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PAPER
A Circuit Analysis of Pre-Emphasis Pulses for RC Delay Lines

Kazuki MATSUYAMA†∗, Nonmember and Toru TANZAWA†a), Member

SUMMARY This paper formulates minimal word-line (WL) delay time
with pre-emphasis pulses to design the pulse width as a function of the
overdrive voltage for large memory arrays such as 3D NAND. Circuit the-
ory for a single RC line only with capacitance to ground and that only with
coupling capacitance as well as a general case where RC lines have both
grounded and coupling capacitance is discussed to provide an optimum pre-
emphasis pulse width to minimize the delay time. The theory is expanded
to include the cases where the resistance of the RC line driver is not negli-
gibly small. The minimum delay time formulas of a single RC delay line
and capacitive coupling RC lines was in good agreement (i.e. within 5%
error) with measurement. With this research, circuit designers can estimate
an optimum pre-emphasis pulse width and the delay time for an RC line in
the initial design phase.
key words: pre-emphasis, RC delay, delay time, NAND flash, flat panel
display, word-line, column-line

Nomenclature
Tpre : Pre-emphasis time
Topt : Optimum Tpre to minimize the delay time
E : Target voltage
α : Rate of the pre-emphasis voltage to E
β : Error rate to E
γ : Model dependent parameter
x : Delay line position (x = 0 for the nearest, x = l for the farthest)
r : Resistance per unit length
cg : Ground capacitance per unit length
cc : Coupling capacitance per unit length
R : Resistance

Cg : Ground capacitance
Cc : Coupling capacitance
e : Natural logarithm

e(x, t) : Voltage at a position x and a time t
i(x, t) : Current at a position x and a time t
E(x, s) : Laplace transform of e(x, t) with respect to t
I(x, s) : Laplace transform of i(x, t) with respect to t

tdelay min : Minimal time for the slowest node voltage to reach βE
Rd : Driver resistance or source resistance

1. Introduction

Pre-emphasis pulses have been widely used to reduce wire
delays in integrated circuit (IC) designs as illustrated in
Fig. 1. High speed design for interconnection modeled by
an LC line between a driver chip and a receiver chip re-
quires to compensate inter-symbol interference with a pro-
grammable pre-emphasis pulse [1]. The driving current of
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Fig. 1 Pre-emphasis pulse and the definition of the design parameters.

output buffers was controlled depending on previous output
data. In [2], the pre-emphasis pulse was used for column
drivers in flat panel displays with compensation for process
variation. Prior to user modes, various pre-emphasis pulses
were tested to find the best design parameters of the pulses
for minimal column delay time. One of the design chal-
lenges in 3D NANDs is the larger word-line (WL) loading
compared to that of planar devices [3], [4]. In [3], WL resis-
tance is measured by using monitoring blocks. By applying
the proper voltage and set-up time of a pre-emphasis pulse
based on the measured average WL resistance, WL setup
time can be minimized even with large process variation as
far as within-die variation in WL resistance is much less than
die-by-die variation. It was shown that WL rise time was re-
duced by 45% and the total read time, tR, was 45µs in a
128 Gb TLC 3D NAND in [3]. When bit-line access time
is assumed to be 15µs, the WL delay time can be estimated
to be 50µs without pre-emphasis pulses and 30µs with pre-
emphasis pulses. As a result, the reduction in the total read
time with pre-emphasis pulses can be as large as 30%. In ad-
dition, in the memory and display circuits, the pre-emphasis
waveform can be controlled by updating the digital code for
digital-to-analog converters of WL and column-line (CL)
drivers [5], eliminating the need for an additional circuit.
WLs and CLs are modeled by RC delay lines because wires
are fabricated with thin film poly-silicon and tungsten lay-
ers. Thus, pre-emphasis is a key design technique to mini-
mize RC delay lines such as WLs and CLs.

Wire delay time has been theoretically analyzed only
for step pulses [6]–[10]. In [7], closed-form solutions were
presented for voltage- step response of open and shorted dis-
tributed RC lines. In [8] and [9], approximated wiring delay
was described to estimate the delay time for a single RC line
and coupled ones, respectively, when a step pulse was ap-
plied. In [10], coupling noise was formulated for distributed
RC lines driven by a step pulse. In [11]–[14], various RC

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Equivalent circuit of single RC delay line (WL or CL).

models were introduced to calculate non-electrical systems
such as biological reaction–diffusion phenomena and com-
positional changes in dielectric materials. However, a gen-
eral optimization method for the pre-emphasis pulses has
not been formulated in literature to the best of the knowl-
edge of the authors. In [15], we formulated the optimum
pre-emphasis pulse design conditions, minimum delay time,
power consumption, and production error effects in the sim-
plest single RC delay line with only ground capacitance as
shown in Fig. 2. An increase in energy associated with a
pre-emphasis pulse for WL in 3D NAND can be estimated
to be as low as a few percent according to [15]. In addi-
tion, in the case of a capacitive coupling RC lines without
ground capacitance as shown in Fig. 4, it was shown that the
optimal parameters could be calculated by converting the
original circuit into a simplified equivalent circuit and per-
forming the same type of calculation as for the single RC
delay line. For the case with driver resistance as shown in
Fig. 20, an approximation formula was derived by applying
the concept of Elmore delay [6]. In [16], a cost-effective pre-
emphasis pulse generator is proposed to eliminate additional
monitoring circuits required in [3] or additional calibration
operation used in [4], based on the circuit theory discussed
in [15].

In this paper, the circuit theory on pre-emphasis pulses
is generalized to include both ground and coupling capaci-
tance as in actual memory and display arrays. The general-
ized circuit theory includes the results for cc = 0 and cg = 0
as described in [15] as extreme conditions. The analytical
results are validated by comparing simulated and measured
results. In addition, since the error rate of the approximate
expression when including the driver resistance was rela-
tively large in [15], the empirical expression is derived us-
ing the SPICE simulation results. This paper is organized as
follows. In Sect. 2, we derive the circuit theory on general
RC lines, single RC lines and capacitive coupling RC lines.
Section 3 compares the derived formula with measured and
simulated results and derives empirical equations for single
RC lines with driver resistance. Section 4 gives a summary.

2. Circuit Theory

This section formulates circuit theory on a single RC line
with negligibly small Cc in Sect. 2.1, three unique lines with
negligibly small Cg in Sect. 2.2, and three general lines with
both Cg and Cc considered in Sect. 2.3. The key analysis for
the former two cases was presented in [15]. In this paper, the

Fig. 3 Distributed element model of a single RC line.

formulation will be described in more detail not only for the
former two cases, but also newly for the last one. As will
be shown in Sect. 3.6, the general three-line model is valid
for such a wide range as 0.5 < Cc/Cg < 10. A single line
model and thee-line model are valid only for Cc/Cg < 0.5
and for Cc/Cg > 10, respectively. Thus, the work presented
in this paper can cover the design space much wider than
[15] does.

