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FORCING THE MAPPING REFLECTION PRINCIPLE BY

FINITE APPROXIMATIONS

TADATOSHI MIYAMOTO AND TERUYUKI YORIOKA

Abstract. Moore introduced the Mapping Reflection Principle and proved

that the Bounded Proper Forcing Axiom implies that the size of the contin-
uum is ℵ2. The Mapping Reflection Principle follows from the Proper Forc-

ing Axiom. To show this, Moore utilized forcing notions whose conditions are

countable objects. Chodounský-Zapletal introduced the Y-Proper Forcing Ax-
iom that is a weak fragments of the Proper Forcing Axiom but implies some

important conclusions from the Proper Forcing Axiom, for example, the P -

ideal Dichotomy. In this article, it is proved that the Y-Proper Forcing Axiom
implies the Mapping Reflection Principle by introducing forcing notions whose

conditions are finite objects.

1. Introduction

Cohen discovered the forcing method to show that it is consistent that the size
of the continuum is larger than ℵ1 [4, 5]. Solovay-Tennenbaum developed Cohen’s
method to the iterated forcing method, and showed that it is consistent that Suslin’s
Hypothesis holds [14]. Martin discovered a certain extension of Baire Category The-
orem, called Martin’s Axiom, and pointed out that Solovay-Tennenbaum’s method
indicated that, for any cardinal κ, it is consistent that Martin’s Axiom holds and the
size of the continuum is larger than κ [8]. Martin’s Axiom is the assertion for some
class of forcing notions, which is the class of forcing notions with the countable chain
condition. Further developments of the iterated forcing method produced further
extensions of Baire Category Theorem which are consistent relative to the consis-
tency with some large cardinal axioms. Such extensions are called forcing axioms,
which are similar assertions to Martin’s Axiom but are ones applied for more wider
class of forcing notions. The Proper Forcing Axiom and Martin’s Maximum are
useful and widely studied forcing axioms. By comparing classes of forcing notions,
Martin’s Maximum implies the Proper Forcing Axiom. Under the assumption that
it is consistent that there exists a supercompact cardinal, Baumgartner proved that
the Proper Forcing Axiom is consistent [7, Ch 31], and Foreman-Magidor-Shelah
proved that Martin’s Maximum is consistent [6]. Both axioms had been proved
to be consistent (relative to the consistency of the existence of a supercompact
cardinal) with the assertion that the size of the continuum is ℵ2.

Foreman-Magidor-Shelah proved that Martin’s Maximum decides the size of the
continuum to be ℵ2 [6]. Moreover, Todorčević and Veličković proved that the Proper
Forcing Axiom implies that the size of the continuum is ℵ2 ([2, 3.16 Theorem], [19]).
After that, it was studied that weaker forcing axioms may decide the value of the
continuum. Todorčević showed that the Bounded Martin’s Maximum decides the
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size of the continuum to be ℵ2 [16]. And at last, Moore proved that the Bounded
Proper Forcing Axiom decides the size of the continuum to be ℵ2 [10]. To show
this, Moore introduced the assertion called the Mapping Reflection Principle. The
Mapping Reflection Principle is implied from the Proper Forcing Axiom, and plays
important roles to introduce many conclusions from the Proper Forcing Axiom. A
notable application of the Mapping Reflection Principle is that there is a well-order
of P(ω1)/NSω1

of length ω2, and L(P(ω1)) satisfies the Axiom of Choice.
Zapletal showed that some forcing notions preserve the additivity of the measure

zero ideal to be ℵ1 [27]. The second author extended Zapletal’s result to show that
forcing notions in Zapletal’s results preserve the covering number of the measure
zero ideal to be ℵ1, that is, forcing notions in Zapletal’s results add no random
reals [22, 24, 25, 26]. Chodounský-Zapletal introduced the properties of forcing
notions, called Y-cc and Y-proper, and the new forcing axiom, called the Y-Proper
Forcing Axiom, which is the forcing axiom for the class of forcing notions with
the Y-proper condition [3]. They also proved that forcing notions with Y-cc or Y-
proper add no random reals, and that it is consistent relative to the consistency of
the existence of a supercompact cardinal that the Y-Proper Forcing Axiom holds,
the covering number of the measure zero ideal is ℵ1, and an entangled set of reals
exists (hence Open Coloring Axioms due to Abraham-Rubin-Shelah and Todorčević
respectively fail). They pointed out that, by following the argument for the Proper
Forcing Axiom due to Todorčević (with a small change), the Y-Proper Forcing
Axiom implies that the size of the continuum is ℵ2.

