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Abstract
This study is based on some C1, C2, and C3 continuous computer-based surfaces that
are modeled by using generalized blended trigonometric Bézier (shortly, GBT-Bézier)
curves with shape parameters. Initially, generalized blended trigonometric
Bernstein-like (shortly, GBTB) basis functions with two shape parameters are derived
in explicit expression which satisfied the basic geometric features of the traditional
Bernstein basis functions. Moreover, the GBT-Bézier curves and tensor product
GBT-Bézier surfaces with two shape parameters are also presented. All geometric
features of the proposed GBT-Bézier curves and surfaces are similar to the traditional
Bézier curves and surfaces, but the shape-adjustment is the additional feature that
the traditional Bézier curves and surfaces do not hold. Finally, a class of some complex
computer-based engineering surfaces via GBT-Bézier curves with shape parameters is
presented. In addition, two adjacent GBT-Bézier surfaces segments are connected by
higher C2 and C3 continuity constraints than the existing only C1 shape adjustable
Bézier surfaces. Some practical examples are provided to show the efficiency of the
proposed scheme and to prove it as another powerful way for the construction and
modeling of various complex composite computer-based engineering surfaces using
higher-order continuities.

Keywords: Generalized blended trigonometric Bernstein-like basis; Shape
parameters; GBT-Bézier curves; Parametric continuity; GBT-Bézier surfaces;
Computer-based engineering surfaces

1 Introduction
Bézier curves and surfaces techniques are very popular in computer technology, com-
puter graphics (CG), and computer-aided geometric design (CAGD) due to their shape
control parameters. In computer-aided manufacturing (CAM) and computer-aided de-
sign (CAD), Bézier curves and surfaces are robust tools for constructing free form curves
and surfaces. Bézier curves and surfaces have an abundance of appealing in the fields of
engineering, science, communications, and technology particularly in networks, anima-
tion, railway route, highway design, environment design, CAD system, and many other
disciplines.
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Table 1 Comparison of research work

Sr.
no

Existing method [11] Proposed method

1 Hu et al. presented the SG-Bernstein basis functions
of order n with multiple shape parameters.

The GBTB functions are constructed with only two
shape parameters.

2 Only simple SG-Bézier general cylinder has been
constructed.

Two GBT-Bézier general cylinders can be connected
by higher C2 continuity smoothness.

3 Two SG-Bézier ruled surface patches have been
connected by only C1 continuity.

Two GBT-Bézier ruled surfaces can be connected by
higher Ck (k = 2, 3) continuity constraints.

4 Two adjacent SG-Bézier swung surface patches
have been connected by only C1 continuity.

Two adjacent GBT-Bézier swung surfaces can be
connected by higher C2 continuity conditions.

5 Composition of two SG-Bézier swept surfaces by
only C0 continuity conditions.

Two adjacent GBT-Bézier swept surfaces can be
connected by higher C1 and C2 continuity
smoothness.

6 No set of algorithms has been constructed. A set of algorithms can be constructed for
explaining how to enforce these engineering
surfaces in practice.

Anyhow, due to the fixed shape and position relative to the control polygon [1], the tra-
ditional Bézier curves and surfaces still have some deficiencies. Practical applications of
Bézier curves and surfaces in the area of geometric modeling in engineering are restricted
due to these deficiencies. With the help of shape control parameters into Bézier scheme,
a remarkable study has been done [2–7] to tackle the problems in adjusting and control-
ling the shapes of Bézier curves and surfaces. Using a recursive approach, Yan and Liang
[8] defined the Bézier curve and rectangular Bézier with single shape control parameters
which are based on a new kind of polynomial basis functions. The presence of shape con-
trol parameter in [8] enhance the control over the shape and position of the proposed
curves and surfaces. Based on the basis functions proposed by Yan and Liang, Hu et al.
joined the two Bézier-like curve and surface segments with G2 continuity constrains in
[9]. Hu et al. [10] presented a new efficient technique for quickly designing generalized
Bézier rotation surfaces using shape-adjustable generalized Bézier curves along various
shape control parameters. Some advantages over existing scheme [11] are presented in
Table 1.

However, the traditional Bézier curves and surfaces have another limitation due to
their polynomial representation because the polynomial functions have low smoothness.
Thus many scholars have tried to resolve this issue in a non-polynomial function space.
Considerable research has been accomplished during the last few years with the help of
trigonometric functions or the blending of polynomial and trigonometric functions for
the description of curves and surfaces. Trigonometric B-splines were firstly presented by
Schoenberg in [12], and the iterative relationship of random order trigonometric B-splines
was settled in [13]. The trigonometric polynomials play a key role in the areas of CAGD,
medicine, and electronics [14, 15]. In recent times, trigonometric polynomials have also
acquired remarkable attention in the area of geometric modeling in engineering. A new
technique for the construction of quartic quasi-Bézier rotation surfaces was presented
by Hu in [16] using various shape control parameters. Yan [17] expressed cubic trigono-
metric nonuniform spline curves and surfaces. Using appropriate shape control parame-
ters, Sharma suggested quartic trigonometric, quasi-quartic trigonometric, and a class of
Bézier-type cubic trigonometric curves and surfaces sequentially in [18, 19], and [20].

To solve some problems in the construction of symmetric revolutionary curves and sur-
faces, a new approach was defined by BiBi et al. [21] using generalized hybrid trigonomet-
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ric Bézier curve (shortly, GHT-Bézier) with shape control parameters. Some free-form
complex curves with restriction of parametric continuity were also constructed by us-
ing these GHT-Bézier curves. Furthermore, to illustrate the efficiency of the scheme, the
authors also presented some composite symmetric curves and surfaces using symmetric
formulas and parametric continuity conditions. In 2020, Maqsood et al. defined general-
ized trigonometric Bézier (shortly, GT-Bézier) curves and surfaces with some shape con-
trol parameters and also discussed their continuity constraints and some applications of
geometric modeling in engineering [22]. A new approach about G3 continuity of GHT-
Bézier curves is proposed by BiBi et al. in [23]. Modeling of free form complex figures and
sketching is also presented in this literature by Ck and Gk (k ≤ 3) continuity.

The GBT-Bézier curves based on GBTB functions with two shape parameters will be
constructed in this research work. Furthermore, taking these GBT-Bézier curves, six types
of engineering surfaces like GBT-Bézier cylinders, GBT-Bézier bilinear surfaces, GBT-
Bézier ruled surfaces, GBT-Bézier swung surfaces, GBT-Bézier swept surfaces, and GBT-
Bézier rotation surfaces will be formulated.

As an alternative technique of representing curves and surfaces, these proposed curves
and surfaces not only have the valuable features of Bézier curves and surfaces but also
allow an efficient shape modification technique. As an alternative technique of represent-
ing curves and surfaces in Bézier approach, these GBT-Bézier curves and surfaces not only
have the valuable features of the traditional Bézier curves and surfaces but will also prove
an efficient shape modification technique in the area of computer vision, manufacturing
industry, computer animation, and multimedia technology.