2.1 Single RC Line

In this section, the optimum parameter for the pre-emphasis
waveform and the minimum delay time are calculated for
the circuit shown in Fig. 2 with R and Cg. In actual cir-
cuits, circuit parameters may not be uniform across the RC
line due to process variation. However, as will be shown in
Sect. 3, the effects of the process variation on design equa-
tions is sufficiently small. In [15], the same circuit is used
for derivation, but we will discuss the theory with more de-
tailed explanation and compare it with the three general RC
lines. First, we calculate the voltage waveform at each po-
sition and time when a pre-emphasis pulse is input to the
circuit. An element of Fig. 2 is shown in Fig. 3. Circuit
equations are given by (1) and (2).

−
∂e(x, t)
∂x

= ri(x, t) (1)

−
∂i(x, t)
∂x

= cg
∂e(x, t)
∂t

(2)

Simultaneous partial differential equation of (1) and (2) can
be solved exactly to be (3) and (4) when the initial and
boundary conditions of e(x, 0) = i(x, 0) = 0, e(0, t) = Vin
and i(l, t) = 0 are used, which indicates the RC line is fully
discharged at t = 0, the input terminal is driven by Vin (see
Fig. 1), and the current at the farthest point (x = l) is 0 at
any time because of no further element beyond x = l.

e(x, t) = αE −
4αE
π

∞∑
k=0

1
2k + 1

e
−(2k+1)2

τ1
tsin

(2k + 1)πx
2l

0 ≤ t ≤ Tpre (3)

e(x, t) = E −
4E
π

∞∑
k=0

{
α − (α − 1)e

(2k+1)2
τ1

Tpre

}
·

1
2k + 1

e
−(2k+1)2

τ1
t sin

(2k + 1)πx
2l

t > Tpre (4)

where τ1 is a time constant given by τ1 = 4rcgl2/π2. Ap-
pendix A shows the calculation procedure. (3) and (4) are,
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respectively, the solutions in (A· 10) and (A· 23). (3) is the
same as the result in [8] when a step pulse is input to a sin-
gle RC line. Let’s determine the optimum Tpre(Topt) which
minimizes the delay time. When one focuses on the case
where β � 10%, the delay time would be much longer than
τ1. For t � τ1, (4) can be approximated as (5)

e(x, t) ; E + A0

(
x,Tpre

)
e
−t
τ1 + A1

(
x,Tpre

)
e
−9t
τ1 (5)

A0

(
x,Tpre

)
= −

4E
π

{
α − (α − 1)e

Tpre
τ1

}
· sin

πx
2l

A1

(
x,Tpre

)
= −

4E
π

{
α − (α − 1)e

9Tpre
τ1

}
·

1
3

sin
3πx
2l

where A0 and A1 are the proportional coefficients for the
first two dominant factors. Because e−9t/τ1 � e−t/τ1 , one can
approximately minimize the delay time with A0

(
x,Topt

)
=

0. Thus:

Topt ≈ τ1ln
α

α − 1
(6)

And (5) becomes (7) with (6).

e(x, t) ; E + A1

(
x,Topt

)
e
−9t
τ1 (7)

The equation E − e
(
x, tdelay(x)

)
= βE with (7) becomes (8)

tdelay(x) ≈
τ1

9
ln

∣∣∣∣∣∣ 4α
3πβ

{(
α

α − 1

)8
− 1

}
sin

3πx
2l

∣∣∣∣∣∣ (8)

(8) is maximized at x = l, l/3. When [α/(α − 1)]8 � 1,
(8) becomes (9), which provides the minimal delay time as
a function of α and β.

tdelay min ≈
τ1

9
ln

[
4α

3πβ

(
α

α − 1

)8
]

(9)

As a result, one can easily determine Topt and tdelay min by
using (6) and (9) for single RC lines.

2.2 Three Unique RC Lines

In 3D NANDs, the capacitance between adjacent WLs is
dominant [3], [4], and can be modeled as three RC delay
lines as shown in Fig. 4. In [15], we showed that the tran-
sient response in such a circuit could be calculated using cir-
cuit transformation. This section introduces the calculation
procedure. Because of its symmetry, the potential of adja-
cent lines at the same location x are equal when all three
lines are fully discharged at t = 0. As a result, Fig. 4 can be
reduced to Fig. 5. Each element is shown in Fig. 6.

Note that in Fig. 5, GND is only at the input (x = 0), so
the current in the adjacent line is equal to that in the target
line. Simultaneous partial differential equations for e1(x, t),
e2(x, t) and i(x, t) are, respectively:

−
∂e1(x, t)
∂x

= ri(x, t) (10)

−
∂e2(x, t)
∂x

= −
r
2

i(x, t) (11)

Fig. 4 Equivalent circuit of capacitive coupling RC lines.

Fig. 5 Equivalent circuit of Fig. 4.

Fig. 6 Distributed element model of capacitive coupling RC lines.

−
∂i(x, t)
∂x

= c
∂ [e1(x, t) − e2(x, t)]

∂t
(12)

When e1(x, t) − e2(x, t) = e3(x, t), these expressions can be
written as:

−
∂e3(x, t)
∂x

= 1.5ri(x, t) (13)

−
∂i(x, t)
∂x

= c
∂e3(x, t)
∂t

(14)

Since those equations have the similar forms to (1) and
(2) for the single RC lines, e3(x, t) can be obtained by the
same procedure as Appendix A. From (10), (11) and (13),
the relationship (15) can be obtained.

∂e1(x, t)
∂x

= −2
∂e2(x, t)
∂x

=
2
3
∂e3(x, t)
∂x

(15)

Equations (10), (11) and (12) can be solved exactly to be
(16) or (17) when the initial and boundary conditions of
e1(x, 0) = e2(x, 0) = i(x, 0) = 0, e1(0, t) = Vin, e2(0, t) = 0
and i(l, t) = 0 are used, which indicates the RC lines are
fully discharged at t = 0, the input terminal is driven by Vin
(see Fig. 1), the input terminal of the adjacent line is ground
and the current at the farthest point (x = l) is 0 at any time
because of no further element beyond x = l.

e1(x, t) = αE −
8αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2

1.5τ2
t sin

(2k + 1)πx
2l

0 ≤ t ≤ Tpre (16)

e1(x, t) = E −
8E
3π

∞∑
k=0

{
α − (α − 1)e

(2k+1)2
1.5τ2

Tpre

}
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Fig. 7 Parasitic elements of 3D NAND flash memory.