In this paper, we show that the Y-Proper Forcing Axiom implies the Mapping
Reflection Principle. It is better understood that the Y-Proper Forcing Axiom is
a useful weak fragment of the Proper Forcing Axiom. In section 2, the Mapping
Reflection Principle and the Y-proper forcing notions are reviewed. In section 3, it is
proved that the Y-Proper Forcing Axiom implies the Mapping Reflection Principle.

2. Preliminaries

2.1. The Mapping Reflection Principle. In this article, for a cardinal θ, H(θ)
denotes the set of all sets of hereditary cardinality less than θ, [X]θ denotes the set
of all subsets of a set X of cardinality θ, and [X]<θ denotes the set of all subsets of
a set X of cardinality less than θ. The Ellentuck topology on the set [X]ℵ0 is the
topology generated by the sets of the form

[x, Z] :=
{
Y ∈ [X]ℵ0 : x ⊆ Y ⊆ Z

}
for some finite subset x of X and some infinite subset Z of X.

Definition 2.1 (Moore [10]). Σ is called an open stationary set mapping when
there are an uncountable set X and a regular cardinal θ with [X]ℵ0 ∈ H(θ) such
that

• dom(Σ) is a club subset of the set of countable elementary submodels of
H(θ),

• for every M ∈ dom(Σ),
– Σ(M) is an open subset of the space [X]ℵ0 equipped with the Ellentuck

topology, and
– Σ(M) is M -stationary, i.e. for any club subset E of [X]ℵ0 , if E ∈ M ,

then E ∩ Σ(M) ∩M ̸= ∅.
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For an open stationary set mapping Σ, the parameters X and θ for Σ will be referred
to as XΣ and θΣ.

The Mapping Reflection Principle (MRP) is the statement that, for any open
stationary set mapping Σ, there exists a reflecting sequence for Σ, which means a
continuous ∈-chain ⟨Nν : ν ∈ ω1⟩ in dom(Σ) such that, for all limit ordinals ν ∈ ω1,
there exists ν0 < ν such that, for any ξ ∈ (ν0, ν), Nξ ∩XΣ ∈ Σ(Nν).

MRP has a large number of applications. For example, MRP implies that the
assertion ℧ fails [12, §1], that there are no weak club guessing sequences [12, §1],
that there is a well-order of P(ω1)/NSω1 of length ω2 [10, §4], that □(κ) fails for all
regular cardinal κ > ω1 [10, §6], that the Singular Cardinal Hypothesis holds [20],
that the Bounded Proper Forcing Axiom implies that every Aronszajn line contains
a Countryman suborder [11], [12, §11], that Martin’s Axiom implies that ITP(λ, ω2)
holds for all cardinals λ > ω1 [15], and that p > ℵ1 implies Measuring<2ℵ0 [1].

It is proved that PFA impliesMRP [10, §3]. In [10, §3], for a given open stationary
set mapping Σ, the forcing notion PΣ is defined in such a way that PΣ is proper
and adds a reflecting sequence for Σ by countable approximations (initial segments).
Moore emphasized the fact that PΣ adds no new reals, is not ω-proper, but is weakly
ω-proper [12, §6]. By investigating Moore’s PΣ, we proved that it is consistent
relative to the consistency of the existence of a supercompact cardinal that MRP
holds and there exists a Suslin tree [9].

2.2. The Y-properness.

Definition 2.2 (Chodounský-Zapletal [3, §1]). (1) A forcing notion P satisfies
Y-cc if, for any large enough regular cardinal λ, any countable elemen-
tary submodel N of H(λ) with P ∈ N , and any p ∈ P, there exists a
filter F ∈ N on the regular open algebra RO(P) of P such that the set{
s ∈ RO(P) ∩N : p ≤RO(P) s

}
is included in the set F as a subset.

(2) A forcing notion P satisfies Y-proper if, for any large enough regular cardinal
λ, any countable elementary submodel N of H(λ) with P ∈ N , and any
p ∈ P∩N , there exists an extension q of p in P such that q is (M,P)-generic,
and, for any r ≤P q, there exists a filter F ∈ N on RO(P) such that the set{
s ∈ RO(P) ∩N : r ≤RO(P) s

}
is included in the set F as a subset.

(3) The Y-Proper Forcing Axiom (YPFA) is the assertion that, for any Y-proper
forcing notion P and any ℵ1-many dense subsets {Dα : α ∈ ω1}, there exists
a filter G on P which meets all Dα’s.