Some technical contributions are made in this study which are as follows:
• Construction of a tensor product GBT-Bézier surface by a new set of GBTB functions

with two shape parameters.
• Construction of some computer-based engineering surfaces using GBT-Bézier with

shape parameters.
• The complex computer-based engineering surfaces using GBT-Bézier patches are

composed by Ck (k = 1, 2, 3) continuity conditions.
• Algorithms of all complex GBT-Bézier engineering surfaces are constructed for easy

understanding of interested readers.
This research work is organized as follows: In Sect. 2, basic definitions and properties of
GBTB functions and their corresponding GBT-Bézier curves and surfaces are given. On
the bases of proposed GBT-Bézier curves along with their shape control parameters, six
different engineering surfaces are designed in Sect. 3. Concluding remarks on this research
are given in Sect. 4.

2 Definitions and features of GBT-Bézier curves and surfaces
2.1 Generalized blended trigonometric Bernstein-like basis functions
In this section, the generalized blended trigonometric Bernstein-like basis functions
(GBTB) are defined.

Definition 1 For any μ, ν (–1 ≤ μ,ν ≤ 1) and z (–1 ≤ z ≤ 1),

⎧
⎪⎪⎨

⎪⎪⎩

f0,2(z) = (1 – sin( π
2 z))(1 – μ sin( π

2 z)),

f1,2(z) = (1 – f0,2(z) – f2,2(z)),

f2,2(z) = (1 – cos( π
2 z))(1 – ν cos( π

2 z)),

(1)
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Figure 1 GBTB basis functions of different order with different shape parameters

are known as second order GBTB basis functions with shape parameters μ, ν . For any
integer m (m ≥ 3), the functions fk,m(z), k = 0, 1, 2, . . . , m, defined as

fk,m(z) = (1 – z)fk,m–1(z) + zfk–1,m–1(z) (2)

are GBTB basis functions of order m [24]. In particular, when k = –1 or k > n, the functions
fk,m(z) = 0. Figure 1 depicts the graphs of GBTB basis functions of different order with
shape parameters as μ,ν = 0.9 (black), 0.25 (purple), –0.25 (red), and –0.9 (yellow).

Theorem 1 The GBTB basis functions have the following characteristics:
1. Degeneracy: GBTB basis functions of order m become just like the classical Bernstein

basis functions of order m by setting μ,ν = 1 and sin( π
2 z), 1 – cos( π

2 z) = z.
2. Nonnegativity: ∀μ,ν (–1 ≤ μ,ν ≤ 1), the functions fk,m(z) ≥ 0 (k = 0, 1, 2, . . . , m).
3. Partition of unity:The sum of all GBTB basis functions of degree m is equal to one.
4. Symmetry: The functions fk,m(z) (k = 0, 1, 2, . . . , m) are symmetric when μ = ν , i.e.,

fm–k,m(z,μ,ν) = fk,m(1 – z,μ,ν).

5. Derivative at the end points: f ′
k,m(0), f ′

k,m(1), f ′′
k,m(0), f ′′

k,m(1), f ′′′
k,m(0), and f ′′′

k,m(1).

Proof The proofs of all above results are as mentioned in [24]. �
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2.2 Construction of GBT-Bézier curves with shape parameters
Definition 2 For any control points Qk ∈ Rm, m = 2, 3; k = 0, 1, . . . , m, the expression

Fm(z;μ,ν) =
m∑

k=0

fk,m(z)Qk , 0 ≤ z ≤ 1, (3)

is termed as GBT-Bézier curves, where fk,m(z) are GBTB basis functions (2).

The GBT-Bézier curves take over most advantageous features of the traditional Bézier
curves, including symmetry, convex hull property, variation diminishing property, ge-
ometric invariance, shape adjustable property, and the terminal properties F(0;μ,ν),
F(1;μ,ν), F ′(0;μ,ν), F ′(1;μ,ν), F ′′(0;μ,ν), F ′′(1;μ,ν), F ′′′(0;μ,ν), and F ′′′(1;μ,ν). The ter-
minal properties of GBT-Bézier curves indicate that the GBT-Bézier curve segments in-
terpolate to the both end points of their convex hull, and the values of their derivatives
at both end points on GBT-Bézier curves will be easily modified by adjusting the shape
parameters μ, ν in their respective value range, which brings a significant ease to smooth
joining [24].

Theorem 2 The necessary and sufficient C3 continuity conditions among two GBT-Bézier
curve segments F(z;μ,ν) =

∑m
k=0 Qkfk,m(z) and F1(z;μ1,ν1) =

∑n
k=0 Q1kfk,n(z) with control

points Q0, Q1, Q2, . . . , Qm, m ≥ 3, and Q10, Q11, Q12, . . . , Q1n, n ≥ 3, respectively are de-
scribed as follows:

1. Qm = Q10 for C0 continuity.
2. For C1 continuity,

⎧
⎨

⎩

Q10 = Qm,

Q11 = Qm + (2(m–2)+π (1+ν))
2(n–2)+π (1+μ1) (Qm – Qm–1).

(4)

3. For C2 continuity,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q10 = Qm,

Q11 = Qm + (2(m–2)+π (1+ν))
2(n–2)+π (1+μ1) (Qm – Qm–1),

Q12 = Qm + 1
a1

[a2(Qm – 2Qm–1 + Qm–2) – π2(1 – μ)(Qm–1 – Qm–2)

+ a3(Qm – Qm–1)].

(5)

4. For C3 continuity,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q10 = Qm,

Q11 = Qm + a(Qm – Qm–1),

Q12 = Qm + 1
a1

[a2(Qm – 2Qm–1 + Qm–2) – π2(1 – μ)(Qm–1 – Qm–2)

+ a3(Qm – Qm–1)],

Q13 = Qm + 1
b1

[b2(Qm – 3Qm–1 + 3Qm–2 – Qm–3) + a2
a1

b3(Qm – 2Qm–1 + Qm–2)

– π2(1–μ1)b3
a1

(Qm–1 – Qm–2) – b4(Qm – Qm–1)],

(6)
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where

a =
2(m – 2) + π (1 + ν)
2(n – 2) + π (1 + μ1)

,

a1 = 4(n – 2)
(
n – 3 + π (1 + μ1)

)
+ π2(1 – ν1),a2 = 4(m – 2)

(
m – 3 + π (1 + ν)

)
,

a3 =
(
2a1 + π2(1 + 2μ1 – ν1) + 2π2ν

)
,

b1 = 4(n – 2)(n – 3)
(
2(n – 4) + 3π (1 + μ1)

)
+ 6(n – 2)π2(1 – ν1),

b2 = 4(m – 2)(m – 3)
(
2(m – 4) + 3π (1 + ν)

)
,

b3 =
(
3c1 + 12(n – 2)π2(1 – μ1 – ν1)

)
,

b4 =
a3b3

a1
– a

(
c1 + 12(n – 2)π2(1 – μ1 – 4ν1) + π3(1 + μ1)

)
+ π3(1 + ν),

c1 = 4(n – 2)(n – 3)
(
2(n – 4) + 3π (1 + μ1)

)
.