·
1

2k + 1
e
−(2k+1)2

1.5τ2
t sin

(2k + 1)πx
2l

Tpre < t (17)

where τ2 is a time constant given by τ2 = 4rccl2/π2. The
minimal delay condition and minimal delay time are calcu-
lated to be (18) and (19), respectively, with the same proce-
dure as the single RC lines.

Topt ≈ 1.5τ2ln
α

α − 1
(18)

tdelay min ≈
1.5τ2

9
ln

[
4α

3πβ

(
α

α − 1

)8
]

(19)

As a result, one can easily determine Topt and tdelay min by
using (18) and (19) for three parallel lines without cg.

2.3 Three General RC Lines

Figure 7 shows a structure of 3D NAND flash memory. It
includes a parasitic resistance R, coupling capacitance Cc,
and ground capacitance Cg. The capacitance between adja-
cent WLs is expressed as Cc/2. Considering all the parasitic
elements in Fig. 7, the WL decoder needs to drive an equiv-
alent circuit as shown in Fig. 8. One may want to have 5
or more WLs in a model for higher accuracy, but as will be
shown in Sect. 3, the impact of additional WLs on delay per-
formance is minimal. Let’s derive the voltage waveform at
each position and time when a pre-emphasis pulse is input to
the three general RC lines. Because of their symmetry, the
potential of adjacent lines at the same location x are equal
when all three lines are fully discharged at t = 0. As a re-
sult, Fig. 8 can be reduced to Fig. 9. An element of Fig. 9
is shown in Fig. 10. Simultaneous partial differential equa-
tions for e1(x, t), e2(x, t), i1(x, t) and i2(x, t) are composed of
(20)–(23) as follows.

−
∂e1(x, t)
∂x

= ri1(x, t) (20)

−
∂e2(x, t)
∂x

=
1
2

ri2(x, t) (21)

−
∂i1(x, t)
∂x

= cc
∂ [e1(x, t) − e2(x, t)]

∂t
+ cg

∂e1(x, t)
∂t

(22)

−
∂i2(x, t)
∂x

= −cc
∂ [e1(x, t) − e2(x, t)]

∂t
+ 2cg

∂e2(x, t)
∂t

(23)

As shown in Appendix B, Eqs. (20), (21), (22) and (23)
can be solved exactly to be (A· 41) and (A· 60), or (24) and

Fig. 8 Equivalent circuit of general three RC lines.

Fig. 9 Equivalent circuit of Fig. 8.

Fig. 10 Distributed element model of general three RC lines.

(25), when the initial and boundary conditions of e1(x, 0) =

e2(x, 0) = i1(x, 0) = i2(x, 0) = 0, e1(0, t) = Vin, e2(0, t) = 0
and i1(l, t) = i2(l, t) = 0 are used, which indicate the RC
lines are fully discharged at t = 0, the input terminal is
driven by Vin (see Fig. 1), the input terminal of the adjacent
line is ground and the current at the farthest point (x = l) is
0 at any time because of no further element beyond x = l.

e1(x, t) = αE −
8αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2

τ3
t sin

(2k + 1)π
2l

x

−
4αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2

τ1
t sin

(2k + 1)π
2l

x

0 ≤ t ≤ Tpre (24)

e1(x, t) = E −
8E
3π

∞∑
k=0

{
α − (α − 1)e

(2k+1)2
τ3

Tpre

}
·

1
2k + 1

e
−(2k+1)2

τ3
t sin

(2k + 1)π
2l

x

−
4E
3π

∞∑
k=0

{
α − (α − 1)e

(2k+1)2
τ1

Tpre

}
·

1
2k + 1

e
−(2k+1)2

τ1
t sin

(2k + 1)π
2l

x

Tpre < t (25)

where τ3 = 4r
(
1.5cc + cg

)
l2/π2 and τ1 = 4rcgl2/π2. By

substituting cc = 0 into these equations, single line Eqs. (6)
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and (9) can be obtained. By substituting cg = 0, three-line
Eqs. (16) and (17) can be obtained. Therefore, (24) and (25)
includes the solutions (6) and (9) for single RC lines and the
solutions (16) and (17) for three unique RC lines.

Let’s determine the optimum Tpre(Topt) which mini-
mizes the delay time. In the case of a single RC line, there
was only one time constant. As a result, it is possible to an-
alytically calculate the optimum value. However, since (24)
and (25) have two time constants, it is impossible to analyti-
cally solve the equation with respect to t. Instead, we numer-
ically determined Topt and the minimum delay time. Based
on Topt and tdelay min for the single RC line of (6) and (9)
or those for the thee unique RC lines (18) and (19), we as-
sumed that Topt and tdelay min could be similarly expressed as
(26) and (27) where γ1 and γ2 are scaling parameters which
only depend on Cc/Cg and α where τ4 = 4r

(
cc + cg

)
l2/π2.

Note that τ4 = τ1 and γ1 = γ2 = 1 when cc = 0; τ4 = τ2
and γ1 = γ2 = 1.5 when cg = 0.

Topt ≈ γ1τ4ln
α

α − 1
(26)

tdelay min ≈ γ2
τ4

9
ln

[
4α

3πβ

(
α

α − 1

)8
]

(27)

Numerical calculation procedure was done as follows. Un-
der the condition that α, cc and cg in (24) and (25) are given,
the value of Tpre is changed. Topt is determined to have
tdelay min (β = 0.01). Tables 1 and 2 show the results of γ1
and γ2 that minimize the delay time for each α and Cc/Cg.
γ1 has little dependency on α. As Cc/Cg increases, it gradu-
ally approaches 1.5. In contract, γ2 has a larger dependency
on α than γ1 does. In particular, in the vicinity of α = 2 and
Cc/Cg = 1, there is a rapid change in γ2. This is because
when the values of Cc and Cg are close, the amount of charge
transfer between Cc and Cg increases. As a result, overshoot
or undershoot in the voltage waveform greater than β oc-
curs and it takes more time to converge. It is also found that
when Cc/Cg ≤ 0.5, γ1 ≈ 1. This means that even if Cc is
present, Topt can be calculated as a single RC line. These
tables are valid only when β is 0.01. For cases of β , 0.01,
one needs to build tables similar to Tables 1 and 2 using (24)
and (25). Since Topt has a small dependence on β as shown
in Sect. 3, an approximate value can be obtained using Ta-
ble 1. However, since tdelay has a large dependence on β, the
value cannot be calculated using Table 2 for β , 0.01. One
can design an optimum pre-emphasis pulse width Topt with
(26) with RC parameters, α and γ1 in Table 1. Then, one
can have a delay time tdelay min with γ2 as given by Table 2.

