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Abstract:  20 

Temporal variations in population size under unpredictable environments are of 21 

primary concern in evolutionary ecology, where time scale enters as an important 22 

factor while setting up an optimization problem. Thus, short-term optimization with 23 

traditional (arithmetic) mean fitness may give a different result from long-term 24 

optimization.  In the long-term optimization, the concept of geometric mean fitness 25 

has been received well by researchers and applied to various problems in ecology and 26 

evolution. However, the limit of applicability of geometric mean has not been 27 

addressed so far. Here we investigate this problem by analyzing numerically the 28 

probability distribution of a random variable obeying stochastic multiplicative 29 

growth. According to the law of large number, the expected value (i.e., arithmetic 30 

mean) manifests itself as a proper measure of optimization as the number of random 31 

processes increases to infinity. We show that the finiteness of this number plays a 32 

crucial role in arguing for the relevance of geometric mean. The geometric mean 33 

provides a satisfactory picture of the random variation in a long term above a 34 

crossover time scale that is determined by this number and the standard deviation of 35 

the randomly varying growth rates. We thus derive the applicability condition under 36 

which the geometric mean fitness is valid. We explore this condition in some examples 37 

of risk spreading behavior. 38 

 39 

Keywords: multiplicative growth, stochastic environment, mean fitness, finite-size effect, 40 

long-term sustainability 41 
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1. Introduction 43 

Variation in population size is of central importance in evolutionary biology. Some portion 44 

of variation should originate from stochastic or random processes for known or unknown 45 

reasons. In optimizing with respect to the stochastic degrees of freedom, time scale may 46 

matter importantly, i.e., short-term optimization may not be optimal in a long term. Thus, it 47 

is of primary importance to investigate the time-scale dependence of a predicted behavior 48 

of the population. In biology of population growth under stochastic environments, it is 49 

acknowledged that the use of the expected value, the arithmetic mean, of growth rates 50 

(usually called mean fitness, e.g., the number of offspring per female parent) can give an 51 

erroneous picture of nearly every population (Dempster 1955; Cohen 1966; Cohen 1968; 52 

Lewontin and Cohen 1969; Iwasa and Cohen 1989). Instead, the geometric mean of growth 53 

rate (geometric mean fitness) provides a satisfactory picture (Yoshimura and Clark 1991, 54 

1993; Yoshimura and Jansen 1996; Jansen and Yoshimura 1998; Yoshimura et al. 2009; 55 

Yoshimura et al. 2013a, b). For example, bet hedging (e.g., risk spreading and adaptive 56 

coin-flipping) has been understood in terms of geometric mean fitness (Slatkin 1974; Seger 57 

and Brockmann 1987; Philippi and Seger 1989; Cooper and Kaplan 1982; Kaplan and 58 

Cooper 1984; Yasui and Yoshimura 2018); see also Iwasa (1991, 2000). From a theoretical 59 

perspective, the geometric mean represents the median of growth rates (Okabe and 60 

Yoshimura 2020) and the median provides a reasonable solution of the St. Petersburg 61 

Paradox in which the expected value does not make sense (Okabe et al. 2019).  62 

 Thus, on the one hand, the geometric mean fitness seems valid in explaining bet 63 

hedging adaptation. On the other hand, the arithmetic-mean fitness appears valid from a 64 
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standard theoretical perspective (Fisher 1930; Dobzhansky 1937; Hartl and Clark 1997). If 65 

the geometric mean is the valid measure of long-term optimization, it suggests itself that 66 

the arithmetic mean has a limited range of validity. Conversely, the geometric mean has a 67 

limited range of validity if the arithmetic mean holds good in some cases. (It is our view 68 

that geometric mean fitness makes sense only under restricted conditions. Another possible 69 

attitude is to have recourse to the geometric mean fitness `principle’, according to which 70 

optimizing arithmetic and geometric means may align in a short term but do not exclude 71 

from each other. We do not take this view as it does not answer but obviates the questions 72 

of this study, i.e., when and how the geometric mean comes into play.) As a matter of fact, 73 

the theoretical basis of the validity of the geometric mean concept has not been established. 74 

It is unknown quantitatively how long it must be for the geometric mean to hold good in the 75 

long-term optimization. Thus, a theoretical consideration suggests the presence of a 76 

crossover time scale to separate the short term and the long term in which the arithmetic 77 

mean and the geometric mean are valid, respectively. It is not a trivial matter why and how 78 

the concept of geometric mean fitness manifests itself in the population growth under 79 

stochastic conditions. The present study investigates this problem numerically and 80 

analytically. It should be remarked that the present problem has nothing to do with a 81 

classical problem of polymorphism in a large diploid random mating population, whose 82 

condition is conveniently expressed in terms of the arithmetic and geometric mean fitnesses 83 

of recessives (but not of dominants) (Haldane and Jayakar 1963). We assume haploid and 84 

asexual inheritance for simplicity.  85 

 The outline of our paper is as follows. The next section (Sec. 2) explains the 86 
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theoretical backgrounds of the problem addressed in the present study based on the 87 

population growth model with random growth rates. In Sec. 3, we present the numerical as 88 

well as analytical results showing a crossover from the arithmetic mean to the geometric 89 

mean of the growth behavior of the population size. In the last section, the present results 90 

are applied to argue for some representative prior studies founded on the geometric mean 91 

fitness (Sec. 4.1, 4.2). Moreover, we discuss the scope of application of the geometric mean 92 

in biological evolution, especially on an evolutionary perspective in paleontology (Sec. 93 

