

焼津市中里の上部完新統のカワゴ平軽石

メタデータ	言語: ja
	出版者:静岡大学地球科学教室
	公開日: 2021-09-28
	キーワード (Ja):
	キーワード (En):
	作成者: 北村, 晃寿, 平田, 将也
	メールアドレス:
	所属:
URL	https://doi.org/10.14945/00028381

焼津市中里の上部完新統のカワゴ平軽石

北村晃寿^{1,2}•平田将也¹

Kawagodaira Pumice from Upper Holocene at Nakazato, Yaizu City, central Japan.

Akihisa Kitamura $^{1,\,2}$ and Shoya Hirata^1

Abstract The present study detected pumice grains of Kawagodaira Pumice, which was erupted at 3160–3137 cal BP, from the >0.063 mm size fraction of cored deposits of the Upper Holocene at site 3 of Nakazato, Yaizu City. We inferred the initial stratigraphic position of the pumice at a core depth of 6.51 m (elevation –3.70 m).

Keywords: Kawagodaira Pumice, Upper Holocene, Yaizu Plain

はじめに

北村ほか(2015)は焼津市沿岸低地の9地点でボーリ ング掘削を行い、津波堆積物を調査した.さらに、これ らの地点のうちの中里地区の地点3で、北村ほか(2016) は全長40mのボーリング掘削を行い、約9000年間の堆 積環境の推定を行った. 最近, Kitamura *et al.* (2020) は焼津市浜当目低地でボーリング掘削を行い、津波堆積 物を調査した。これらの地点の多くで、カワゴ平軽石 (3160-3137 cal BP; Tani et al., 2013) を肉眼で直接観察 できた、この軽石は伊豆半島の単成火山の天城カワゴ平 火山の噴出物である(町田・新井, 1992). 一般に,日本 列島の火山噴出物は偏西風により、噴出源から東に分布 するのに対して,カワゴ平軽石は東風に運ばれ,琵琶湖 周辺まで達する(西田ほか, 1993). そのため,静岡県 内の上部完新統の唯一の鍵層として,対比に重要である (嶋田, 2000; Kitamura, 2016). しかしながら,中里地区 の地点3のコア試料からは肉眼観察では見つけられてい なかったので、本研究では、同試料について泥質物を除 去した残渣を観察し,カワゴ平軽石の検出を行い,それ を確認したので、報告する.

調査・分析方法

地点3は,標高2.81m,北緯34°52′56″,東経138° 19′03″であり,瀬戸川河口から約1670mに位置する (図1).コア試料の表層1mは盛土であり,深度9.5mで 4805–4450cal BPの¹⁴C年代値が得られている(北村ほ か,2016)(図2).盛土の基底の年代を西暦1950年(0 cal BP)と仮定し,そこから深度9.5mまでの堆積物の堆積 速度を一定と仮定すると,堆積速度は1.8–1.9mm/年と 算出される.この堆積速度を用いると,カワゴ平軽石の 産出層準は深度7.0–6.6mと算出されるが,本論では深度 9–6m(標高-6.19m--3.19m)の間の堆積物を2cm間隔 で層厚1cmの堆積物試料を採取し,目開き64µmの篩で 水洗した残渣から軽石を識別・計数し,堆積物1g中の軽 石個数を算出した.

結果

軽石が検出され、その堆積物1g中の個数を図2と表1 に示す.軽石は白色で発泡の良い軽石型ガラスであり (図3)、これらの特徴はカワゴ平軽石の特徴(町田・新 井,1992;嶋田,2000)と一致することから、同軽石と識 別した.標高-3.20m~-4.34m(深度6.01m~7.15m)

²⁰²¹年3月31日受付 2021年6月3日受理.

Received: 31 March 2021 Accepted: 3 June 2021

¹静岡大学理学部地球科学教室, 422-8529 静岡市駿河区大谷836

²静岡大学防災総合センター,422-8529静岡市駿河区大谷836

¹Institute of Geosciences, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

E-mail: kitamura.akihisa@shizuoka.ac.jp

²Center for Integrated Research and Education of Natural Hazards, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

図1 地点3の位置.数値地図2万5千分の1「静岡」を使用. Fig. 1 Location of site 3. Base map: Digital Map 25000 "Shizuoka".

から軽石が産し,最も多く産出したのは標高-3.70m (深 度6.51m)で堆積物1g中に1,207個であった.カワゴ平軽 石が上下の堆積物に混在するのは,生物撹拌や二次的堆 積によって説明され(例えば,小竹ほか,2006),そのた め肉眼観察では同軽石を検出できなかったのである.本 研究では,産出密度の最大層準をカワゴ平軽石の降灰層 準とした.

謝辞

静岡大学理学部の佐藤慎一博士とJulien Legrand博士 による査読コメントによって、本稿は改善された.ここ に厚く感謝申し上げる.

引用

Kitamura A. (2016), Examination of the largest-possible tsunamis (Level 2 tsunami) generated along the Nankai and Suruga troughs during the past 4000 years based on studies of tsunami deposits from the 2011 Tohoku-oki tsunami. *Progress in Earth and Planetary Science*, 3:12.