A typical example of a Y-cc forcing notion is a σ-centered forcing notion. It is
proved that a Y-cc forcing notion is ccc [3, §2]. The following lemma indicates that
many partition forcing notions satisfy Y-cc.

Definition 2.3. (1) (Todorčević [17, Ch 7]) For a partition [ω1]
2 = K0 ∪K1,

define the forcing notion PK0
whose conditions are finite K0-homogeneous

subsets of ω1, and ≤PK0
:=⊇. A partition [ω1]

2 = K0 ∪K1 is called ccc if
PK0 is ccc.

(2) For a partition [ω1]
2 = K0 ∪ K1, define the forcing notion QK0 whose

conditions are the finite subsets of ω1, and, for each p, q ∈ QK0
, the relation

q ≤QK0
p is defined by the assertion that, for any α ∈ q \ p and any β ∈ p,

{α, β} ∈ K0.
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If PK0
is ccc, then some condition of PK0

forces that there exists an uncountable
K0-homogeneous set. By the definition, for any pairwise disjoint linked (pairwise
compatible) subset I of QK0 and any choice function ⟨αp : p ∈ I⟩ of I (that is,
αp ∈ p for each p ∈ I), the set {αp : p ∈ I} is K0-homogeneous. Therefore, if
QK0

is ccc, then some condition of QK0
forces that there exists an uncountable

K0-homogeneous set.

Theorem 2.4. For a partition [ω1]
2 = K0 ∪K1, if QK0

is ccc, then both PK0
and

QK0
are Y-cc.

The following proof is similar to one in Chodounský-Zapletal [3, Theorem 3.1],
which refers the proofs in [22, 25, 26].

Proof. We only show that PK0
is Y-cc. The proof of Y-ccness of QK0

is same.
At first, we observe a key notion of the proof. For a finite subset a of ω1, a

subset A of PK0 is called a-large if, for any countable subset b of ω1, there exists
r ∈ A such that r∩ (a∪ b) = a. We claim that, for any finite subset a of ω1, the set{∨

A : A ⊆ PK0 is a-large
}

is a centered subset of RO(PK0), that is, any finite subset has a non-zero lower
bound.

To show this, let a be a finite subset of ω1, n ∈ ω, and Ai an a-large subset of PK0

for each i ∈ n. Let us show that the Boolean calculation
∧

i∈n (
∨

Ai) in RO(PK0
)

is not zero. It suffices to prove that there exists a choice function ⟨pi : i ∈ n⟩ of the
set {Ai : i ∈ n} (that is, pi ∈ Ai for each i ∈ n) such that ⟨pi : i ∈ n⟩ has a common
extension in PK0

. Since each Ai is a-large, we can build an uncountable subset{
pξi : ξ ∈ ω1

}
of Ai, for each i ∈ n, such that the set

{
pξi : i ∈ n, ξ ∈ ω1

}
forms a

∆-system with root a. For each ξ ∈ ω1, define rξ :=
(∪

i∈n p
ξ
i

)
\ a. Then the set{

rξ : ξ ∈ ω1

}
is an uncountable pairwise disjoint subset of QK0 . Since QK0 has no

uncountable pairwise disjoint antichain in QK0
, by applying Erdös-Dushnik-Miller’s

partition relation ω1 → (ω1, ω)
2 to the coloring defined by letting {ξ, η} be colored

0 iff rξ and rη are incompatible in QK0
, there exists an infinite subset J of ω1 such

that the set
{
rξ : ξ ∈ J

}
is pairwise compatible in QK0

. Take n-many elements ξi,

i ∈ n, of J . Then, for each i ∈ n, pξii ∈ Ai, and
∪

i∈n p
ξi
i is a condition of PK0

, and

hence is a common extension of the set
{
pξii : i ∈ n

}
in PK0

.

Let λ be a large enough regular cardinal, M∗ a countable elementary submodel
of H(λ) which contains the set {K0}, and p ∈ PK0 . By the previous observation,
the set {∨

A : A ⊆ PK0
is p ∩M∗-large

}
generates the filter F on RO(PK0). This F belongs to M∗. Let us show that, for
every s ∈ RO(PK0

) ∩ M∗, if p ≤RO(PK0
) s, then s ∈ F . To show this, let s ∈

RO(PK0
) ∩M∗ be such that p ≤RO(PK0

) s. Define A :=
{
q ∈ PK0

: q ≤RO(PK0
) s

}
.