Proof The proofs of all the above results are as described in [24]. �

2.3 Formation of GBT-Bézier surfaces with shape parameters
Definition 3 The tensor product GBT-Bézier surfaces of degree (m, n) with shape param-
eters μ, ν , μ1, ν1 and control points Qk,l ∈ R3, k = 0, 1, 2, . . . , m, l = 0, 1, 2, . . . , n, are defined
as follows:

Tm,n(z, z1,μ,ν,μ1,ν1) =
m∑

k=0

n∑

l=0

Qk,lfk,m(z)fl,n(z1), z, z1 ∈ [0, 1], (7)

where fk,m(z), fl,n(z1) are GBTB basis functions of order m and n respectively with shape
parameters μ, ν , μ1, ν1. As the GBT-Bézier surfaces are defined on the bases of GBT-
Bézier curves, so they have all the features that the GBT-Bézier curves have.

The tensor product GBT-Bézier surfaces shares all the properties with classical tensor
product Bézier surfaces except for the shape adjustable property which is superior to the
properties of classical tensor product Bézier surfaces.

Figures 2 and 3 represent a GBT-Bézier vase diagram and a bi-cubic GBT-Bézier surface
with different values of shape parameters.

3 Formation of adjustable engineering surfaces
3.1 GBT-Bézier cylinder with shape parameters
Let Fm(z,μ,ν) =

∑m
k=0 Qkfk,m(z), z ∈ [0, 1] be a GBT-Bézier curve of degree m and V be a

3D unit vector, the representation of the GBT-Bézier cylinder T(z, z1,μ,ν) is obtained by
sweeping Fm(z,μ,ν) a distance α (α > 0) along V [25]. For sweep direction representing the
parameter by z1, clearly the GBT-Bézier cylinder should meet the following requirements:

(i) The curve T(z, z1,μ,ν) is a straight line segment from point Fm(z,μ,ν) to
Fm(z,μ,ν) + αV for fixed z (0 ≤ z ≤ 1).
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Figure 2 Effect of shape parameters on a GBT-Bézier surface

(ii) For fixed z1 (0 ≤ z1 ≤ 1), we have

T(z, z1,μ,ν) = Fm(z,μ,ν) + z1αV

=
m∑

k=0

(Qk + z1αV)fk,m(z). (8)

Proposition 3.1 The translational invariance property is used to define GBT-Bézier curves
in (8). Thus, in the perspective of the aforementioned conditions, the expression of the GBT-
Bézier cylinder can be described as follows:

Tcylinder(z, z1,μ,ν) =
m∑

k=0

(Qk + z1αV)fk,m(z), z, z1 ∈ [0, 1], (9)

where α > 0 is a certain real constant. Taking Fm(z,μ,ν) as directrix of the GBT-Bézier
cylinder, expression (9) is called the GBT-Bézier cylinder.
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Figure 3 Effect of shape parameters on bi-cubic GBT-Bézier surfaces

Moreover, the GBT-Bézier cylinder Tcylinder is a surface which is generated by translat-
ing a small portion of the straight line from Fm(0) to Fm(0) + αV along an assigned curve
Fm(z,μ,ν). Anyhow, the cylinder in (9) leads to some complications in designing GBT-
Bézier curves and surfaces as it is not a tensor product GBT-Bézier surface. To overcome
this problem, equation (9) is transformed into the tensor product GBT-Bézier surface de-
scribed in (7). It is observed that the mth-degree GBTB basis functions defined by (2) are
only described for parameter m (m ≥ 2), but they are not given for m = 1. Thus, extending
the definition of GBTB basis functions, we describe the first-degree GBTB basis functions
as

fk,1(z) = (1 – z)1–kzk (k = 0, 1). (10)
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Expression (10) shows that the GBTB basis functions of order one are the traditional Bern-
stein basis functions of order one.

Theorem 3 A GBT-Bézier cylinder in (9) can also be written in its tensor product form as
follows:

Tcylinder(z, z1,μ,ν,μ1,ν1) =
m∑

k=0

1∑

l=0

Qk,lfk,m(z)fl,n(z1), z, z1 ∈ [0, 1], (11)

where Qk,0 = Qk , Qk,1 = Qk + dV, k = 0, 1, . . . , m, are control points, fk,m(z), fl,1(z1), l = 0, 1,
are GBTB basis functions described by (2) and (10), respectively, and μ, ν are shape control
parameters.

Proof By taking control points Qk,0 = Qk and Qk,1 = Qk + αV = Qk,0 + αV and basis func-
tion given in (10), we have

Tcylinder(z, z1,μ,ν) =
m∑

k=0

(Qk + z1dV)fk,m(z) (12)

=
m∑

k=0

[
Qk,0 + z1(Qk,1 – Qk,0)

]
fk,m(z)

=
m∑

k=0

[
(1 – z1)Qk,0 + z1Qk,1

]
fk,m(z)

=
m∑

k=0

1∑

l=0

Qk,lfk,m(z)fl,1(z1).

Therefore, GBT-Bézier cylinder in (9) can be exactly expressed in terms of a tensor product
GBT-Bézier surface of degree (m, 1). Hence the proof of the result. �

Since a GBT-Bézier curve is the directrix of a GBT-Bézier cylinder, it carries some re-
markable benefits of the general Bézier cylinder. Furthermore, the GBT-Bézier cylinder
(11) has an edge that by keeping the control mesh unchanged, the GBT-Bézier cylinder
can be transformed into any shape merely by changing the shape parameters.

Here, some detailed steps are described to design a GBT-Bézier cylinder.

Algorithm 1
1. Choose an arbitrary 3D unit vector V and a GBT-Bézier curve as the directrix of

GBT-Bézier cylinder.
2. Describe a GBT-Bézier cylinder in the manner as given in equation (11).
3. Take control points Qk,l as Qk,0 = Qk , Qk,1 = Qk + αV (k = 0, 1, 2, . . . , m), where α is the

distance along a normal vector of the plane.
4. Select the distance α and draw the GBT-Bézier cylinder with different shape

parameters via Wolfram Mathematica software.
5. GBT-Bézier cylinder can also be drawn with varying values of α and keeping the

values of shape parameters unchanged.
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Figure 4 GBT-Bézier cylinders with different shape parameters

Example 3.1 A model of GBT-Bézier cylinder with GBT-Bézier curve as directrix is given
in this example. Suppose that a GBT-Bézier curve F4(z;μ,ν) is constructed by five control
points Q0 = (5, 2, 0), Q1 = (0, 12, 0), Q2 = (10, 20, 0), Q3 = (20, 12, 0), Q4 = (15, 2, 0). Now
we generate a GBT-Bézier cylinder by interpreting F4(z;μ,ν) a distance α with the nor-
mal vector of the plane (here α = 20, V = (0, 0, 1)) and taking the curve F4(z;μ,ν) as the
directrix. By Theorem 3, the equation of the GBT-Bézier cylinder can be represented as
follows:

Tcylinder(z, z1,μ,ν) =
4∑

k=0

1∑

l=0

Qk,lfk,4(z)fl,1(z1), z, z1 ∈ [0, 1], (13)

where Qk,0 = Qk , Qk,1 = Qk + (0, 0, 20) (k = 0, 1, . . . , 4) are control net points. Figure 4 repre-
sents the GBT-Bézier cylinders with 10 mesh points for fixed values of α = 20 and different
shape parameters μ, ν which clearly make its confined convex hull.