3. Validation

In this section, the expression obtained in Sect. 2 is eval-
uated. A single RC line, capacitive coupling RC lines and
three general RC lines were evaluated with measured results
of fabricated circuits. Figure 11(a), (b), and (c) shows a chip
photograph of a single RC line, that of capacitive coupling
RC lines, and a chip layout of three general RC lines in-
stead of a photograph due to lack of photograph because all

Table 1 γ1 parameters for β = 0.01.

Table 2 γ2 parameters for β = 0.01.

the fabricated chips have been packaged unfortunately, re-
spectively. The test circuits were fabricated in a 0.18µm
3 V CMOS. Poly resistors and MIM capacitors were used.
Internal nodes are monitored by unity gain buffers. The pa-
rameters used in the test circuits are summarized in Table 3.
In this experiment, resistors with resistance of an order of
MΩ were used to compare measured data with simulated
ones precisely.

Even though the R and C values are well controlled by
a foundry within a maximum tolerance of 10%, respectively,
those values should be measured by die for reliable valida-
tion. However, the test structure of a MIM capacitor was too
small to extract its capacitance value from the total capaci-
tance including both the capacitance of the MIM capacitor
and the parasitic pad capacitance, unfortunately. All the the-
oretical voltage waveforms after t = Tpre such as (4), (17)
and (25) only contain the time constant RC rather than indi-
vidual R and C values. Therefore, it is sufficient to know the
actual RC time constant for validation. The RC time con-
stant was extracted from the test structure of a distributed
single RC line on the same die as the measured circuit in
such a way that the theoretical response (3) of a step pulse



MATSUYAMA and TANZAWA: A CIRCUIT ANALYSIS OF PRE-EMPHASIS PULSES FOR RC DELAY LINES
917

Fig. 11 Chip micrographs (a), (b) and chip layout (c).

Table 3 Target RC values used in the test circuits.

input has the same rise time from 0% to 50% of the target
voltage as the measured voltage waveform at the far end of
the RC line does, where the theoretical response (3) is well
known as described in [8]. This method is not as good as
individual measurement of R and C, but should be consid-
ered good enough to validate the theoretical results using the
well-known RC response of a step pulse (3). Thus, the mea-
sured waveforms were compared with the theoretical ones
whose RC values were extracted as mentioned above.

As will be shown in Figs. 15–17, the minimum delay
time decreases as α increases. The upper bound of α is
determined by the breakdown voltage of the decoding tran-
sistors to select WL or CL. Thus, there is a trade-off in α
between the delay time and the reliability of transistors. To
measure the waveform, α of 1,6 was used for demonstration.

3.1 Verification of Output Voltage Waveform

Figure 12 shows the comparison of the measurement results
with (3) and (4) for the single RC line when a pre-emphasis
pulse that minimizes the delay time is input. Measurements
were made at the positions of x = l and x = l/3 where the
delay time was at a maximum. The gray solid line for the
measured value and the dotted line for the formula are in
good agreement. It is proved that the formulas (3) and (4)
can be derived accurately. It was also confirmed that x = l
and x = l/3 were the worst cases for delay time. Fig. 13
shows the comparison of the measurement results with (16)
and (17) for the capacitive coupling RC lines when a pre-
emphasis pulse that minimizes the delay time is input. Mea-

Fig. 12 Measured single RC line.

Fig. 13 Measured capacitive coupling RC lines.

surements were made at the positions of x = l and x = l/3
where the delay time was at a maximum. The gray solid
line for the measured value and the dotted line for the for-
mula agreed well except when the signal changed. The error
at the time of the signal change is due to the parasitic capac-
itance to ground which is not considered in the model, but
it does slightly affect the delay time. It was also confirmed
that x = l and x = l/3 were the worst cases of the delay
time as in the case of the capacitive coupling RC lines. Fig-
ure 14 shows the comparison of the measured results with
(24) and (25) for the three general RC lines in two patterns:
Cc/Cg = 0.25 (a) and = 4 (b). A pre-emphasis pulse that



918
IEICE TRANS. FUNDAMENTALS, VOL.E104–A, NO.6 JUNE 2021

Fig. 14 Measured general three RC lines.

Fig. 15 Verification of tdelay in single RC line.

minimizes the delay time was input. Measurements were
made at the positions of x = l and x = l/3 as with the single
RC line and capacitive coupling RC lines. Note that the de-
lay times at positions x = l and x = l/3 are not always the
worst case for the three general RC lines. The gray solid line
for measurement and the dotted line for the formula are in
good agreement. It is shown that the formulas (24) and (25)
can be derived accurately. When Cc/Cg = 0.25, the shape is
similar to that of a single RC line; this can also be seen in
Tables 1 and 2.

3.2 Verification of Topt and Minimum Delay Time

Figure 15 shows Topt and tdelay min as a function of α for (a)
β = 0.01, (b) β = 0.05, and (c) β = 0.1 on a single RC line.
The vertical axis is normalized by tdelay min with α = 1 in
case of a step pulse. Note that the case of α = 1.1, β = 0.1 is
not plotted because the error rate is larger than the overdrive
voltage and there is no optimal Tpre. In Fig. 15(a), the error
is within 4% when α ≥ 1.1. In Fig. 15(b), the error is within
2% when α ≥ 1.1; and in Fig. 15(c), the error is within 1%
when α ≥ 1.2. When the case of α = 1.6 is compared, the
delay time is reduced by 71% when β = 0.01, 63% when β
= 0.05, and 57% when β = 0.1. It was found that the effect
of pre-emphasis pulsing increases as β decreases. Fig. 16
shows Topt and tdelay min as a function of α for (a) β = 0.01,

(b) β = 0.05, and (c) β = 0.1 on capacitive coupling RC
lines. The vertical axis is normalized by tdelay min with α = 1
in the case of a step pulse. In Fig. 16(a), the error is within
4% when α ≥ 1.1, in Fig. 16(b), the error is within 4% when
α ≥ 1.1, and in Fig. 16(c), the error is within 5% when α ≥
1.2. When the case of α = 1.6 is compared, the delay time
is reduced by 71% when β = 0.01, 61% when β = 0.05,
and 51% when β = 0.1. As with the single RC line, it was
found that the effect of pre-emphasis pulsing increases as β
decreases. Fig. 17 shows Topt and tdelay min as a function of α
for (a) Cc/Cg = 0.25, (b) Cc/Cg = 1, and (c) Cc/Cg = 4 on
the three general RC lines. The vertical axis is normalized
by tdelay min with α = 1 in the case of a step pulse. The errors
are within 6.7% in Fig. 17(a), 2.1% in Fig. 17(b), and 2.8%
in Fig. 17(c), respectively, when α ≥ 1.1. When the case
of α = 1.6 is compared, the delay time is reduced by 72%
when Cc/Cg = 0.25, by 69% when Cc/Cg = 1, and 71%
when Cc/Cg = 4. It is noted that the effect of pre-emphasis
pulsing did not change much when the ratio of Cc to Cg

changed.

