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Abstract

Infection can spread easily on networks with heterogeneous degree distributions. Here, we con-

sidered targeted immunization on such networks, wherein a fraction of individuals with the highest

connectivity are immunized. To quantify the effect of this targeted immunization approach on

population immunity, we proposed a method using the type reproduction number. Consequently,

we derived a precise and simple formula that can yield the immunization threshold, which, to the

best of our knowledge, is the first such result presented in literature.

1



INTRODUCTION

In recent decades, advancements in the field of transportation have led to increased

connectivity among people. Owing to this increased interaction, outbreaks of several new

infectious diseases have occurred around the world, which are threatening the lives and

health of people. In particular, these diseases spread over networks of individuals via contact

between them. In a similar manner, the spread of computer viruses through the Internet

has also caused significant economic damage to affected individuals and entities. Therefore,

there is an urgent and important need to understand the mechanism of these spreading

phenomena in networks; moreover, effective methods to control these infections are required.

A key issue for effective control of infections is to determine the groups of individuals on

which preventive measures such as immunization should be focused.

In epidemiology, the basic reproduction number R0 has been used to measure the trans-

mission potential of infectious diseases[1, 2]. R0 represents the average number of secondary

infections that a typical infection would directly cause in a completely susceptible popula-

tion. The standard method for calculating R0 for epidemic models described by ordinary

differential equations involves determining the spectral radius ρ(A) of the next-generation

matrix A for an infectious disease [3, 4]. When R0 > 1, the infection can spread in the

host population; in contrast, when R0 < 1, the infection will not spread. Thus, R0 is a

useful indicator of the effort required to eliminate an infection from the population. For un-

structured models that assume well-mixed infections, if individuals in a host population are

immunized at random, then the incidence of an infection will decline when the proportion

of people with immunity exceeds 1 − 1/R0, which is referred to as herd immunity fraction

[1].

However, the criterion using R0 is based on the assumption that the host population is

homogeneous and well mixed. If the population is divided into some types and the infection

control is performed by focusing on these types, then the type reproduction number T is

used in the place of R0 [5–7]. The type reproduction number T for a target subset of the

population represents the average number of secondary cases in this subset produced by the

primary cases in the same subset in a completely susceptible population. T considers the

secondary cases transmitted directly from the primary cases. Further, it considers the cases

indirectly from people who are infected from the primary cases but excluded the target subset
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[7]. If the infection grows exclusively within the complement of the target subset, T might

not be well-defined. If a vaccine is only applied to this subset of the population, the required

fraction of vaccine coverage in the target subset can be given by 1 − 1/T , where T is the

type reproduction number for the target subset. In case T is not well-defined, the infection

cannot be eradicated unless the entire subset population is immunized. In previous studies

[8, 9], the target reproduction number has been introduced as a general extension of the type

reproduction number, and a simple method for deriving the type and target reproduction

number using the next-generation matrix has been proposed: if the next-generation matrix

A is decomposed into the target matrix C of the terms subject to be immunized and the

residual matrix A− C of the terms not subject to be immunized, then the type and target

reproduction number TC is given by the spectral radius of the matrix C(I − A+ C)−1,

TC = ρ(C(I − A+ C)−1) (1)

if A is irreducible and ρ(A− C) < 1 [8, 9]. In this study, the target is limited to the subset

of nodes specified by the degree; thus, we use the term type reproduction number.

Considering the spread of infections in social networks, an important property of networks

that should not be overlooked is its degree heterogeneity, where the degree k is defined as

the number of connections each node has with other nodes [10–12]. It is well-known that

the degree distribution, which is the probability distribution of this degree k over the entire

network, often follows a power law for large values of k:

P (k) ∼ k−γ. (2)

In this case, the network is called a scale-free network [12, 13]. For example, it has been

reported that the networks of human sexual contact are scale-free [14–16]. On the contrary,

some other studies on the subject have rejected this notion [17, 18]. While it is still being

debated how exactly real sexual networks are scale-free, it is clear that they are highly

heterogeneous; this is because only a few individuals tend to have a large number of sexual

partners, while most individuals only have a few sexual partners.