A closed GBT-Bézier cylinder is illustrated in Fig. 5 to show the impact of α and shape
control parameters μ, ν on GBT-Bézier cylinder, whereas the C2 continuity of two GBT-
Bézier cylinders is illustrated in Fig. 6 with shape control parameters μ, μ1, ν , ν1. Figures 4,
5, and 6 present that the effect of shape parameters on GBT-Bézier cylinders (open or
close) is the same as the effect on GBT-Bézier curves and surfaces.

3.2 GBT-Bézier bi-linear surface with shape parameters
The authors in [25] proposed a nonuniform rational B-spline (NURBS) representation of
the surface (nonrational) called bi-linear surface by bi-linearly interpolating among four
line segments, Q0,0Q1,0, Q0,1Q1,1, Q0,0Q0,1, and Q1,0Q1,1 using four control points Q0,0, Q1,0,
Q0,1, Q1,1 in a 3D space which is given by

Tbi-linear(z, z1,μ,ν,μ1,ν1) =
1∑

k=0

1∑

l=0

Qk,lNk,1(z)Nl,1(z1), z, z1 ∈ [0, 1], (14)

where Z = Z1 = {0, 0, 1, 1} is the node vector and Qk,l , k, l ∈ 0, 1 are taken as control points.
Among opposite boundary lines, the bi-linear surface (14) performs a clear linear inter-
polation in both direction [25].
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Figure 5 GBT-Bézier cylinders with different values of μ, ν , and α

Figure 6 C2 continuity between two GBT-Bézier cylinders
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Proposition 3.2 The characteristics of the bi-linear surface (14) are as follows: (a) given
angular points are interpolated by the surface; (b) line segments are taken as boundary
curves; (c) the curves T(z, z1) or T(z, z1) are the line segments for fixed z or z1. The trans-
formation of a bi-linear surface in terms of tensor product GBT-Bézier surface is given by

Tbi-linear(z, z1,μ,ν,μ1,ν1) =
1∑

k=0

1∑

l=0

Qk,lfk,1(z)fl,1(z1), z, z1 ∈ [0, 1], (15)

where fk,1(z), fl,1(z1) (k, l = 0, 1) are basis functions defined in (10).

However, the bi-linear surfaces described in (14) and (15) cannot be modified. This in-
convenience of shape adjustment is due to the given four angular points. So, we need to
generalize the classical bi-linear surface (14) into a GBT-Bézier bi-linear surface which
is defined by taking a GBT-Bézier curve. Some properties of such surfaces are given as
follows:

1. Angular points are interpolated by the surface;
2. Line segments are taken as the boundary curves of the surface;
3. Tm,n(z, z1) or Tm,n(z, z1) is a GBT-Bézier curve for fixed z or z1;
4. The model of GBT-Bézier surface is used by the bi-linear surface.

From the characteristics of GBT-Bézier curves and surfaces, the actual procedure for de-
veloping a GBT-Bézier bi-linear surface is described. The steps of the algorithm are as
follows.

Algorithm 2
1. In a 3D space, take Q0,0, Qm,0, Q0,n, Qm,n to be the four control points. These points

are used as the angular points of the GBT-Bézier surface.
2. Split the line segments Q0,0Qm,0, Q0,nQm,n and Q0,0Q0,n, Qm,0Qm,n into m and n same

parts (an irregular division can also be made) accordingly and indicate the central
partition points as Q1,0, Q2,0, . . . , Qm–1,0, Q1,n, Q2,n, . . . , Qm–1,n and
Q0,1, Q0,2, . . . , Q0,n–1, Qm,1, Qm,2, . . . , Qm,n–1. Moreover all the central partition points
and Q0,0, Qm,0, Q0,n, Qm,n defined above are used as the exterior control mesh points
of the GBT-Bézier surface.

3. Connect the control points achieved in step 1 and 2 with the remaining mesh points
Qk,l (k = 1, 2, . . . , m – 1; l = 1, 2, . . . , n – 1) to form the following GBT-Bézier bi-linear:

Tbi-linear(z, z1,μ,ν,μ1,ν1) =
m∑

k=0

n∑

l=0

Qk,lfk,m(z)fl,n(z1), z, z1 ∈ [0, 1]. (16)

Modeling example of a third degree GBT-Bézier bi-linear surface is given below.

Example 3.2 Let Q0,0 = (0, 0, 0), Q3,0 = (3, 0, 0), Q0,3 = (0, 3, 0), Q3,3 = (3, 3, 0) be the four an-
gular points of the bi-linear surface and

⎧
⎨

⎩

Q1,0 = (1, 0, 0), Q2,0 = (2, 0, 0), Q1,3 = (1, 3, 0), Q2,3 = (2, 3, 0),

Q0,1 = (0, 1, 0), Q0,2 = (0, 2, 0), Q3,1 = (3, 2, 0), Q3,2 = (3, 2, 0)
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Figure 7 GBT-Bézier bi-linear surfaces with different shape parameters

be the eight central partition points produced by dividing the line segments Q0,0Q3,0,
Q0,3Q3,3, Q0,0Q0,3, and Q3,0Q3,3 into three equal parts. Decisively, the remaining control
points Q1,1 = (1, 1, 3), Q2,1 = (2, 1, 3), Q1,2 = (1, 2, 3), Q2,2 = (2, 2, 3) can be chosen freely.

By using control points and equation (15), the GBT-Bézier bi-linear surface can be de-
signed as shown in Fig. 7 and Fig. 8. Bi-linear surfaces have sixteen control points, in
which the exterior twelve control mesh points are coplanar. Furthermore, Fig. 8 exhibits
the graphs of the GBT-Bézier bi-linear surfaces that have four non-coplanar boundary
curves.

3.3 GBT-Bézier ruled surface along shape parameters
Let bk(z) (k = 1, 2) be any two space curves (B-spline curves, Bézier curves, or NURBS
curves), then in z1 ruled direction, a ruled surface T(z, z1) [25] is created if a linear inter-
polation is implemented among iso-parametric points of the two curves b1(z) and b2(z).
Also, a ruled surface has an astonishing property that, for fixed z, T(z, z1) is a line segment
joining points b1(z) and b2(z) (line segments are called straight generatrices, whereas the
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Figure 8 GBT-Bézier bi-linear surfaces with non-planar straight line boundaries

curves b1(z) and b2(z) are named as guide lines, for short GLs). This portion particularly
demonstrates how the ruled surface with shape parameters is expressed using tensor prod-
uct GBT-Bézier surface design. The necessary condition to express the ruled surface into
tensor product form is that both should have the same degree. Let

⎧
⎨

⎩

Fm,0(z,μ,ν) =
∑m

k=0 f 0
k,m(z)Q0,k , 0 ≤ z ≤ 1,

Fm,1(z,μ1,ν1) =
∑m

k=0 f 1
k,m(z)Q1,k , 0 ≤ z ≤ 1,

(17)

be the two GLs of the ruled surface of degree m, where f l
k,m(z), k = 0, 1, . . . , m, l = 0, 1, are

the GBTB functions described by (2). The GBT-Bézier ruled surfaces Truled(z, z1) should
fulfil the following two conditions according to its definition [25]:

(1) For fixed value of z, the curve Truled(z, z1) is a line segment.
(2) The guild lines fulfil the Truled(z, 0) = Fm,0(z,μ,ν) and Truled(z, 1) = Fm,1(z,μ1,ν1).

