light and background effects. However, imaging spectroscopy 

through combining the potential of digital images with hyperspectral measurements 

may benefit the functioning of agricultural systems and rangelands (Heiden et al., 

2016). It would be beneficial to assess the C12880MA-10 hyperspectral sensor with 

whisk broom scanning. 

However, reflectance at 750 nm was greater than 0.60, which is the highest reflectance 

value at 750 nm reported in the online dataset (ANGERS, for Populus alba L.; (Feret et 

al., 2008). Furthermore, a decrease at 800 nm was identified and there were no clear 

trends. Relative sensitivity was less than 0.5 at 700 nm (HamamatsuPhotonics, 2019); it 

would thus be inappropriate to use reflectance from the compact spectrometer to 

estimate chlorophyll content at wavelengths greater than 700 nm. Nevertheless, the red 

edge and related indicators such as the red-edge inflection point have been used for 

evaluating chlorophyll content in previous studies (Miller et al., 1990, Flynn et al., 

2020, Sharifi, 2020). 



4.2.Effects of pre-processing techniques on reflectance from a compact 

spectrometer 

The combination of OR and Cubist performed best, indicating that large spectral 

modifications are not necessary for original reflectance obtained from a C12880MA-10 

device. In fact, scatter-correction methods and CR reduced OR abilities. Although 

scatter-correction methods have been shown to perform poorly when the raw spectra 

data include large chemical variations (Wu et al., 2019), the standard deviation of 

chlorophyll content in Zizania latifolia (7.66 μg cm²) is small compared to that of other 

species (such as wasabi [7.86 μg cm²; ] and tea [26.50 μg cm²; ]) in which DT and 

certain forms of MSC and SNV perform well. However, the devices used to acquire 

these reflectance data were different. The Analytical Spectral Device (ASD) FieldSpec 

or ImSpector N10E high-spectrometer, which has a narrower full width at half 

maximum, was used in some studies that reported a high performance of DT, MSC and 

SNV (Yu et al., 2014, Zhang et al., 2016, Golhani et al., 2019, Sonobe et al., 2020c, 

Yamashita et al., 2020). Furthermore, reflectance data intervals from C12880MA-10 

might be relatively coarse in wavelength. Moreover, irregular reflectance data resulted 

in more continuum points (Lehnert, 2020), and CR failed to enhance the spectral 

features related to chlorophyll absorption, since a spectral curve with values between 0 

and 1 was obtained by normalizing OR (Clark and Roush, 1984). 

4.3.Performance of different machine learning algorithms 

Cubist, a regression model, has been shown to perform well on various dataset, but it 

occasionally fails when used on large datasets (Fernandez-Delgado et al., 2019). Some 

studies found that KELM was superior to Cubist when using fine hyperspectral 

reflectance data such as reflectance from an ASD FieldSpec (Sonobe et al., 2020c, 

Sonobe et al., 2020b). Reflectance from the red edge domain is usually important for an 



accurate estimation of chlorophyll content. Normally, importance is dispersed for 

KELM or SVM and a degree of importance over the non-informative domain was 

shown (Sonobe et al., 2018a). However, the sensitivity of C12880MA-10 in this domain 

was poor, and removing that influence might be effective. Since Cubists importance in 

this domain was lower than that of KELM and SVM, Cubist was less influenced by the 

noise in the domain. In contrast, RF and SGB were less accurate, although their 

importance at 700 nm was lower than Cubist’s. Unlike Cubist, SGB performs well with 

large and difficult datasets (Fernandez-Delgado et al., 2019), and thus failed in our 

study probably due to the small size of the training data set. Using only a fraction of the 

training data for SGB may have led to overfitting. When running RF, similar strategies 

produced a less accurate estimation, since one third of the training data is separated as 

out-of-bag (OOB) samples; these samples are not used for training the tree but to 

evaluate performance. This strategy may have reduced the sample size too much to 

generate regression models. 

5. Conclusions 

We examined the relationship between Zizania latifolia chlorophyll content and 

reflectance measured using a compact spectrometer, C12880MA-10 (Hamamatsu 

Photonics). To analyse reflectance data, we evaluated the efficacies of pre-processing 

techniques: first derivative reflectance (FDR), continuum-removal (CR) transformation, 

de-trending (DT), multiplicative scatter correction (MSC) and standard normal variate 

(SNV), as well as original reflectance (OR). To this end we also used five machine 

learning algorithms: random forests (RF), support vector machine (SVM), kernel-based 

extreme learning machine (KELM), Cubist and Stochastic Gradient Boosting (SGB). 

OR was selected as the best pre-processing technique when combined with Cubist, 

indicating that large spectral modifications are not necessary for estimating chlorophyll 



content from reflectance data from C12880MA-10. This illustrates the potential of using 

data from this compact spectrometer. However, the reflectance at the red edge should be 

excluded from analyses due to its low sensitivity. 