4.3).  94 

 95 

2. Model and Backgrounds 96 

Consider a population growth model in which number (population size) St in the t-th 97 

generation grows in a multiplicative manner as  98 

𝑆 𝑅 𝑆 , (1.1) 99 

where the growth rate Rt is an independently and identically distributed random variable 100 

taking a certain value rn with a given probability pn (∑n pn = 1). We assume that natural 101 

selection acts on ST at the T-th generation to take into account that evolution by natural 102 

selection is not necessarily “short-sighted” (i.e., T need not be 1). Thus, the quantity of 103 

interest is the growth ratio between the change in T generations, i.e., 104 

𝑆 /𝑆 𝑅 𝑅 𝑅 ⋯𝑅 ∏ 𝑅 .  (1.2) 105 

This ratio is not a constant but a random variable obeying a certain probability distribution. 106 

However, it is often approximately replaced with a representative constant value, i.e., the T-107 
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th power of the geometric mean of the growth rate rn (Cohen 1966; Lewontin and Cohen 108 

1969; Yoshimura and Clark 1991; Cohen 1993),  109 

𝑆 /𝑆 ≃ 𝑚 ,  (1.3) 110 

where the geometric mean is given by 111 

𝑚 𝑟 𝑟 ⋯ ∏ 𝑟 .  (1.4) 112 

Intuitively, this approximation is based on the following expectation seemingly valid for a 113 

sufficiently large value of T. In the T factors on the right-hand side of Eq. (1.2), each 114 

outcome rn is expected to occur about Tpn times on average, so that 𝑆 /𝑆 ≃ 𝑟 𝑟 ⋯115 

𝑚  (Cohen 1966). On the other side, we may have recourse to the law of large 116 

numbers, i.e., a centuries-old theorem in probability theory. According to this mathematical 117 

theorem, the results obtained from a number of trials should get closer to the expected 118 

value (i.e., the arithmetic mean, the common type of average), as the number of trials 119 

increases to infinity. Thus, there is a good reason for using the common type of average, 120 

namely,  121 

   𝑆 /𝑆 𝑚 ,  (1.5) 122 

with the arithmetic mean 123 

𝑚 𝑝 𝑟 𝑝 𝑟 ⋯ ∑ 𝑝 𝑟 , (1.6) 124 

which is the average (expected value) of each of T factors (Rt) in Eq. (1.2) (Fisher 1930; 125 

Dobzhansky 1937; Hartl and Clark 1997). It should be emphasized that Eq. (1.5) is 126 

mathematically exact while Eq. (1.3) is not. (In the sense that the larger T is, the better Eq. 127 
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(1.5) holds. Both of Eqs. (1.3) and (1.5) are approximate for a finite value of T.) However, 128 

Lewontin and Cohen (1969) pointed out that the expected value may give a completely 129 

erroneous picture of nearly every population by showing that the population size ST should 130 

vanish in a long term with almost certainty if the geometric mean is less than unity. If we 131 

consider the long-term behavior of two populations with different alleles, the population 132 

with the higher geometric mean will go to fixation (the other with the lower geometric 133 

mean will extinct) almost certainly (Cohen 1993; Bulmer 1994). Thus, the geometric mean 134 

fitness provides a long-term measure of fixation or extinction of competing populations. It 135 

should be remarked, however, extinction will not come about in the simple model (1.1) 136 

alone, because this model usually excludes the possibility of 𝑅 0 in order not to make 137 

the random variable log𝑅  unbounded. (The extinction problem in the model allowing for 138 

𝑅 0 is treated in a straightforward manner (Nii et al (2019).) Thus, it is not trivial how 139 

the geometric mean plays an apparently important role in its long-term behavior. Let us 140 

note that the model in Eq. (1.1) does not allow us to discuss within-generation correlation, 141 

which may have interesting implications for bet-hedging strategies to evolve (Starrfelt and 142 

Kokko 2012; Haaland et al. 2019). Bet-hedging strategies are often categorized into 143 

between-generation and within-generation strategies, which are often associated with 144 

coarse-grained and fine-grained environments, respectively. While the distinction between 145 

them may be of biological significance, it has little to do with the main interest of the 146 

present study. We are interested in solidifying the basis of the geometric mean concept 147 

employed as an appropriate measure of long-term fitness in a coarse-grained environment. 148 