3.3 Impact of Random Variation on Delay Time

Process variations include line-to-line variation and random
within-delay-line variation. In this sub-section, the impact
of random variation is examined. Figure 18 shows the ef-
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Fig. 16 Verification of tdelay in capacitive coupling RC lines.

Fig. 17 Verification of tdelay in the general three RC lines.

Fig. 18 Effect of the variation for each element on the delay time.

fect of the variation on the delay time of each element in a
100-stage single RC line using Monte Carlo simulation. The
input is a step pulse. The process variation is assumed to be
3σ = 10% for both R and Cg using a normal distribution.
With 10k runs, the error range was within ±1.5%. As a re-
sult, the influence of the variation in the delay line is small
enough to design the optimum pulse.

3.4 Validity of Three-Lines Equivalent Circuit

There are many lines adjacent each other in the memory and
the display. In this paper, we ignored the effect of more

Fig. 19 Comparison of error in delay time between three-line and five-
line models.

lines and used a three lines equivalent circuit. This section
examines the effect of adjacent lines. Figure 19 shows com-
parison of delay times by SPICE when step waveforms are
input to the three-line and five-line models. The vertical
axis is the error of the delay time of three-lines with five-
lines. Comparisons of Cc/Cg = 100, 4, 1 and 0.25 were
performed. Even in the extreme case of Cc/Cg = 100, the
error rate is within 6.2% for the range of 0.01 ≤ β ≤ 0.1.
When Cc/Cg = 1, the error rate is within 1.5% for the range
of 0.01 ≤ β ≤ 0.1. Because Cc/Cg ≤ 1 nominally, it is val-
idated that the three-line model is sufficient to discuss delay
time.
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Fig. 20 Equivalent circuit with driver resistance.

Fig. 21 Optimal γ1 for each α.

3.5 Design with Driver Resistance

The output resistance of the pre-emphasis driver can be de-
signed to be sufficiently smaller than rl. In a NAND, the
WL is selected by a decoding transistor. The on-resistance
Rd may not be sufficiently smaller than the WL resistance
because the size of the decoding transistor is limited accord-
ing to the WL pitch. Therefore, in this section, we consider
a circuit model that includes a driver resistance as shown in
Fig. 20 for a pre-emphasis pulse design. In [15], the opti-
mum value was shown by approximate calculation, but the
accuracy was not sufficient. For example, when Rd/rl = 0.5,
the error exceeded 50%. Therefore, in this section, an em-
pirical formula is presented based on SPICE simulation.
Let’s assume that (26) and (27) are valid even with the pres-
ence of Rd. Fig. 21 shows γ1 for β = 0.01. Since γ1 does not
change, even when α changes, it can be confirmed that γ1 is
not a function of α. The horizontal axis of Fig. 21 is changed
to Rd/rl for Fig. 22. The plot in Fig. 22 shows the average
of the optimum values of γ1 from α = 1.1 to α = 2.0 ob-
tained by SPICE simulation. γ1 varies linearly with respect
to Rd/rl. Therefore, γ1 can be expected to be a linear func-
tion on Rd/rl. Considering that γ1 = 1 at Rd/rl = 0, it can
be predicted that γ1 = a × (Rd/rl) + 1 with a proportional
coefficient “a”. Using the least squares method within the
range of Rd/rl ≤ 0.5, “a” was determined to be 2.25 as in
(28). The value was updated to be more precise from the
result in [15] which was 2.

γ1 = 2.25
Rd

rl
+ 1 (28)

Equation (28) is plotted in Fig. 22. As shown, (28) agreed

Fig. 22 Optimal γ1 for each Rd/rl.

Fig. 23 Optimal γ2 for each α.

Fig. 24 Optimal γ2 for each Rd/rl.

with the SPICE simulation within 0.9% error with β = 0.01,
Rd/rl ≤ 0.5, and 1.1 ≤ α ≤ 2.0. Next, an empirical for-
mula for γ2 is determined. Figure 23 shows the optimum
value of γ2 obtained from the SPICE simulation when α is
changed. When α changes, the value of γ2 changes linearly,
indicating a linear function of α. In Fig. 24, the horizon-
tal axis of Fig. 23 is changed to Rd/rl. Since the value of
γ2 changes nonlinearly when Rd/rl changes, it can be seen
that it is not a linear function of Rd/rl and the intercept is
1. Based on these results, various approximation functions
were tried. One example is (29).

γ2 = −0.9
(Rd

rl

)2

(α − 1.1) + 2.1
(Rd

rl

)
+ 1 (29)



MATSUYAMA and TANZAWA: A CIRCUIT ANALYSIS OF PRE-EMPHASIS PULSES FOR RC DELAY LINES
921

Table 4 Main results of this work.

Fig. 25 Verification of tdelay when including Rd .

(29) is plotted in Fig. 24. Equation (29) agreed with the
SPICE simulation within 1.3% error with β = 0.01, Rd/rl ≤
0.5, and 1.1 ≤ α ≤ 2.0. Figure 25 shows tdelay as a function
of Rd/rl for β = 0.01 on a single RC line with driver resis-
tance. The vertical axis is normalized by tdelay with α = 1
in case of a step pulse. Equations (28) and (29) are in good
agreement with the measurement; they are within 5. 7% er-
ror with β = 0.01, Rd/rl ≤ 0.5 and 1.3 ≤ α ≤ 1.9. When
the case of α = 1.6 is compared, the delay time is reduced
by 72% when Rd/rl = 0.1, and 74% when Rd/rl = 0.5.
It is noted that the effect of pre-emphasis pulsing increases
slightly as Rd/rl increases. In this study, we made an em-
pirical formula in a wide range of Rd/rl ≤ 0.5 so that it can
be used in many practical cases. Note that the coefficients
in (28) and (29) are valid within the above errors as far as
1.1 ≤ α ≤ 2.0 and β = 0.01, but the approximation formula
must be updated if the range in β is reduced to ≤ 1%.