In accordance with the definition of GBT-Bézier surfaces, the equation of the GBT-Bézier
ruled surfaces Truled(z, z1) that meet the aforementioned requirement is

Truled(z, z1,μ,ν,μ1,ν1) =
1∑

l=0

(

fl,1(z1)
m∑

k=0

fk,m(z)Ql,k

)

, 0 ≤ z, z1 ≤ 1, (18)

where μ, μl , ν , νl are the shape parameters; Ql,k (l = 0, 1; k = 0, 1, . . . , m) are the mesh points
defined by (17) and fk,m(z) and fl,1(z1) are the GBTB basis functions given in (2) and (10),
respectively. Equation (18) represents the tensor product GBT-Bézier surface in the form
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of a GBT-Bézier modified ruled surface. The GBT-Bézier ruled surfaces defined in (18)
take over all characteristics and benefits of GBT-Bézier surfaces because these surfaces are
expressed in the form of tensor product GBT-Bézier surfaces and the GLs are two GBT-
Bézier curves that have the same degree. The NURBS modeled ruled surface defined in
[25] has some limitations, such like complex mathematics, ambiguous weight elements,
the annoyance of finding the surface order and the node vector [26]. On the other hand,
the required surface has some benefits including straightforward computation, obvious
implication of the shape parameters, and the free choice of vertexes.

Proposition 3.3 It is worth recalling that the straight generatrices of a GBT-Bézier ruled
surfaces are the straight lines that are obtained by joining iso-parametric points, instead of
joining the same length of an arc of the two GLs. Generally, joining the same length of an
arc of any two GLs gives us a different ruled surface.

Proposition 3.4 The technique of splicing GBT-Bézier surfaces can be utilized to generate
all types of complicated combined GBT-Bézier ruled surfaces for the reason that the GBT-
Bézier ruled surface is a special case of tensor product GBT-Bézier surface. In this technique,
the two adjacent GBT-Bézier ruled surfaces satisfy C1, C2, and C3 continuity conditions
because both GLs of the ruled surfaces satisfy these conditions (see Fig. 10 and Fig. 11).

The algorithm for designing a GBT-Bézier ruled surface is as follows.

Algorithm 3
1. Consider any two GLs in the form of GBT-Bézier curves.
2. Use tensor product form of the GBT-Bézier ruled surface as given in (18).
3. The guild lines must satisfy the conditions Truled(z, 0) = Fm,0(z,μ,ν) and

Truled(z, 1) = Fm,1(z,μ1,ν1).
4. Take the control points Qi,j in a 3D plane according to designer choice.
5. Draw the GBT-Bézier ruled surface in Wolfram Mathematica software with suitable

values of shape parameters.
6. Two adjacent GBT-Bézier ruled surfaces can be connected by C1, C2, and C3

continuity conditions given in Theorem 2.

Example 3.3 Let F4,l(z,μ1,ν1) (l = 0, 1) be two GBT-Bézier curves of degree 4 in a 3-
dimensional space, then from equation (18) the equation of the GBT-Bézier ruled surfaces
formed by these GBT-Bézier curves as the GLs is given by

Truled(z, z1,μ0,ν0,μ1,ν1) =
1∑

l=0

(

fl,1(z1)
4∑

k=0

f l
k,m(z)Ql,k

)

, 0 ≤ z, z1 ≤ 1, (19)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q1,0 = (1, 0, 4), Q0,1 = (2, 0, 8), Q0,2 = (4, 0, 8),

Q0,3 = (5, 0, 4), Q0,4 = (6, 0, 8),

Q0,1 = (1, 6, 4), Q1,1 = (2, 6, 0), Q1,2 = (4, 6, 0),

Q1,3 = (6, 6, 4), Q1,4 = (7, 6, 2),
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Figure 9 GBT-Bézier ruled surfaces with different shape parameters

are the control points of GLs. Figure 9 illustrates the GBT-Bézier ruled surfaces deter-
mined by (19) with various shape parameters.

Two adjacent GBT-Bézier ruled surfaces satisfying the C1 and C2 continuity in z direc-
tion can be presented in Figs. 10 and 11 with third and fourth degree GBT-Bézier curves
taken as GLs of the right and left GBT-Bézier ruled surface, respectively. Figure 12 shows
the C3 continuity of two adjacent GBT-Bézier ruled surfaces that have forth degree GBT-
Bézier curves as GLs in z direction.

3.4 GBT-Bézier swung surface along shape parameters
A swung surface can be generated from the surface of revolution [25]. Using a tensor prod-
uct GBT-Bézier surface design with shape parameters, a swung surface is described in this
portion. Let

⎧
⎨

⎩

Fm(z,μ,ν) =
∑m

k=0 fk,m(z)Qk,0, 0 ≤ z ≤ 1,

Fn(z1,μ1,ν1) =
∑n

l=0 fl,n(z1)Q1,l, 0 ≤ z1 ≤ 1,
(20)

be the two GBT-Bézier curves described by (3), where Qk,0 = (QX
k,0, 0, QZ

k,0) and Ql,1 =
(QX

l,1, QY
l,1, 0) are their control points, and Fm(z,μ,ν) and Fn(z1,μ1,ν1) are known as pro-

file curves (PCs) and trajectory curves (TCs), respectively. They are described in the XOZ
plane and XOY plane, respectively. Vector form of the these curves and their correspond-
ing nonzero coordinate functions FX

m(z), FZ
m(z) and FX

n (z1), FY
n (z1) are used to construct a
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Figure 10 C1 continuity between two GBT-Bézier ruled surfaces

swung surface given by

⎧
⎨

⎩

Fm(z,μ,ν) = {FX
m(z), 0, FZ

m(z)},
Fn(z1,μ1,ν1) = {FX

n (z1), FY
n (z1), 0},

(21)

and the GBT-Bézier swung surface is defined by [25, 26]

Tswung(z, z1) =
(
λFX

m(z)FX
n (z1),λFX

m(z)FY
n (z1), FZ

m(z)
)
, (22)

where λ (λ > 0) is an arbitrary scaling factor.

Proposition 3.5 The GBT-Bézier swung surface expressed by (22) has the following geo-
metric characteristics: if the profile curve Fm(z) is swung about z-axis and re-scale in the X
and Y directions, the swung surface Tswung(z, z1) is achieved in Fig. 13 with different values
of scaling factor λ.
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Figure 11 C2 continuity between two GBT-Bézier ruled surfaces

Proposition 3.6 Here, some properties of z and z1 lines of swung surfaces are as follows:
1. If the z line is fixed, the curves Tswung(z, z1) which have identical trajectory curve

Fn(z1) but are scaled as λFX
m(z) in X and Y directions are produced.