In the popular susceptible-infected-susceptible (SIS) model in networks [19–21], the basic

reproduction number is given as follows:

R0 = λ⟨k2⟩/⟨k⟩, (3)
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where λ represents the infection rate, which is defined later. The SIS model is the simplest

of the compartment model for infectious disease spread, and while there are many possible

extensions, the essential properties ofR0 remain the same. A similar formula forR0 has long

been known in the field of epidemiology [1, 22]. If the degree distribution follows Eq. (2) and

γ ≤ 3, then the second moment ⟨k2⟩ diverges in the large-size limit. Thus, R0 can diverge if

λ is finite. Moreover, even if λ is considerably small, the infection can become widespread.

While ⟨k2⟩ must be finite for real social networks, typically, they have high ⟨k2⟩.

In this study, to develop efficient herd immunity, we considered the case wherein only a

fraction of individuals in a population with the highest connectivity (k ≥ kmax) are immu-

nized; this is because it is expected that targeting individuals that act as hubs effectively

reduces ⟨k2⟩. Though this case has been analyzed in previous works [21, 23], unlike those

studies, herein, we quantify the effect of target immunization by using the type reproduc-

tion number. Furthermore, we also derive a new formula to calculate the immunization

threshold.

RESULT

To account for the effect of heterogeneity in the degree distribution of a population, it is

appropriate to consider the density ρk(t) of infected nodes within each degree class k.

Based on the previously proposed SIS model [24, 25], the mean-field rate equation can

be obtained as
dρk(t)

dt
= −ρk(t) + λk[1− ρk(t)]Θk(t), (4)

where the time unit is set so that the recovery rate is equal to one. In this equation, the first

term on the right-hand side represents recovery, wherein the average duration of infection

is set to one, while the second term represents transmission, which is proportional to the

combined product of infection rate (λ), density of susceptible nodes (1− ρk(t)), number of

neighboring vertices (k), and probability that any neighbor is infected (Θk(t)). In particular,

the probability Θk(t) is the average of the probabilities that a connection from a node with

degree k exists to an infected node with degree k′ over all degrees:

Θk(t) =
∑
k′=1

P (k′|k)ρk′(t), (5)

where P (k′|k) represents the conditional probability that a node of degree k is connected
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to a node of degree k′. Assuming that there is no degree-degree correlation [19, 20], Θk(t)

could be considered independent of k, and thus, can be given as

Θ(t) =
1

⟨k⟩
∑
k=1

kP (k)ρk(t). (6)

This is because, here

P (k′|k) = k′P (k′)/⟨k⟩. (7)

To calculate the type reproduction number, we consider the linearized system of Eq. (4)

near the disease-free solution. If the degree distribution has the maximum value kmax, then

the next-generation matrix of eq. (4) is as follows:

A =



λP (1|1) λP (2|1) · · · λP (kmax|1)

2λP (1|2) 2λP (2|2) · · · 2λP (kmax|2)
...

...
. . .

...

kmaxλP (1|kmax) kmaxλP (2|kmax) · · · kmaxλP (kmax|kmax)


, (8)

where Aij represents the rate of infection for nodes of degree i due to spread of the infection

from infectious nodes of degree j. The complete derivation of the matrix in Eq. (8) was

performed using the method proposed by Diekmann et al. [4]; we decomposed the Jacobian

of Eq. (4) into T + Σ, where Tij = iP (j|i) represents the transmission part, describing the

production of new infections, and Σij = −δij is the transition part, describing changes in

state, and computed A = −TΣ−1. Note that A = T because the recovery rates are set equal

to one for all people.

If we target nodes with k larger than kt, the target matrix can be written as follows:

C =



0 0 · · · 0
...

...
...

0 0 · · · 0

ktλP (1|kt) ktλP (2|kt) · · · ktλP (kmax|kt)
...

...
...

kmaxλP (1|kmax) kmaxλP (2|kmax) · · · kmaxλP (kmax|kmax)


. (9)

Then, the type reproduction number T≥kt is determined using Eq. (1). In the absence of

degree-degree correlation (i.e., Eq. (7)), by using Eq. (1)), the type reproduction number
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can be obtained as follows:

T≥kt =

λ
⟨k⟩

∑kmax
k=kt

k2P (k)

1− λ
⟨k⟩

∑kt−1
k=1 k2P (k)

= 1 +
R0 − 1

1− λ
⟨k⟩

∑kt−1
k=1 k2P (k)

,

(10)

if the denominator is positive. The derivation of Eq. (10) is presented in the Methods section.