3.6 Summary

Table 4 summarizes Topt and tdelay min in case of 1) single
RC line with Rd = 0, 2) general three RC lines with Rd = 0,
3) capacitive coupling RC lines with Rd = 0, and 4) Single
RC line model with Rd > 0. 1), 3) and 4) were presented in
[15]. 4) was updated in this paper with more precise fitting.

2) is the main contribution of this work, which includes 1)
and 3). One can design a pre-emphasis pulse with parame-
ters γ1 and γ2 in Tables 1 and 2. Based on Tables 1 and 2,
one can use a single line model for Cc/Cg < 0.5 whereas
capacitive-coupling model for Cc/Cg > 10. General three-
line model must be used for 0.5 < Cc/Cg < 10. Based
on Figs. 22 and 24, the impact of Rd on the pre-emphasis
pulse width and the resultant delay time must be considered
severely when Rd/rl > 5% which provides discrepancy in
Topt and tdelay min by 10% or more in comparison with the
case that Rd is negligibly small.

4. Conclusion

In this paper, we formulated a pre-emphasis pulsing formula
to reduce the delay time of an RC delay line. The formula
can be applied to design flat-panel displays and 3D NANDs.
The calculation procedure was presented to have the ex-
act solutions of the voltage waveform for a single RC line
and three general RC lines. The optimum value that mini-
mizes the delay time was derived by numerical calculation
for three general RC lines. An empirical formula was de-
rived based on the simulation results for the optimum value
when the driver resistance was not neglected. The results
are summarized in Table 4. By using Table 4, the circuit de-
signer can easily estimate the minimum delay condition and
delay time at the initial design phase for various RC delay
line circuits.
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Appendix A: Calculation Procedure for Single RC
Line

This section explains the process of deriving (3) (4) from (1)
and (2). First, the waveform when t ≤ Tpre is formulated.
The Laplace transform of (1) and (2) gives (A1) and (A2),
respectively.

−
dE(x, s)

dx
= rI(x, s) (A· 1)

−
dI(x, s)

dx
= scgE(x, s) − cge(x, 0) (A· 2)

E(x, s) and I(x, s) are Laplace transforms of e(x, t) and
i(x, t) with respect to t. Differentiating both sides of (A· 1)
and (A· 2) by x, (A· 3) and (A· 4) are obtained.

d2E(x, s)
dx2 = srcgE(x, s) − cgre(x, 0) (A· 3)

d2I(x, s)
dx2 = srcgI(x, s) + cg

d
dx

e(x, 0) (A· 4)

When the line is fully discharged at time t = 0, e(x, 0) = 0,
so the general solutions of (A· 3) and (A· 4) are

E(x, s) = A(s)e−r(s)x + B(s)er(s)x (A· 5)

I(x, s) =
A(s)e−r(s)x − B(s)er(s)x

Z0(s)
(A· 6)

where Z0(s) is a characteristic impedance Z0(s) =
√

r/scg,
and r(s) =

√rcgs. When t ≤ Tpre, E(0, s) = αE/s and
I(l, s) = 0. Thus A(s) and B(s) can be solved as

A(s) =
αE
s

−er(s)l

−er(s)l − e−r(s)l (A· 7)

B(s) =
αE
s

−e−r(s)l

−er(s)l − e−r(s)l (A· 8)

Using (A· 7) and (A· 8), (A· 6) becomes (A· 9).

E(x, s) =
αE
s

cosh [r(s)(l − x)]
cosh[r(s)l]

(A· 9)

The inverse Laplace transform of (A· 9) is determined to be

e(x, t) = αE

1 −
4
π

∞∑
k=0

1
2k + 1

e
−(2k+1)2π2

4rcg l2
t
sin

(2k + 1)π
2l

x


t ≤ Tpre (A· 10)

Next, the waveform when t > Tpre is formulated. Consider
e′(x, t′), i′(x, t′) such that t′ = t − Tpre. Thus, it can be con-
sidered that the pulse goes down from αE to E at t′ = 0.
The same equation as (A· 3) is valid for E′(x, s) and e′(x, t′)
resulting in (A · 3′).

d2E′(x, s)
dx2 = srcgE′(x, s) − cgre′(x, 0) (A · 3′)

Since e′(x, 0) = e
(
x,Tpre

)
, (A· 11) results in (A· 12).
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d2E′(x, s)
dx2 − r2(s)E′(x, s)

= −rcgαE

1 −
4
π

∞∑
k=0

1
2k + 1

e
−(2k+1)2π2

4rcg l2
Tpre sin

(2k + 1)π
2l

x


(A· 11)

(A· 11) is further calculated individually using the principle
of superposition. (A· 11) can be decomposed into the fol-
lowing three equations.

d2E′(x, s)
dx2 − r2(s)E′(x, s) = 0 (A· 12)

d2E′(x, s)
dx2 − r2(s)E′(x, s) = −rcgαE (A· 13)

d2E′(x, s)
dx2 − r2(s)E′(x, s) =

∞∑
k=0

Q(k)sinN(k)x (A· 14)

where

Q(k) =
4rcgαE

π

1
2k + 1

e
−(2k+1)2π2

4rcg l2
Tpre

N(k) =
(2k + 1)π

2l

Since (A· 12) is identical to (A· 3), the general solution of
(A· 12) is the same as (A· 5). Since (A· 13) has a constant on
the right side, its particular solution can be easily obtained
as

E′(x, s) =
αE
s

(A· 15)

Next, consider (A· 14). The particular solution of (A· 14)
can be predicted using C (s) as follows

E′(x, s) =

∞∑
k=0

C(s)sinN(k)x (A· 16)

Substituting (A· 16) into (A· 14) and comparing the coeffi-
cients of sinN(k)x, C(s) is obtained as

C(s) =
Q(k)

N(k)2 + r(s)2 (A· 17)

Summing up these equations gives (A· 18)

E′(x, s) = A(s)e−r(s)x + B(s)er(s)x +
αE
s

−

∞∑
k=0

Q(k)
N(k)2 + r(s)2 sinN(k)x (A· 18)

The same equation as (A· 1) is valid for E′(x, s) and I′(x, s)
resulting in (A · 1′).