2. The fixed z1 line produces curves Zswung(z, z1) with the same profile curve Fm(z), and
the connection between the curves Tswung(z, z1) and the PCs Fm(z) is: the resulting
curves Tswung(z, z1) are achieved by rotating the PCs Fm(z) into the plane with the
vector (FX

n (z1), FY
n (z1), 0), and use the scale factor λ|Fn(z1)| to scale the rotated curve

along X and Y coordinates while Z coordinate stays unscaled.

Theorem 4 The GBT-Bézier swung surface (22) can be converted into its tensor product
form:

Tswung(z, z1,μ,ν,μ1,ν1) =
m∑

k=0

n∑

l=0

Qk,lfk,m(z)fl,n(z1), z, z1 ∈ [0, 1], (23)

where Qk,l = (λQX
k,0QX

l,1,λQX
k,0QY

l,1, QZ
k,0), k = 0, 1, . . . , m; l = 0, 1, . . . , n, are the control net

points of the GBT-Bézier swung surface, QX
k,0, QZ

k,0 and QX
l,1, QY

k,1 are elements of the con-
trol points Qk,0 and Ql,1. The shapes of profile and trajectory curve are controlled by the
shape parameters μ, ν and μ1, ν1, respectively.



Maqsood et al. Advances in Difference Equations        (2021) 2021:490 Page 19 of 36

Figure 12 C3 continuity between two GBT-Bézier ruled surfaces

Proof From equations (20) and (21) of swung surface, we have

⎧
⎨

⎩

FX
m(z) =

∑m
k=0 QX

k,0fk,m(z), FZ
m(z) =

∑m
k=0 QZ

k,0fk,m(z),

FX
n (z1) =

∑n
l=0 QX

l,1fl,n(z1), FY
n (z1) =

∑n
l=0 QY

l,1fl,n(z1).
(24)

Now, substituting equation (24) into equation (22) and using the partition of unity prop-
erty

∑m
k=0 fk,m(z) = 1, we have

Tswung(z, z1)

=
(
λFX

m(z)FX
n (z1),λFX

m(z)FY
n (z1), FZ

m(z)
)

(25)

=

(

λ

m∑

k=0

QX
k,0fk,m(z)

n∑

l=0

QX
l,0fl,n(z1),λ

m∑

k=0

QX
k,0fk,m(z)

n∑

l=0

QY
l,0fl,n(z1),

m∑

k=0

QZ
k,0fk,m(z)

)

=

( m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)
(
λQX

k,0QX
l,0

)
,

m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)
(
λQX

k,0QY
l,0

)
,

m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)Qz
k,0

)

=
m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)
(
λQX

k,0QX
l,0,λQX

k,0QY
l,0, QZ

k,0
)
.
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Thus, a tensor product GBT-Bézier surface design of degree (n, m) is used to express the
swung surfaces (22). �

The swung surface described by Theorem 4 is called GBT-Bézier swung surface. It ap-
pears that the GBT-Bézier swung surface carried all the characteristics and benefits of
GBT-Bézier surface. The shape parameters are used to modify GBT-Bézier swung surface
by keeping control net points fixed. For smooth connection among adjacent GBT-Bézier
swung surfaces like previous surfaces, if the PCs or the TCs are combined by C1 or C2

continuity for GBT-Bézier curve, then the resulting GBT-Bézier swung surface is also a
C1 or C2 continuous surface in the direction of profile or trajectory curve. It is worth not-
ing that if the swung surface Tswung(z, z1) is either open or close in z and z1 directions,
then the corresponding profile curve Fm(z) and the trajectory curve Fn(z1) both will be
either open or closed. Additionally, if the scale factor λ = 1 and the trajectory curve Fn(z1)
circle with a unit radius with a center at the origin, then the GBT-Bézier swung surface is
a surface of revolution. However, the surface of revolution no longer is a tensor product
GBT-Bézier swung surface which is described by Theorem 4.

The detailed algorithm for designing a GBT-Bézier swung surface is described as fol-
lows.

Algorithm 4
1. Take a profile curve in XOZ and a trajectory curve in the XOY plane in the form of

GBT-Bézier curves.
2. Define a GBT-Bézier swung surface by using equation (23).
3. Take the control net points of the GBT-Bézier swung surface in the pattern

Qk,l = (λQX
k,0QX

l,1,λQX
k,0QY

l,1, QZ
k,0), k = 0, 1, . . . , m; l = 0, 1, . . . , n, where QX

k,0, QZ
k,0 and

QX
l,1, QY

k,1 are elements of the control points Qk,0 and Ql,1 described in expression (20).
4. Construct the GBT-Bézier swung surfaces in Wolfram Mathematica software using

suitable values of scaling factor λ and shape control parameters μ, ν , μ1, and ν1

5. Two adjacent GBT-Bézier swung surfaces can be connected by C1 and C2 continuity
conditions given in Theorem 2.

Example 3.4 Figures 13–15 show the GBT-Bézier swung surfaces for the different values
of scale factor and shape parameters. In these figures, the PCs Fm(z) and the TCs Fn(z1)
are both GBT-Bézier curves of degree three and the mesh points are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q0,0 = (3, 0, 5), Q1,0 = (1, 0, 3),

Q2,0 = (1, 0, 2), Q3,0 = (4, 0, 1),

Q0,1 = (4, 1, 0), Q1,1 = (1, 2, 0),

Q2,1 = (1, 4, 0), Q3,1 = (5, 5, 0).

(26)

It can be observed from Fig. 13 that the scaling of swung surfaces in both directions is
handled by scale factor λ keeping shape parameters μ and ν same and fixed. Figures 14
and 15 exhibit the graphs of GBT-Bézier swung surfaces along the same control points
of the PCs and TCs as taken in Fig. 13, but the values of shape parameters are different
and scaling factor λ = 0.15 is fixed. Figures 16, 17, and 18 depict the C1 and C2 continuity
connection of two adjacent GBT-Bézier swung surfaces for various values of shape control
parameters and scaling factor λ.
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Figure 13 Cubic GBT-Bézier swung surfaces designed with different scaling factor λ

3.5 GBT-Bézier swept surfaces with shape parameters
In this section, we especially tackle the problem of constructing a surface by sweeping a
section curve (SC) around an arbitrary TC [11]. The GBT-Bézier curves of order m and n
are taken as SCs and TCs in a 3D space, respectively. These two curves are given by

⎧
⎨

⎩

Fm(z;μ,ν) =
∑m

k=0 fk,m(z)Qk,m, 0 ≤ z ≤ 1,

Fn(z1;μ1,ν1) =
∑n

l=0 fl,n(z1)Ql,n, 0 ≤ z1 ≤ 1.
(27)

Generally, a swept surface is given by [25]

Tswept(z, z1;μ,ν,μ1,ν1) = Fn(z1;μ1,ν1) + S(z1)Fm(z;μ,ν), (28)

where S(z1) is a 3 × 3 matrix integrating scaling and rotation of the SC Fm(z). In this study,
the SC Fm(z) and the TCs Fn(z1) both are GBT-Bézier curves, but the type and shape might
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Figure 14 GBT-Bézier swung surfaces with different shape parameter μ

be random (single or composite, planar or non-planar, open or closed). Normally, equa-
tion (28) can generate an unnecessary surface with degeneracy and without continuity.
Moreover, in many situations the swept surface Tswept(z, z1) is not exactly expressible as a
surface model existing in available literature such as B-spline, Bézier, and NURBS surfaces.
Practically, swept surfaces can be generated by the following two categories:

• M(z1) is an identity matrix, which for all z1 and Fm(z) is just translated by Fn(z1).
• M(z1) is not an identity matrix.