A belongs to M∗, and, since PK0
can be considered as a dense subset of RO(PK0

),∨
A = s. Since p ≤RO(PK0

) s and s ∈ M∗, it follows from elementarity of M∗ that

A is p ∩M∗-large. Therefore, s =
∨
A ∈ F . □
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A typical example of a non-ccc Y-proper forcing notion is the ∈-collapse, which
is the set of the finite ∈-chains of countable elementary submodels of H(κ) for some
regular cardinal κ, ordered by ⊇ [18, §7.1]. YPFA implies that every Aronszajn tree
is special [21], that any ladder system coloring can be uniformized [23], that the
P -ideal Dichotomy holds, that there are no S-spaces, and that Todorčević’s five-
element classifications of directed partial orders of size ℵ1 is satisfied [3, §4], [25].
Chodounský-Zapletal proved that, if there exists a supercompact cardinal, YPFA
can be forced. Moreover, it is consistent relative to the existence of a supercompact
cardinal that YPFA holds, that the covering number of the measure zero ideal is
equal to ℵ1, and that there exists an entangled set of reals, which implies that there
are two ccc forcing notions whose product is not ccc (hence Martin’s Axiom fails),
and that both of two Open Coloring Axioms fail [3, §6]. To prove this, they applied
the forcing iteration by use of Neeman’s side condition method [13].

3. YPFA implies MRP

Definition 3.1. Let Σ be an open stationary set mapping. Define the forcing
notion P(Σ) which consists of finite subsets p of ω1 × dom(Σ)× dom(Σ) such that

• for any ⟨ε,M0,M1⟩ ∈ p, ε ∈ M0 ∈ M1 and M0 is a closure point of dom(Σ),
that is, M0 =

∪
(dom(Σ) ∩M0),

• for any {⟨ε,M0,M1⟩ , ⟨ε′,M ′
0,M

′
1⟩} in [p]2, ω1 ∩M0 ̸= ω1 ∩M ′

0 holds, and
moreover,

– if ω1 ∩M0 < ω1 ∩M ′
0, then M1 ∈ M ′

0, and
– if ε′ < ω1 ∩M0 < ω1 ∩M ′

0, then M0 ∩XΣ ∈ Σ(M ′
0),

for any p, q ∈ P(Σ), q ≤P(Σ) p iff q ⊇ p.

For p, q ∈ P(Σ), we say that q is an end-extension of p if q ∩ M0 = p for some
⟨ε,M0,M1⟩ ∈ q.

In the rest of this section, we fix an open stationary set mapping Σ. Let λ be a

regular cardinal which is greater than the cardinal

(
2

(
2(θΣ)

))+

.

Lemma 3.2. P(Σ) is proper.

Proof. Let M∗ be a countable elementary submodel of H(λ) which contains the set
{Σ,H(θΣ)}, p ∈ P(Σ) ∩ M∗. Then the set M0 := M∗ ∩ H(θΣ) is a closure point
of dom(Σ). Take M1 ∈ dom(Σ) such that M0 ∈ M1, and take ε ∈ ω1 ∩M0 which
is a large enough in such a way that the set p+ := p ∪ {⟨ε,M0,M1⟩} is a condition
of P(Σ), that is, for every ⟨γ,K0,K1⟩ ∈ p+ ∩M0 = p, ω1 ∩K1 < ε. Then p+ is an
extension of p in P(Σ). We will show that p+ is (M∗,P(Σ))-generic.

Suppose that D ∈ M∗ is a dense open subset of P(Σ), and q is an extension of
p+ in P(Σ). By extending q if necessary, we may assume that q ∈ D. Take a finite
subset x of M0 ∩XΣ such that, for any ⟨γ,K0,K1⟩ ∈ q, if γ < ω1 ∩M0 < ω1 ∩K0,
then [x,M0 ∩XΣ] ⊆ Σ(K0). Define

E :=
{
Y ∈ [XΣ]

ℵ0 : for any y ∈ [Y ]<ℵ0 , there exists r ∈ D such that

• r is an end-extension of q ∩M0, and

• for any ⟨γ,K0,K1⟩ ∈ r \ (q ∩M0),

x ∪ y ⊆ K0 ∩XΣ ⊆ Y
}
.
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Then E ∈ M∗ ∩H(θΣ) = M0, and E is closed in [XΣ]
ℵ0 by the definition.

We claim that M0 ∩XΣ belongs to E. To check this, let y be a finite subset of
M0 ∩XΣ. Then q satisfies that

• q ∈ D,
• q is an end-extension of q ∩M0, and
• for any ⟨γ,K0,K1⟩ ∈ q \ (q ∩M0), x ∪ y ⊆ M0 ∩XΣ ⊆ K0 ∩XΣ.