If the denominator is negative and T≥kt is not well-defined, the infection can survive even

when all k ≥ kt nodes have been immunized. It is obvious from Eq. (10) that when R0 > 1,

T≥kt increases monotonically with respect to kt. Furthermore, if the entire population is

targeted (kt=1), the type reproduction number can be calculated as

T≥1 =
λ

⟨k⟩

kmax∑
k=1

k2P (k), (11)

which coincides with the formula for the basic reproduction number R0 given by Eq. (3).

For a general case, it can be mathematically confirmed that T≥kt > 1 ⇔ R0 > 1 and

T≥kt < 1 ⇔ R0 < 1 [8, 9].

We examine the characteristics of the type reproduction number T≥kt , using the example

shown in Fig. 1, where the degree distribution P (k) ∝ k−3 for kmin ≤ k ≤ kmax with kmin = 2

and kmax = 104. It should be noted that kmax is an artificially introduced cutoff; however, a

system with a finite size always has a similar cutoff. The value of λ is set such that R0 = 3;

consequently, more than 1− 1/R0 = 2/3 of the total population would have to be randomly

immunized to prevent the spread of the infection. Fig. 1(a) shows the dependency of T≥kt

on kt; in this case, because Eq. (10) is well-defined for kt ≤ 29, the infection cannot be

eradicated by immunizing only nodes with degrees k > 29. Thus, this critical value is given

by the maximum value kt that satisfies:

λ

⟨k⟩

kt−1∑
k=1

k2P (k) < 1. (12)

Then, the required fraction of the targeted nodes k ≥ kt that need to be immunized can

be obtained as follows:

1− 1

T≥kt

=
R0 − 1

λ
⟨k⟩

∑kmax
k=kt

k2P (k)
; (13)

and tends to a value of one when kt approaches the critical value of 29 as shown in Fig. 1(b).

In particular, this figure can be used to obtain the required value of kt based on public
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FIG. 1. Characteristic curves for the type reproduction number: (a) type reproduction number

T≥kt plotted as a function of kt, (b) plot for required fraction of immunized nodes with degree

k ≥ kt, and (c) plot of required amount of vaccine given by Eq. (14). Here, the degree distribution

P (k) ∝ k−3 for 2 ≤ k ≤ 104 and the infection rate is set to λ = 0.22 (such that R0 = 3).

health constraints. For example, if only 80% of the target population can be vaccinated, or

the effective rate of vaccination is 80%, then, to eradicate the infection, kt must be less than

or equal to 7 because 1− 1/T≥7 < 0.8 and 1− 1/T≥8 > 0.8.

When all nodes with k ≥ kt are immunized, the proportion of the population that re-

ceives immunity against the infection is
∑kmax

k=kt
P (k). Because the total amount of vaccine is∑kmax

k=kt
P (k) multiplied by 1− 1/T≥kt , the required amount of vaccine is calculated as

gc = (R0 − 1)
⟨k⟩
λ

∑kmax
k=kt

P (k)∑kmax
k=kt

k2P (k)
. (14)

It can be easily proved that gc is a decreasing function of kt, regardless of the degree distribu-

tion P (k) (see also Fig. 1(c)). Therefore, it was shown that the critical value of kt obtained
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via Eq. (12) or using its plot (such as in Fig. 1(b)) yields the optimal value for kt. In other

words, if the immunization rate and vaccine efficiency are independent of the degree, the

upper limit of kt, where immunization measures concentrate on nodes with k ≥ kt, is found

by Fig. 1(b), and the total proportion of vaccine is minimal at this value of kt.

DISCUSSION

In summary, we formulated an optimal immunization strategy, which is given by Eq. (12),

based on the degree and using the type reproduction number. Here, optimal immunization

refers to when the amount of vaccine required to achieve herd immunity is minimal. To

achieve herd immunity, it is necessary to increase the sum in the denominator in the right side

of Eq. (13). As this is the sum of the square of the degree over the target nodes, it is apparent

that the strategy targeting nodes in a descending order with respect to the degree is optimal.