- 北村晃寿・小山真人(2020),静岡県の地質.静岡の大 規模自然災害の科学(岩田孝仁・北村晃寿・小山 真人編),静岡新聞社,静岡,38–50.
- 北村晃寿・三井雄太・滝川陽紀(2016),静岡県焼津平 野の完新統の解析に基づく安政型地震の平均発生 間隔の推定.地質学雑誌,10,523-531.
- 北村晃寿・鈴木孝和・小林小夏(2015),静岡県焼津平 野における津波堆積物の調査.静岡大学地球科学 研究報告,42,1-14.
- Kitamura A., Yamada K., Sugawara D., Yokoyama Y., Miyairi Y. & Hamatome team (2020), Tsunamis and submarine landslides in Suruga Bay, central Japan, caused by Nankai–Suruga trough megathrust earthquakes during the last 5000 years. *Quaternary Science Reviews*, 245, 106527.
- 小竹信宏・藤岡導明・佐藤 茜・伊藤泰弘 (2006), 千 葉県房総半島南端に分布する完新統沼層における 鬼界―アカホヤテフラの降灰層準:生物攪拌作 用の観点からのアプローチ.地質学雑誌, 112, 210-221.
- 町田 洋・新井房夫(1992),火山灰アトラス[日本列 島とその周辺].東京大学出版会,東京,276p.

← 9225-9015 西暦 1950 年を基点(0年)とした年代(年前)

- 図2 調査地点の柱状図, 貝類化石・カワゴ平軽石の層位分布, ¹⁴C 年代値. 北村・小山(2020)を改変.
- Fig. 2 Columnar section of site 3, showing stratigraphic distributions of molluscan species and Kawagodaira Pumice, with radiocarbon dates. Modified from Kitamura and Koyama (2020).

- 西田史朗・高橋 豊・竹村恵二・石田志朗・前田保夫 (1993), 近畿地方へ東から飛んできた縄文時代後・ 晩期火山灰層の発見. 第四紀研究, 32, 129–138.
- 嶋田 繁(2000),伊豆半島,天城カワゴ平火山の噴火 と縄文時代後~晩期の古環境.第四紀研究,39, 151-164.
- Tani S., Kitagawa H., Hong W., Park J. H., Sung K. S. & Park G. (2013), Age determination of the Kawagodaira volcanic eruption in Japan by ¹⁴C wiggle-matching. *Radiocarbon*, 55, 748–752.

図3 地点3のコア堆積物中のカワゴ平軽石の写真. Fig. 3 Photograph of Kawagodaira Pumice from cored deposits at site 3.

表1	カワゴ平軽石の堆積物1g中の個数.	

深度 1 g中の 深度 1 g中の 深 (m) 軽石の個数 (m) 軽石の個数 (n 6.01 205.1 7.01 94.1 8.1	度 1g中の n) 軽石の個数 01 0 03 0
(m) 軽石の個数 (m) 軽石の個数 (n) 6.01 205.1 7.01 94.1 8.1	n) 軽石の個数 01 0 03 0
6.01 205.1 7.01 94.1 8.0	01 0 03 0
	03 0
6.03 414.1 7.03 123.1 8.	
6.05 136.2 7.05 240 8.	05 0
6.07 372.6 7.07 233.3 8.	07 0
6.09 337.8 7.09 167.4 8.	09 0
6.11 411 7.11 123.1 8.	11 0
6.13 275.9 7.13 84.2 8.	13 0
6.15 156.5 7.15 19.5 8.	15 0
6.17 104.9 7.17 0 8.	17 0
6.19 142.9 7.19 0 8.	19 0
6.21 126.3 7.21 0 8.2	21 0
6.23 140 7.23 0 8.1	23 0
6.25 62.7 7.25 0 8.1	25 0
6.27 502 7.27 0 8.1	27 0
6.29 334.3 7.29 0 8.1	29 0
6.31 416 7.31 0 8.	31 0
6.33 766.2 7.33 0 8.3	33 0
6.35 512 7.35 0 8.	35 0
6.37 576 7.37 0 8.3	37 0
6.39 252.6 7.39 0 8.1	39 0
6.41 221.3 7.41 0 8.	41 0
6.43 246.2 7.43 0 8.4	43 0
6.45 233.5 7.45 0 8.4	45 0
6.47 464.5 7.47 0 8.4	47 0
6.49 557.6 7.49 0 8.4	49 0
6.51 1206.6 7.51 0 8.	51 0
6.53 480.9 7.53 0 8.	53 0
6.55 533.3 7.55 0 8.	55 0
6.57 342.9 7.57 0 8.	57 0
6.59 665.6 7.59 0 8.	59 0
6.61 517.6 7.61 0 8.	61 0
6.63 308.8 7.63 0 8.	63 0
6.65 266.7 7.65 0 8J	65 0
6.67 253.7 7.67 0 8J	67 0
6 6 9 4 8 3 7 7 6 9 0 8 1	69 0
6.71 63.2 7.71 0 8.	71 0
673 173 0 773 0 8 [°]	73 0
675 4571 775 0 8 [°]	75 0
677 250 777 0 8	73 0
679 0 779 0 8 [°]	79 0
681 702 781 0 89	
683 889 783 0 81	83 0
6.85 25.8 7.85 0 81	85 0
6.87 0 7.87 0 81	87 0
689 0 789 0 81	89 0
691 0 791 0 80	91 O
693 0 793 0 80	93 0
695 0 795 0 2	95 0
6 97 266 7 7 97 0 80	97 N
6 00 385 2 7 00 0 90	