So by elementarity of M∗, there exists r ∈ D ∩M∗ such that

• r is an end-extension of q ∩M0, and
• for any ⟨γ,K0,K1⟩ ∈ r \ (q ∩M0), x ∪ y ⊆ K0 ∩XΣ.

Since r ∈ M∗ and M0 = M∗ ∩H(θΣ),

• for any ⟨γ,K0,K1⟩ ∈ r \ (q ∩M0), K0 ∩XΣ ⊆ M0 ∩XΣ.

Since M0 ∩ XΣ ∈ E ∈ M∗, E is unbounded. Thus E is club in [XΣ]
ℵ0 . Since

Σ(M0) is M0-stationary, there exists Y ∈ E ∩ Σ(M0) ∩M0. Since Y is countable,
Y ⊆ M0∩XΣ. Take a finite subset y of Y such that [y, Y ] ⊆ Σ(M0). By elementarity
of M∗, there exists r ∈ D ∩M∗ such that r is an end-extension of q ∩M0, and, for
any ⟨γ,K0,K1⟩ ∈ r \ (q ∩M0), x ∪ y ⊆ K0 ∩XΣ ⊆ Y .

We claim that q ∪ r is a condition of P(Σ). Then q ∪ r is a common exten-
sion of q and r, and so the proof is completed. We will show here that, for
any {⟨γ,K0,K1⟩ , ⟨γ′,K ′

0,K
′
1⟩} in [q ∪ r]2, if γ′ < ω1 ∩ K0 < ω1 ∩ K ′

0, then
K0 ∩ XΣ ∈ Σ(K ′

0). To show this, let {⟨γ,K0,K1⟩ , ⟨γ′,K ′
0,K

′
1⟩} in [q ∪ r]2 be

such that γ′ < ω1 ∩ K0 < ω1 ∩ K ′
0. Since both q and r are conditions of

P(Σ), if {⟨γ,K0,K1⟩ , ⟨γ′,K ′
0,K

′
1⟩} ⊆ q or {⟨γ,K0,K1⟩ , ⟨γ′,K ′

0,K
′
1⟩} ⊆ r, then

K0 ∩XΣ ∈ Σ(K ′
0). Since r ∈ M∗ ∩H(θΣ) = M0 and ⟨ε,M0,M1⟩ ∈ q, the rest of

cases is that ⟨γ,K0,K1⟩ ∈ r \ q and ⟨γ′,K ′
0,K

′
1⟩ ∈ q \ r. If K ′

0 ̸= M0, then by the
role of x, K0 ∩XΣ ∈ Σ(K ′

0). If K ′
0 = M0, then by the role of y and the choice of

r, K0 ∩XΣ ∈ Σ(M0) = Σ(K ′
0). □

Definition 3.3. For an open stationary set mapping Σ, define a P(Σ)-name Ṅ (Σ)
such that

⊩P(Σ)“ Ṅ (Σ) :=
{
M0 : ∃ε ∃M1

(
⟨ε,M0,M1⟩ ∈

∪
ĠP(Σ)

)}
”,

here ĠP(Σ) is the canonical generic P(Σ)-name.

By the definition of P(Σ), it is proved that

⊩P(Σ)“ Ṅ (Σ) is linearly ordered by ∈ ”.

Proposition 3.4. ⊩P(Σ) “ Ṅ (Σ) is an unbounded chain of countable elementary

submodels of H(θΣ)
V ”, here H(θΣ)

V is H(θΣ) in the ground model.

Proof. By the definition, ⊩P(Σ)“ Ṅ (Σ) forms a chain of countable elementary sub-

models of H(θΣ)
V ”. We will show the unboundedness.

Let z ∈ H(θΣ) and p ∈ P(Σ). Take a countable elementary submodel M∗ of
H(λ) which contains the set {Σ,H(θΣ), z, p}. Since dom(Σ) is a club subset of
H(θΣ), M0 := M∗ ∩ H(θΣ) is a closure point of dom(Σ). Take M1 ∈ dom(Σ)
such that M0 ∈ M1, and take a large enough ordinal ε in ω1 ∩ M∗ in such a
way that the set q := p ∪ {⟨ε,M0,M1⟩} is a condition in P(Σ), that is, for every
⟨γ,K0,K1⟩ ∈ q ∩M0 = p, ω1 ∩K1 < ε. Then q is an extension of p in P(Σ) and

q ⊩P(Σ)“ z ∈ M0 ∈ Ṅ (Σ) ”. □
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Lemma 3.5. ⊩P(Σ)“ Ṅ (Σ) is closed, hence is a continuous ∈-chain ”.