Another immunization strategy has been investigated by Pastor-Satorras and Vespignani

[21, 23]. Their targeted immunization scheme was developed to progressively immunize the

most highly connected nodes [23]. In constract, our proposed method determines the target

population subset to be immunized based on the degree before immunization. Thus, their

reported method for calculating the immunization threshold differs from that proposed in

this study. They focused on the number of links that disappear when the high-degree nodes

were removed, where the fraction of the disappearing links is given as follows:

p =

∑kmax
k=kt

kP (k)∑kmax
k=1 kP (k)

. (15)

Additionally they derived the immunization threshold as follows:

⟨k2⟩gc
⟨k⟩gc

=

∑kt−1
k=1 k2P (k)∑kt−1
k=1 kP (k)

(1− p) + p <
1

λ
, (16)

where ⟨·⟩gc represents the average of residual degrees after the links disappears. In contrast,

Eq. (12) can be rewritten as ∑kt−1
k=1 k2P (k)∑kt−1
k=1 kP (k)

(1− p) <
1

λ
. (17)

Thus, the critical value of kt derived from (16) is smaller than that deduced from (17). It

should be noted that the critical value of kt in [23] does not represent the degree of the

original network; instead it refers to the degree of the network with the immunized nodes
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removed. The immunization method assumed in this study is comparatively simple and more

realistic, because it is based on the information of the static network, and the calculated

threshold value is more accurate.

Furthermore, while we considered the SIS model in our study, it is easy to extend our

result to susceptible-infected-recovered (SIR) models for infections as well. For the SIR

model, the equation reported in Ref. [26] can be used instead of Eq. (5), i.e.,

Θk(t) =
∑
k′

k′ − 1

k′ P (k′|k)ρk′(t). (18)

Consequently, Eq. (12) is replaced by

λ

⟨k⟩

kt−1∑
k=1

(k2 − k)P (k) < 1. (19)

In conclusion, we showed that the type reproduction number is a considerably useful

metric to devise an optimal immunization strategy for a population. It should be noted

that the main result of this study, i.e., Eq. (12), was obtained assuming no degree-degree

correlation. However, if degree-degree correlation is considered, it is necessary to calculate

the type reproduction number using the two matrices given by Eqs. (8) and (9). Lastly, the

proposed method to calculate immunization threshold could also be used for various other

extended epidemic models, such as in [27].

METHODS

Here, we prove that Eq. (10) gives the spectral radius of C(I − A + I)−1 in the absence

of degree-degree correlation. If Eq. (7) holds, then C and A− C are rewritten as follows:

C =
λ

⟨k⟩



0
...

0

kt
...

kmax


(P (1), 2P (2), · · · , kmaxP (kmax)) , (20)

9



A− C =
λ

⟨k⟩



k1
...

kt − 1

0
...

0


(P (1), 2P (2), · · · , kmaxP (kmax)) . (21)

A simple matrix operation shows that the vector (P (1), 2P (2), · · · , kmaxP (kmax)) is a left

eigenvector of C and A − C, the corresponding eigenvalues of which are
∑kmax

k=kt
k2P (k) and∑kt−1

k=1 k2P (k), respectively. Since the rank of C and A−C is one, the other eigenvalues are

zero. Thus, the above eigenvalues give the spectral radius. Moreover, the power of (A−C)

can be expressed as follows:

(A− C)n =
λn

⟨k⟩n

kt−1∑
k=1

k2P (k)

n−1



k1
...

kt − 1

0
...

0


(P (1), 2P (2), · · · , kmaxP (kmax)) . (22)

Thus, if the spectral radius of A− C is less than one (
∑kt−1

k=1 k2P (k) < 1), C(1− A + C)−1

is rewritten as:

C(1− A+ C)−1 = C
∞∑
n=0

(A− C)n

=

λ
⟨k⟩

1− λ
⟨k⟩

∑kt−1
k=1 k2P (k)



0
...

0

kt
...

kmax


(P (1), 2P (2), · · · , kmaxP (kmax)) .

(23)
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As above, the vector (P (1), 2P (2), · · · , kmaxP (kmax)) is a left eigenvector of C(I −A+C)−1,

and the corresponding eigenvalue is given as follows:

λ
⟨k⟩

∑kmax
k=kt

k2P (k)

1− λ
⟨k⟩

∑kt−1
k=1 k2P (k)

. (24)

As the other eigenvalues are zero, Eq. (24) gives the spectral radius of C(I − A+ C)−1.
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