−
dE′(x, s)

dx
= rI′(x, s) (A · 1′)

Deriving I′(x, s) using (A · 1′) and (A· 19),

I′(x, s) =
A(s)e−r(s)x − B(s)er(s)x

Z0(s)

+
1
r

∞∑
k=0

Q(k)N(k)
N(k)2 + r(s)2 cosN(k)x (A· 19)

When t > Tpre, E′(0, s) = E/s and I′(l, s) = 0, so A(s) and
B(s) can be solved as

A(s) =
(1 − α)E

s
−er(s)l

−er(s)l − e−r(s)l (A· 20)

B(s) =
(1 − α)E

s
−e−r(s)l

−er(s)l − e−r(s)l (A· 21)

(A· 18) becomes (A· 22) with (A· 20) and (A· 21).

E′(x, s) =
(1 − α)E

s
cosh[r(s)(l − x)]

cosh[r(s)l]
+
αE
s

−

∞∑
k=0

Q(k)
N(k)2 + r(s)2 sinN(k)x (A· 22)

When the inverse Laplace transforms and converts (A· 22)
to a function of t using t′ = t − Tpre, one can obtain (A· 23)

e(x, t) = E +
4E
π

∞∑
k=0

{
(α − 1)e

(2k+1)2π2

4rcg l2
Tpre
α

}
·

1
2k + 1

e
−(2k+1)2π2

4rcg l2
t
sin

(2k + 1)πx
2l

t > Tpre (A· 23)

When one sets τ1 = 4rcgl2/π2, (3) and (4) are obtained from
(A· 10) and (A· 23), respectively.

Appendix B: Calculation Procedure for General RC
Lines

This section explains the process of deriving (24) and (25)
from (20), (21), (22) and (23). First, the waveform when t ≤
Tpre is formulated. Laplace transform of (20), (21), (22) and
(23) give (A· 24), (A· 25), (A· 26) and (A· 27), respectively.

−
dE1(x, s)

dx
= rI1(x, s) (A· 24)

−
dE2(x, s)

dx
=

1
2

rI2(x, s) (A· 25)

−
dI1(x, s)

dx
= s

(
cc + cg

)
E1(x, s) − sccE2(x, s)

−
(
cc + cg

)
e1(x, 0) + cce2(x, 0) (A· 26)

−
dI2(x, s)

dx
= −sccE1(x, s) + s

(
cc + 2cg

)
E2(x, s)

+ cce1(x, 0) −
(
cc + 2cg

)
e2(x, 0) (A· 27)

E1(x, s), E2(x, s), I1(x, s) and I2(x, s) are Laplace transforms
of e1(x, t), e2(x, t), i1(x, t) and i2(x, t) with respect to t. Dif-
ferentiating both sides of (A· 24) and (A· 25) by x, (A· 28) is
obtained.

~̈E = srD~E − rD~e(x, 0) (A· 28)

D =

cc + cg −cc

−
cc

2
cc + 2cg

2
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~E =

(
E1(x, s)
E2(x, s)

)
, ~e(x, 0) =

(
e1(x, 0)
e2(x, 0)

)

D can be diagonalized using R =

(
2 1
−1 1

)
and R−1 =

1
3

(
1 −1
1 2

)
as follows

R−1 DR =

(
1.5c1 + c2 0

0 c2

)
(A· 29)

Using A1(s), A2(s), B1(s), B2(s) and initial condition
e1(x, 0) = e2(x, 0) = 0, the general solution of (A· 28) is

~E(x, s) = R
(

A1(s)er1(s)x 0
0 A2(s)er2(s)x

)
R−1~E(0, s)

+R
(
B1(s)e−r1(s)x 0

0 B2(s)e−r2(s)x

)
R−1~E(0, s)

(A· 30)
where r1(s) =

√
sr(1.5cc + cg) and r2(s) =

√srcg. Substi-
tuting the conditions of E1(0, s) = αE/s and E2(0, s) = 0,

E1(x, s) =
2
3
αE
s

(
A1(s)er1(s)x + B1(s)e−r1(s)x

)
+

1
3
αE
s

(
A2(s)er2(s)x + B2(s)e−r2(s)x

)
(A· 31)

E2(x, s) = −
1
3
αE
s

(
A1(s)er1(s)x + B1(s)e−r1(s)x

)
+

1
3
αE
s

(
A2(s)er2(s)x + B2(s)e−r2(s)x

)
(A· 32)

I1(x, s) and I2(x, s) are obtained from (A· 24), (A· 25),
(A· 31) and (A·32).

I1(x, s) =
2
3
αE
s

(
A1(s)er1(s)x − B1(s)e−r1(s)x

) r1(s)
r

+
1
3
αE
s

(
A2(s)er2(s)x − B2(s)e−r2(s)x

) r2(s)
r

(A· 33)

I2(x, s) = −
2
3
αE
s

(
A1(s)er1(s)x − B1(s)e−r1(s)x

) r1(s)
r

+
2
3
αE
s

(
A2(s)er2(s)x − B2(s)e−r2(s)x

) r2(s)
r

(A· 34)

When t ≤ Tpre, E1(0, s) = αE/s, E2(0, s) = 0, I1(l, s) = 0,
and I2(l, s) = 0. Thus, A1(s), A2(s), B1(s) and B2(s) can be
solved as

A1(s) =
e−r1(s)l

er1(s)l + e−r1(s)l (A· 35)

B1(s) =
er1(s)l

er1(s)l + e−r1(s)l (A· 36)

A2(s) =
e−r2(s)l

er2(s)l + e−r2(s)l (A· 37)

B2(s) =
er2(s)l

er2(s)l + e−r2(s)l (A· 38)

From these equations, (A· 31) and (A· 32) result in

E1(x, s)=
2
3
αE
s

cosh [r1(s)(l − x)]
cosh [r1(s)l]

+
1
3
αE
s

cosh [r2(s)(l − x)]
cosh [r2(s)l]

(A· 39)

E2(x, s)=−
1
3
αE
s

cosh [r1(s)(l−x)]
cosh [r1(s)l]

+
1
3
αE
s

cosh [r2(s)(l−x)]
cosh [r2(s)l]

(A· 40)
The inverse Laplace transform of (A· 39) and (A· 40) are ob-
tained as

e1(x, t) = αE −
8αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2π2

4r(1.5cc+cg)l2
t
sin

(2k + 1)π
2l

x

−
4αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2π2

4rcg l2
t
sin

(2k + 1)π
2l

x (A· 41)

e2(x, t) =
4αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2π2

4r(1.5cc+cg)l2
t
sin

(2k + 1)π
2l

x

−
4αE
3π

∞∑
k=0

1
2k + 1

e
−(2k+1)2π2

4rcg l2
t
sin

(2k + 1)π
2l

x (A· 42)