Proof. Let p ∈ P(Σ), Ṅn a P(Σ)-name for each n ∈ ω such that

p ⊩P(Σ)“
{
Ṅn : n ∈ ω

}
⊆ Ṅ (Σ) & ∀n ∈ ω

(
Ṅn ∈ Ṅn+1

)
”.

Let us show that

p ̸⊩P(Σ)“
∪
n∈ω

Ṅn ̸∈ Ṅ (Σ) ”.

At first, we claim that

p ̸⊩P(Σ)“ sup
n∈ω

(
ω1 ∩ Ṅn

)
̸∈
{
ω1 ∩M : M ∈ Ṅ (Σ)

}
”.

Assume not. Since P(Σ) is proper, we can take an extension q of p and α ∈ ω1 such
that

q ⊩P(Σ)“ sup
n∈ω

(
ω1 ∩ Ṅn

)
= α ”.

By extending q if necessary, we may assume that there exists ⟨ε,M0,M1⟩ ∈ q such
that

q ⊩P(Σ)“ M0 is the least element of Ṅ (Σ) with the property that α ≤ ω1 ∩M0 ”.

It follows from our assumption that α < ω1 ∩ M0. Take an extension q′ of q in
P(Σ), m ∈ ω and N such that

q′ ⊩P(Σ)“ q ∩M0 ∈ Ṅm = N ”.

By extending q′ if necessary, we may assume that, for some β and N ′, ⟨β,N,N ′⟩
is in q′. Since M0 is a closure point of P(Σ) and {N,α} ∈ M0, there exists N ′′ ∈
dom(Σ) ∩ M0 such that {N,α} ∈ N ′′. Define r := q ∪ {⟨β,N,N ′′⟩}. Then r is a

condition of P(Σ). r may not force that Ṅm = N . However,

r ⊩P(Σ)“ • ω1 ∩N < α = sup
n∈ω

(
ω1 ∩ Ṅn

)
, and

• for any K ∈ Ṅ (Σ), if ω1 ∩N < ω1 ∩K, then α ∈ N ′′ ∈ K,

therefore, it follows that
{
Ṅn : n ∈ ω

}
̸⊆ Ṅ (Σ) ”,

which is a contradiction.
By extending p if necessary, we may assume that there exists ⟨ε,M0,M1⟩ ∈ p

such that

p ⊩P(Σ)“ sup
n∈ω

(
ω1 ∩ Ṅn

)
= ω1 ∩M0 ”.

At last, we claim that

p ⊩P(Σ)“
∪
n∈ω

Ṅn = M0 ”.

We notice that

p ⊩P(Σ)“ for each n ∈ ω, ω1 ∩ Ṅn < ω1 ∩M0, hence Ṅn ∈ M0,

therefore, it follows that
∪
n∈ω

Ṅn ⊆ M0 ”.

Let us show that

p ⊩P(Σ)“
∪
n∈ω

Ṅn ⊇ M0 ”.
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Let q be an extension of p in P(Σ), and z ∈ M0. Take an extension q′ of q in P(Σ),
m ∈ ω and N such that

q′ ⊩P(Σ)“ q ∩M0 ∈ Ṅm = N ”.

Then ω1 ∩ N < ω1 ∩M0, hence N ∈ M0. Since M0 is a closure point of dom(Σ),
we can take N ′ ∈ dom(Σ) ∩M0 such that {z,N} ∈ N ′, and can take β ∈ ω1 ∩ N
in such a way that r := q ∪ {⟨β,N,N ′⟩} is a condition in P(Σ). Then it is not sure

that r forces that Ṅm = N . However, it is true that

r ⊩P(Σ)“ ω1 ∩N ′ < ω1 ∩M0 = sup
n∈ω

(
ω1 ∩ Ṅn

)
and ⟨β,N,N ′⟩ ∈

∪
ĠP(Σ),

therefore, z ∈ N ′ ⊆
∪
n∈ω

Ṅn ”. □

It follows from Lemmas 3.4 and 3.5 that

⊩P(Σ)“ Ṅ (Σ) is a cofinal continuous ∈-chain of countable subsets of H(θΣ)
V ”.

Since P(Σ) is proper, P(Σ) preserves ω1. It follows that P(Σ) collapses θΣ to ω1.
The following lemma shows that YPFA implies MRP.

Lemma 3.6. P(Σ) is Y-proper.