The second type is very complicated and debatable, which can be referred to literature
[25]. Particularly, we consider the first case of swept surfaces which can be defined by

Tswept(z, z1;μ,ν,μ1,ν1) = Fn(z1) + Fm(z). (29)



Maqsood et al. Advances in Difference Equations        (2021) 2021:490 Page 23 of 36

Figure 15 GBT-Bézier swung surfaces with various shape parameter ν

The curves Fm(z) and Fn(z1) are GBT-Bézier curves described by (27). The surface (29) is
termed as the GBT-Bézier swept surface.

Theorem 5 A GBT-Bézier swept surface (29) can be expressed in its tensor product
form:

Tswept(z, z1,μ,ν,μ1,ν1) =
m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)Q̂k,l, z, z1 ∈ [0, 1], (30)

where Q̂k,l = Qk,m + Ql,n (k = 0, 1, . . . , m; l = 0, 1, . . . , n) are the control net points.



Maqsood et al. Advances in Difference Equations        (2021) 2021:490 Page 24 of 36

Figure 16 C1 continuous connection among two GBT-Bézier swung surfaces with different scale factor λ

Proof From the definition of GBT-Bézier swept surface, and substituting equation (27)
into equation (29), we have

Tswept(z, z1;μ,ν,μ1,ν1) = Fn(z1) + Fm(z) (31)

=
n∑

l=0

Ql,nfl,n(z1) +
m∑

k=0

Qk,mfk,m(z)

=
m∑

k=0

fk,m(z)
n∑

l=0

Ql,nfl,n(z1) +
n∑

l=0

fl,n(z1)
m∑

k=0

Qk,mfk,m(z)

=
m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)Ql,n +
m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)Qk,m
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Figure 17 C1 continuous connection among two GBT-Bézier swung surfaces

Figure 18 C2 continuity between two GBT-Bézier swung surfaces with λ = 0.7

=
m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)(Ql,n + Qk,m)

=
m∑

k=0

n∑

l=0

fk,m(z)fl,n(z1)Q̂k,l.

Thus, the GBT-Bézier swept surface described by (29) can be exactly expressed as tensor
product GBT-Bézier surface design. �

Proposition 3.7 Equation (30) can be demonstrated:
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1. As the tensor product GBT-Bézier surface is used to express the GBT-Bézier swept
surface, so it holds all the characteristics and benefits of the GBT-Bézier surface.

2. By keeping control mesh fixed and varying the values of shape control parameters, the
shape of the GBT-Bézier swept surface can be modified. Furthermore, the composite
GBT-Bézier swept surfaces can also be constructed like the previous surfaces.

A GBT-Bézier swept surface can be constructed as follows:

Algorithm 5
1. Consider a SC which sweeps to the trajectory curve (both curves in the form of

GBT-Bézier curves).
2. Construct the GBT-Bézier swept surface by using equation (30).
3. Follow the pattern Q̂k,l = Qk,m + Ql,n (k = 0, 1, . . . , m; l = 0, 1, . . . , n) and take the control

points of GBT-Bézier swept surface where Qk,m, Ql,n are the control points of section
and TCs, respectively.

4. Draw GBT-Bézier swept surfaces in Wolfram Mathematica software by taking
different values of shape control parameters μ, ν in their respective value range [–1, 1].

5. Two adjacent GBT-Bézier swept surfaces can be connected by C1 and C2 continuity
conditions given in Theorem 2.

Example 3.5 The shape control parameters of the two contiguous curves segments are
used μ, μ1, ν , ν1 and μ2, μ3, ν2, ν3, respectively, and these values are identical for two
SCs as well as are similar for two TCs case. The mesh points are taken as (2, 0, 2), (1, 0, 3),
(5, 0, 4), (6, 0, 3) and (6, 0, 3), (7, 0, 2), (3, 0, 1), (2, 0, 2). The control points of the two TCs
are taken as (4, 0, 0), (0, 1, 0), (0, 2, 0), (4, 3, 0) and (4, 3, 0), (8, 4, 0), (8, 5, 0), (4, 6, 0). Figure 19
and Fig. 20 depict the composite curves of two contiguous GBT-Bézier swept surfaces with
different shape parameters which can be connected by C1 and C2 continuity constraints,
respectively.

3.6 GBT-Bézier rotation surfaces with shape parameters
Geometric shapes of many objects are rotation surfaces in nature. Rotation surface is a
type of special and common geometric profile in the field of product modeling design and
has a broad demand in many fields such as aeronautic, architectural engineering, indus-
trial designing, machining, and computer graphics. In CAD/CAM technology, how we
can obtain 3D mathematical designs of rotation surfaces efficiently and swiftly is an im-
portant research issue. This portion is especially focused on how to develop a C1 or C2

continuous 3D mathematical model of GBT-Bézier rotation surface by taking a combined
GBT-Bézier curve. Rotation surfaces are created by revolving a curve along a straight line
in space with a constant angle. When the GBT-Bézier curves Fm(z;μ,ν) (0 < z ≤ 1) are
considered as the generating line and φ (0 < φ ≤ 2π ) as a fixed angle around the rotation
axis, then a rotation surface Rrotation can be constructed in the XOZ plane. Let us imagine
that the generating line is a GBT-Bézier curve Fm(z;μ,ν) (0 < z ≤ 1) in the XOZ plane and
has Z-axis as the rotation axis, then the expression for rotation surface Rrotation is described
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Figure 19 C1 continuity of two contiguous GBT-Bézier swept surfaces

Figure 20 C2 continuous GBT-Bézier swept surfaces with different shape parameters
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as follows [25]:

Rrotation(z,φ) =

⎛

⎜
⎝

cosφ – sinφ 0
sinφ cos zφ 0

0 0 1

⎞

⎟
⎠Fm(z) (32)

=
[
Xm(z) cosφ, Xm(z) sinφ, Zm(z)

]T ,

where 0 < φ ≤ 2π , the generating line Fm(z) = [Xm(z), 0, Zm(z)]T , z ∈ [0, 1]. However, the
rotation surface expressed by equation (32) comprises trigonometric functions that will
enhance the mathematical complication and rounding error in developing a rotation sur-
face. Practically, architects often desire to modify the shape of a rotating surface automat-
ically and rapidly. Therefore, from the technique in [26], we define a class of GBT-Bézier
rotation surfaces by taking the GBT-Bézier curves with their generatrices.