Next, the waveform when t > Tpre is formulated. Consider
e′1(x, t′), e′2(x, t′), i′1(x, t′) and i′2(x, t′) such that t′ = t − Tpre.
Thus, it can be considered that the pulse goes down from

αE to E at t′ = 0. When
(
e′1(x, 0)
e′2(x, 0)

)
= ~e′(x, 0) is used, (A· 28)

becomes

~̈E′ = srD ~E′ − rD~e′(x, 0) (A· 43)

Substituting ~e′(x, 0) =

e1

(
x,Tpre

)
e2

(
x,Tpre

), (A· 43) becomes

~̈E′ − srD ~E′ =

−rD


(
αE
0

)
+


−2

∞∑
k=0

Q1(k)sinN(k)x −
∞∑

k=0

Q2(k)sinN(k)x

∞∑
k=0

Q1(k)sinN(k)x −
∞∑

k=0

Q2(k)sinN(k)x




(A· 44)

Q1(k) =
4αE
3π

1
2k + 1

e
−(2k+1)2π2

4r(1.5cc+cg)l2
Tpre

Q2(k) =
4αE
3π

1
2k + 1

e
−(2k+1)2π2

4rcg l2
Tpre

N(k) =
(2k + 1)π

2l

(A· 44) can be solved individually using the principle of su-
perposition. (A· 44) can be decomposed into the following
three equations.

~̈E − srD~E = 0 (A· 45)

~̈E − srD~E = −rD
(
αE
0

)
(A· 46)

~̈E − srD~E =

−rD


−2

∞∑
k=0

Q1(k)sinN(k)x −
∞∑

k=0

Q2(k)sinN(k)x

∞∑
k=0

Q1(k)sinN(k)x −
∞∑

k=0

Q2(k)sinN(k)x

 (A· 47)
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Since (A· 45) is identical to (A· 28), the solution of (A· 45)
is the same as (A· 31). Since (A· 46) has a constant on the
right side, its particular solution can be easily obtained as

~E =

(
αE
s
0

)
(A· 48)

The particular solution of (A· 47) can be predicted using
A3(s) and B3(s) as follows

~E′ =


∞∑

k=0

A3(s)sinN(k)x

∞∑
k=0

B3(s)sinN(k)x

 (A· 49)

Substituting (A· 49) into (A· 47) and comparing the coeffi-
cients of sinN(k)x, A3(s) is obtained as

A3(s) =
−2r

(
1.5cc + cg

)
Q1

N2 + sr
(
1.5cc + cg

) +
−rcgQ2(

N2 + srcg
) (A· 50)

B3(s) is not necessary for deriving e1(x, t). Summing up
these equations gives (A· 51) and (A· 52).

E′1(x, s) =
2
3

E
s

(
A′1(s)er1(s)x + B′1(s)e−r1(s)x

)
+

1
3

E
s

(
A′2(s)er2(s)x + B′2(s)e−r2(s)x

)
+
αE
s

+

∞∑
k=0

A3(s)sin
(2k + 1)π

2l
x (A· 51)

E′2(x, s) = −
1
3

E
s

(
A′1(s)er1(s)x + B′1(s)e−r1(s)x

)
+

1
3

E
s

(
A′2(s)er2(s)x + B′2(s)e−r2(s)x

)
+

∞∑
k=0

B3(s)sin
(2k + 1)π

2l
x (A· 52)

Deriving I′1(x, s) and I′2(x, s) using similar equations to
(A· 24) and (A· 25) yields.

I′1(x, s) =
2
3
αE
s

(
A′1(s)er1(s)x − B′1(s)e−r1(s)x

) r1(s)
r

+
1
3
αE
s

(
A′2(s)er2(s)x − B′2(s)e−r2(s)x

) r2(s)
r

+
1
r

∞∑
k=0

d
dx

A3(s)sin
(2k + 1)π

2l
x (A· 53)

I′2(x, s) = −
1
3
αE
s

(
A′1(s)er1(s)x − B′1(s)e−r1(s)x

) 2r1(s)
r

+
1
3
αE
s

(
A′2(s)er2(s)x − B′2(s)e−r2(s)x

) 2r2(s)
r

+
2
r

∞∑
k=0

d
dx

B3(s)sin
(2k + 1)π

2l
x (A· 54)

When t > Tpre, E′1(0, s) = E/s, E′2(0, s) = 0, I′1(l, s) = 0 and
I′2(l, s) = 0 hold. Thus, A′1(s), A′2(s), B′1(s) and B′2(s) can be

solved as

A′1(s) = (1 − α)
e−r1(s)l

er1(s)l + e−r1(s)l (A· 55)

B′1(s) = (1 − α)
er1(s)l

er1(s)l + e−r1(s)l (A· 56)

A′2(s) = (1 − α)
e−r2(s)l

er2(s)l + e−r2(s)l (A· 57)

B′2(s) = (1 − α)
er2(s)l

er2(s)l + e−r2(s)l (A· 58)

Summarizing the previous formulas, (A· 51) becomes
(A· 59).

E′1(x, s) =
2
3

(1 − α)E
s

cosh [r1(s)(l − x)]
cosh [r1(s)l]

+
1
3

(1 − α)E
s

cosh [r2(s)(l − x)]
cosh [r2(s)l]

+
αE
s

−

∞∑
k=0

Q1(k)
(2k+1)2π2

4r(1.5cc+cg)l2
+ s

sin
(2k + 1)π

2l
x

−

∞∑
k=0

Q2(k)
(2k+1)2π2

4rcgl2 + s
sin

(2k + 1)π
2l

x (A· 59)

When (A· 59) is transformed and converted by the inverse
Laplace transformed and converted to a function of t using
t′ = t − Tpre, one can obtain (A· 60).

e1(x, t) = E −
2
3

4E
π

∞∑
k=0

{
α − (α − 1)e

(2k+1)2π2

4r(1.5cc+cg)l2
Tpre

}
·

1
2k + 1

e
−(2k+1)2π2

4r(1.5cc+cg)l2
t
sin

(2k + 1)π
2l

x

−
1
3

4E
π

∞∑
k=0

{
α − (α − 1)e

(2k+1)2π2

4rcg l2
Tpre

}
·

1
2k + 1

e
−(2k+1)2π2

4rcg l2
t
sin

(2k + 1)π
2l

x (A· 60)

When one sets τ3 = 4r
(
1.5cc + cg

)
l2/π2 and τ1 =

4rcgl2/π2, (24) and (25) are obtained from (A· 41) and
(A· 60), respectively.
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