Proof. As in Lemma 2.4, we observe a key notion. For a condition p ∈ P(Σ), a
tuple ⟨γ,K0,K1⟩ in p is called minimal if, for any ⟨γ′,K ′

0,K
′
1⟩ ∈ p \ {⟨γ,K0,K1⟩},

K1 ∈ K ′
0. We note that each condition of P(Σ) has the unique minimal tuple. For

a condition p ∈ P(Σ), a subset A of P(Σ) is called p-large if the set

M(A) :=
{
M ∈ [H(θΣ)]

ℵ0 : there exists r ∈ A such that

• r is an end-extension of p, and
• for some ε and M1, ⟨ε,M,M1⟩ is

the minimal tuple of r \ p
}

is stationary in [H(θΣ)]
ℵ0 .

Assume, for a while, that for any p ∈ P(Σ), the set{∨
A : A ⊆ P(Σ) is p-large

}
is a centered subset of RO(P(Σ)), and then let us show that P(Σ) is Y-proper. Let
M∗ be a countable elementary submodel ofH(λ) which contains the set {Σ,H(θΣ)},
and p ∈ P(Σ) ∩ M∗. Define M0 := M∗ ∩ H(θΣ). Take M1 ∈ dom(Σ) such that
M0 ∈ M1, and take a large enough ordinal ε in ω1 ∩ M∗ in such a way that the
set q := p ∪ {⟨ε,M0,M1⟩} is a condition of P(Σ), that is, for every ⟨γ,K0,K1⟩ ∈
q ∩M0 = p, ω1 ∩K1 < ε. By Lemma 3.2, q is (M∗,P(Σ))-generic. We will show
that this q works well.

Let r be an extension q in P(Σ). By our assumption, the set{∨
A : A ⊆ P(Σ) is r ∩M∗-large

}
generates the filter F on RO(P(Σ)). This F belongs to M∗. Let us show
that, for every s ∈ RO(P(Σ)) ∩ M∗, if r ≤RO(P(Σ)) s, then s ∈ F . To
show this, let s ∈ RO(P(Σ)) ∩ M∗ be such that r ≤RO(P(Σ)) s. Define A :={
u ∈ P(Σ) : u ≤RO(P(Σ)) s

}
. A belongs to M∗, hence M(A) ∈ M∗. Moreover,
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A = s. r witnesses that M∗ ∩H(θΣ) = M0 ∈ M(A) . Thus M(A) is stationary

in [H(θΣ)]
ℵ0 , and so A is r ∩M∗-large.

At the end, we show that, for any p ∈ P(Σ), the set{∨
A : A ⊆ P(Σ) is p-large

}
is a centered subset of RO(P(Σ)). This finishes the proof. Let p ∈ P(Σ). Define
the assertion Amalgable(y, ⟨Ai : i ∈ n⟩ , ⟨ri : i ∈ n⟩) which means that

• y ∈ [XΣ]
<ℵ0 ,

• each Ai is a p-large subset of P(Σ),
• for each i ∈ n,

– ri ∈ Ai,
– ri is an end-extension of p, and
– for any ⟨ε,M0,M1⟩ ∈ ri \ p, y ∪ {rj : j < i} ⊆ M0,

and
•
∪

i∈n ri ∈ P(Σ).
For each finite sequence ⟨Ai : i ∈ n⟩ of p-large subsets of P(Σ), define

E(⟨Ai : i ∈ n⟩) :=
{
Y ∈ [XΣ]

ℵ0 : for any y ∈ [Y ]<ℵ0 , there exists
⟨ri : i ∈ n⟩ ∈

∏
i∈n Ai such that

• Amalgable(y, ⟨Ai : i ∈ n⟩ , ⟨ri : i ∈ n⟩),
and
• for each i ∈ n and ⟨ε,M0,M1⟩ ∈ ri \ p,

XΣ ∩M0 ⊆ Y
}
.

It suffices to show that, for any finite sequence ⟨Ai : i ∈ n⟩ of p-large subsets of
P(Σ), E(⟨Ai : i ∈ n⟩) is not empty.

By the definition, E(⟨Ai : i ∈ n⟩) is closed in [XΣ]
ℵ0 . By induction on the length

n of the sequence ⟨Ai : i ∈ n⟩, we show that E(⟨Ai : i ∈ n⟩) is stationary in [XΣ]
ℵ0 .

Then it follows that E(⟨Ai : i ∈ n⟩) is club in [XΣ]
ℵ0 .