Theorem 6 Suppose that a GBT-Bézier curve Fm(z) can be expressed by a variety of con-
trol points Qk (k = 0, 1, . . . , m) whose coordinates are taken as {Xk , 0, Zk} (k = 0, 1, . . . , m) in
the XOZ plane, then the expression for entire rotation surfaces generated by rotating the
generating line Fm(z) around Z-axis in one rotation is described as

⎧
⎨

⎩

TZ
rotation(z, z1,μ,ν) = { 1–2z1

2z2
1–2z1+1 Xm(z), 2z1–2z2

1
2z2

1–2z1+1 Xm(z), Zm(z)},
T̃Z

rotation(z, z1,μ,ν) = { 1–2z1
2z2

1–2z1+1 Xm(z), – 2z1–2z2
1

2z2
1–2z1+1 Xm(z), Zm(z)},

(33)

where TZ
rotation and T̃Z

rotation are symmetric about the XOZ plane, and by combining these two
terms, we can get a complete GBT-Bézier rotation surface. The Xm(z) and Zm(z) components
of generating line Fm(z) can be derived from the following expression:

⎧
⎨

⎩

Xm(z) =
∑m

k=0 fk,m(z)Xk , z ∈ [0, 1],

Zm(z) =
∑m

l=0 fl,m(z)Zl, z ∈ [0, 1],
(34)

where fk,m(z) are GBTB degree m given in equation (2).

Proof The proof of the above results given in Theorem 6 is as described in [21]. �

Conclusively, using the same results, we can develop a rotation surface if the generating
line and the rotation axis are XOY or YOZ and X-axis or Y -axis, respectively.

Proposition 3.8 If the generating line Fm(z) is revolved around the Z-axis with a fixed
angle φ (0 < φ ≤ 2π ), then the resulting surface is partisan GBT-Bézier rotation surface
and is defined as follows:

(a) TZ
rotation in (33) is used to create the partially rotation surface if 0 < φ ≤ π , where φ is

the rotation angle and range of the parameter z becomes Xm(z).
(b) If 0 < φ ≤ 2π , where φ is the rotation angle, we can utilize TZ

rotation to construct the
first half and then utilize T̃Z

rotation to construct the remaining according to the
technique in (a), with (2π – φ)/π ≤ z ≤ 1 value range of parameter z.

Proposition 3.9 From the reality of GBT-Bézier rotation surfaces which have various in-
dependent shape parameters, we can generate the desired shape of a rotation surface both
locally and globally, by modifying shape control parameters. Moreover, translational and
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Figure 21 GBT-Bézier rotation surfaces with a variety of shape control parameters

rotation transformation allows us to transfer the GBT-Bézier rotation surfaces in any di-
rection to a particular position.

For constructing a GBT-Bézier rotation surface in the XOZ plane, the detailed algorithm
is as follows.

Algorithm 6
1. Take GBTB functions with shape parameters μ,ν ∈ [–1, 1].
2. Consider the control points {Xk , 0, Zk} (k = 0, 1, . . . , m) in the 3D plane.
3. Select the appropriate values of shape control parameters μ, ν from the interval

[–1, 1].
4. Calculate the functions Xm(z) and Zm(z) by using expression (34).
5. Substitute the functions Xm(z) and Zm(z) into expression (33) to achieve

TZ
rotation(z, z1,μ,ν) and T̃Z

rotation(z, z1,μ,ν) rotation surfaces.
6. Plot these two functions in Wolfram Mathematica software and join them to obtain

GBT-Bézier rotation surfaces in the XOZ plane.

Example 3.6 Provided a variety of control points Ql (1 = 0, 1, 2, 3, 4) in the XOZ plane have
the coordinates
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Figure 22 Combine GBT-Bézier rotation surfaces with different shape parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0 = (4, 0, 15),

Q1 = (0, 0, 13),

Q2 = (0, 0, 10),

Q3 = (10, 0, 5),

Q4 = (4, 0, 0).

(35)
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Figure 23 GBT-Bézier rotating capsule surfaces with different shape parameters

From equations (34) and (35), the parametric equation of GBT-Bézier curve F4(z,μ,ν)
described by control points Qi (i = 0, 1, 2, 3, 4) can be expressed as

F4(z,μ,ν) =
{

X4(z), 0, Z4(z)
}

(0 ≤ z ≤ 1).

Hence, by using equations (33) and (35) and rotating the generating line F4(z,μ,ν) in one
revolution around z-axis, the GBT-Bézier rotation surfaces are constructed as follows:

⎧
⎨

⎩

TZ
rotation(z, z1,μ,ν) = { 1–2z1

2z2
1–2z1+1 X4(z), 2z1–2z2

1
2z2

1–2z1+1 X4(z), Z4(z)},
T̃Z

rotation(z, z1,μ,ν) = { 1–2z1
2z2

1–2z1+1 X4(z), – 2z1–2z2
1

2z2
1–2z1+1 X4(z), Z4(z)}.

(36)
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Figure 24 GBT-Bézier rotating ring surfaces along various values of shape parameters

The graphs of GBT-Bézier rotation surfaces using control points (35) are presented in
Fig. 21 with different shape parameters μ, ν and with similar control polygon of generating
lines.

Figures 22–27 also represent some GBT-Bézier rotation surfaces with different values
of shape parameters and control polygon of generating lines.

4 Conclusions
This research work is mainly focused on the construction of engineering surfaces in Bézier
approach. For this purpose, utilizing GBT-Bézier curves proposed in [24], six different
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Figure 25 Designing of GBT-Bézier rotating ceramic pot

types of tensor product GBT-Bézier engineering surfaces including GBT-Bézier cylin-
ders, GBT-Bézier bilinear surfaces, GBT-Bézier ruled surfaces, GBT-Bézier swung sur-
faces, GBT-Bézier swept, and GBT-Bézier rotation surfaces are constructed. All geomet-
ric features of proposed GBT-Bézier surfaces are similar to the traditional Bézier, but the
shape-adjustment feature is an additional feature that is not present in the traditional
Bézier surface approach. The detailed algorithms for designing these GBT-Bézier engi-
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Figure 26 Design example of a lamp with different shape parameters

neering surfaces are also a part of this study. Furthermore, the construction of composite
GBT-Bézier surfaces with C1, C2, and C3 continuous connection is also presented. These
special engineering surfaces not only have some parameters for their shape control but
can also be expressed in terms of tensor product GBT-Bézier surface design (excluding
rotation surfaces).

Some modeling samples of the proposed GBT-Bézier surfaces are presented here to il-
lustrate that the designed GBT-Bézier surfaces can approach their convex hull better than
the traditional Bézier surfaces approaches. Moreover, in the field of geometric modeling,
these GBT-Bézier surfaces are very easy to implement. This study is meaningful and con-
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Figure 27 Modeling examples of a pot with different shape parameters

siderable in the sense that it will support us in modifying and constructing complicated
engineering surfaces.
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