The proposed method is cost effective, practical for consumers to apply and will enable 

effective crop management. To make use of imaging spectroscopy the C12880MA-10 

hyperspectral sensor with whisk broom scanning is required in addition; this may be of 

added benefit to precision agriculture. 
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Figure 1. Zizania latifolia cultivated in a paddy field. 
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Figure 2. Histograms of (a) total chlorophyll, (b) chlorophyll-a, (c) chlorophyll-b 

contents and (d) chlorophyll-a to chlorophyll-b ratio. 
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Figure 3. Correlations between chlorophyll content and original reflectance (OR) or a 

pre-processed spectrum: first derivative reflectance (FDR), continuum-removal (CR) 

transformation, de-trending (DT), multiplicative scatter correction (MSC) and standard 

normal variate (SNV). 
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Figure 4. Data-based sensitivity analysis (DSA) results for six machine learning 

algorithms: Cubist, deep belief net (DBN), kernel-based extreme learning machine 

(KELM), random forests (RF), stochastic gradient boosting (SGB) and support vector 

machine (SVM). Importance values were calculated from 100 repetitions. 

 

 

  

0

5

10

15

20

300 350 400 450 500 550 600 650 700 750 800 850

Im
p
o

rt
an

ce
 (

%
)

Wavelength (nm)

Cubist DBN

KELM RF

SGB SVM



Table 1. Specification of the compact spectrometer, C12880MA-10 

Parameter Specification 

Spectral response range 340 - 850 nm 

Upper limit of calibrated full width at half maximum 15 nm 

Bands 288 

Dynamic range 16 bits 

Dimension 20.1 ×12.5 ×10.1 mm 

Weight 5 g 

 

  



Table 2. Software and packages used for applying machine learning algorithms 

Pre-processing/Machine learning 

algorithm 

Software 

Package 

First derivative reflectance (FDR) R prospectr (Stevens and Ramirez-Lopez 2020) 

Continuum removal (CR) R hsdar (Lehnert 2020) 

De-tending (DT) R prospectr (Stevens and Ramirez-Lopez 2020) 

Multiplicative Scatter Correction (MSC) R mdatools (Kucheryavskiy 2020) 

Standard Normal Variate (SNV) R prospectr (Stevens and Ramirez-Lopez 2020) 

Cubist R Cubist (Kuhn 2020) 

Deep Belief Nets (DBN)  R darch (Drees et al. 2015) 

 Kernel-based Extreme Learning Machine 

(KELM) 

Matlab Original code was downloaded from 

https://www.ntu.edu.sg/home/egbhuang/elm_codes.html. 

Random Forests (RF) R randomForest (Breiman et al. 2018) 

Stochastic Gradient Boosting (SGB) R gbm (Greenwell et al. 2020) 

Support Vector Machine (SVM) R kernlab (Karatzoglou et al. 2019) 

 

  



Table 3. RPD (ratio of performance to deviation) values of regression models from 100 

repetitions. The pre-processing techniques are original reflectance (OR), first derivative 

reflectance (FDR), continuum-removal (CR) transformation, de-trending (DT), 

multiplicative scatter correction (MSC) and standard normal variate (SNV) and the 

machine learning algorithms are deep belief net (DBN), kernel-based extreme learning 

machine (KELM), random forests (RF), stochastic gradient boosting (SGB) and support 

vector machine (SVM) 

  Cubist DBN KELM RF SGB SVM 

OR 2.01  1.80  1.82  1.97  1.78  1.38  

FDR 1.40  1.30  1.40  1.50  1.38  1.11  

CR 1.03  1.02  0.95  1.06  0.98  0.99  

DT 1.04  1.02  0.89  1.06  1.00  0.88  

MSC 0.99  1.02  0.91  1.03  0.92  0.99  

SNV 1.03  1.02  0.94  1.06  0.99  0.97  

 

  



Table 4. RMSE (root-mean-square error) values (μg cm-2) of regression models from 

100 repetitions. The pre-processing techniques are original reflectance (OR), first 

derivative reflectance (FDR), continuum-removal (CR) transformation, de-trending 

(DT), multiplicative scatter correction (MSC) and standard normal variate (SNV) and 

the machine learning algorithms are deep belief net (DBN), kernel-based extreme 

learning machine (KELM), random forests (RF), stochastic gradient boosting (SGB) 

and support vector machine (SVM) 

  Cubist DBN KELM RF SGB SVM 

OR 3.80  4.23  4.20  3.87  4.28  5.54  

FDR 5.44  5.86  5.43  5.08  5.54  6.85  

CR 7.42  7.46  8.03  7.21  7.77  7.69  

DT 7.37  7.45  8.62  7.22  7.65  8.65  

MSC 7.71  7.49  8.39  7.44  8.26  7.70  

SNV 7.44  7.49  8.08  7.17  7.73  7.84  

 

 

 