When n = 1, the set E(⟨A0⟩) is of the form{
Y ∈ [XΣ]

ℵ0 : for any y ∈ [Y ]<ℵ0 , there exists r ∈ A0 such that

• Amalgable(y, ⟨A0⟩ , ⟨r⟩) holds, and
• for each ⟨ε,M0,M1⟩ ∈ r \ p, XΣ ∩M0 ⊆ Y

}
.

Let us show that E(⟨A0⟩) is stationary in [XΣ]
ℵ0 . To show this, let C be a club in

[XΣ]
ℵ0 . By recursion on n ∈ ω and by use of some book-keeping argument, since A0

is p-large and C is unbounded in [XΣ]
ℵ0 , we can take a sequence ⟨rn,Mn

0 , Cn : n ∈ ω⟩
such that

• for each n ∈ ω,
– rn is in An and is an end-extension of p,
– Mn

0 is the second coordinate of the minimal tuple of rn \ p, and
– Cn ∈ C such that Cn ⊆ Cn+1 and, for all ⟨ε,M0,M1⟩ ∈ rn \ p, XΣ ∩

M0 ⊆ Cn,
and

• for any y ∈
[∪

n∈ω Cn

]<ℵ0
, there exists m ∈ ω such that y ⊆ Mm

0 .
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Then
∪

n∈ω Cn is in both C and E(⟨A0⟩), which is what we want.
Assume that ⟨Ai : i ∈ n+ 1⟩ is a sequence of p-large subsets of P(Σ) and

E(⟨Ai : i ∈ n⟩) is club in [XΣ]
ℵ0 . Let us show that E(⟨Ai : i ∈ n+ 1⟩) is stationary

in [XΣ]
ℵ0 . Since An is p-large, there are a countable elementary submodel M∗ of

H(λ) and qn ∈ An such that M∗ has the set

{Σ,H(θΣ), p, ⟨Ai : i ∈ n+ 1⟩} ,

qn is an end-extension of p, and M∗∩H(θΣ) is the second coordinate of the minimal
pair of qn \ p. By elementarity of M∗, both E(⟨Ai : i ∈ n⟩) and E(⟨Ai : i ∈ n+ 1⟩)
belong to M∗∩H(θΣ). We shall show that M∗∩XΣ belongs to E(⟨Ai : i ∈ n+ 1⟩).
Then it follows that E(⟨Ai : i ∈ n+ 1⟩) is stationary in [XΣ]

ℵ0 .
Let y be a finite subset of M∗∩XΣ. Take a finite subset x of M∗∩XΣ such that,

for any ⟨ε,M0,M1⟩ ∈ qn \p, if ε < ω1∩M∗ < ω1∩M0, then [x,M∗∩XΣ] ⊆ Σ(M0).
Since E(⟨Ai : i ∈ n⟩) is a club subset of [XΣ]

ℵ0 in M∗∩H(θΣ) and Σ(M∗∩H(θΣ))
is M∗ ∩H(θΣ)-stationary, there exists Y in the set

E(⟨Ai : i ∈ n⟩) ∩ Σ(M∗ ∩H(θΣ)) ∩M∗ ∩H(θΣ)

such that x∪ y ⊆ Y . Since Y is in Σ(M∗ ∩H(θΣ)), we can take a finite subset z of
Y such that [z, Y ] ⊆ Σ(M∗∩H(θΣ)). Since Y is in E(⟨Ai : i ∈ n⟩), by elementarity
of M∗, there exists ⟨qi : i ∈ n⟩ ∈

(∏
i∈n Ai

)
∩ M∗ which satisfies the assertion

Amalgable(x ∪ y ∪ z, ⟨Ai : i ∈ n⟩ , ⟨qi : i ∈ n⟩). By a similar argument that q and
r are compatible in P(Σ) in the proof of the properness, it is proved that the
assertion Amalgable(y, ⟨Ai : i ∈ n+ 1⟩ , ⟨qi : i ∈ n+ 1⟩) holds true in H(λ) (in fact,
Amalgable(x∪y∪z, ⟨Ai : i ∈ n+ 1⟩ , ⟨qi : i ∈ n+ 1⟩) is affirmative). By elementarity
of M∗ again, there exists ⟨ri : i ∈ n+ 1⟩ in the set

(∏
i∈n+1 Ai

)
∩M∗ which satisfies

the assertion Amalgable(y, ⟨Ai : i ∈ n+ 1⟩ , ⟨ri : i ∈ n+ 1⟩). This finishes the proof.
□
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[17] S. Todorčević. Partition Problems in Topology, volume 84 of Contemporary mathematics.
American Mathematical Society, Providence, Rhode Island, 1989.
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