While empirical observations may imply validity of this concept, the previous studies have 149 
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assumed its validity without asking under what conditions its use is justified. In any case, 150 

theoretical expectations point to an exponential variation (dependence on T) of 𝑆 . (The 151 

logarithm of 𝑆  tends to vary in proportion to T, so that log 𝑆 /𝑇 is a good measure of 152 

the exponential variation. See Fig.3.) In fact, as noted above, 𝑆  is a random variable 153 

distributed over a very wide range (Fig. 1). Each temporal variation of St exhibits a 154 

uniquely zigzag course, which is determined by actual realizations of the random variable, 155 

the growth rate at each step. Accordingly, it can show a steady variation only in very 156 

special cases. Sample variations in Fig. 1 are shown by way of illustration, which therefore 157 

should not be taken to be representative of possible outcomes. Each sample result may 158 

show abrupt changes from time to time, so that the overall behavior of each realization does 159 

not necessarily resemble a theoretical (exponential) variation. Our aim here is to show 160 

which approximation (Eqs. (1.3) and (1.5)) becomes valid under what conditions.  161 

Figure 2 shows the frequency distribution of the population sizes at the 20th 162 

generation, 𝑆 , obtained by M = 1,000,000 realizations of numerical simulation. A 163 

linear plot in Fig. 2(a) indicates that the distribution has a very long tail (Okabe and 164 

Yoshimura 2020). For the parameters used in Fig. 2 (r1 = 0.5, r2 = 1.7 and p1 = p2 = 1/2), 165 

the geometric mean growth rate is given by 𝑚 ≃ 0.197 , which corresponds to the 166 

peak of the log-log plot in Fig. 2(b). This is mathematically shown as follows. The central 167 

limit theorem states that, as 𝑇 increases, log 𝑆 /𝑆 ∑ log 𝑟  converges to the normal 168 

distribution with mean 𝜇𝑇 and variance 𝜎 𝑇, where 𝜇 and 𝜎  are the mean and variance of  169 

log 𝑟 , i.e.,  170 
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 𝜇 ∑  𝑝 log 𝑟   (1.7) 171 

and  172 

𝜎 ∑ 𝑝 log 𝑟 𝜇 . (1.8) 173 

Accordingly, 𝑆  obeys the log-normal distribution with its mean at 𝑒 . Since 𝑚 𝑒 , 174 

it is concluded that log 𝑆  is peaked at 𝑆 𝑚 , i.e., 0.197 for r1 = 0.5, r2 = 1.7 and 175 

p1 = p2 = 1/2 in Fig. 2. To sum up, the geometric mean 𝑚  manifests itself in the 176 

probability distribution of log 𝑆 /𝑆 , while the expected value 𝑚  does in that of 177 

𝑆 /𝑆 . We underline the importance of distinguishing two random variables, ST /S0 and its 178 

logarithm log(ST /S0) (Fig. 2). On the one hand, the latter (log(ST /S0)) is directly related to 179 

the geometric mean mgeo (Yoshimura et al. 2009). On the other hand, the quantity of our 180 

interest is the former (ST /S0). It is not trivial why and how the geometric mean 𝑚  181 

comes into play in discussing the population size ST/S0. It even appears doubtful if the peak 182 

of the logarithm of population size has any real (e.g., biological) significance. The present 183 

study aims at filling the logical gap of using the geometric mean for evaluating the 184 

expected outcome of ST without introducing the logarithmic variable (log(ST /S0)).  185 

 186 

3. Analysis and Results 187 

The point we make is based on the observation that the distribution of 𝑆 /𝑆  after a long 188 

time 𝑇 gets so long tailed that extremely large values are practically negligible owing to 189 

their extremely low probability of occurrence (i.e., (Prob 𝑆 /𝑆 𝐾  becomes negligible 190 
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for a large value of 𝐾). The population after T generations, ST, is obtained from the initial 191 

size S0 = 1 by multiplying a total number T of randomly varying growth rates, Ri (Eq. 192 

(1.2)). If we perform a total of (hypothetical) M simulations, we obtain M results for the 193 

final size ST. To achieve a continuous distribution, the number M must be infinitely large, 194 

which is not possible in numerical analysis. As a sufficiently large value, we took M = 195 

1,000,000, which makes Fig. 2(b) resemble a bell curve. Moreover, in practice, we must 196 

consider that the number of realizations in nature (real simulations), N, is finite. In natural 197 

selection in the wild, the number of natural processes may be large but cannot be 198 

mathematical infinity (𝑁 ≪ ∞).  Since the frequency distribution of ST is very long tailed 199 

(Fig. 2), extreme (tail) values are very unlikely to be realized in practice. To express it 200 

mathematically, let us denote the n-th biggest result of the M results as Smax(n/M). The 201 

probability of occurrence of a tail value ST > Smax(n/M ) is n/M. This probability is 1/N if 202 

we select n and M such that n/M = 1/N. Thus, in practice, tail values ST > Smax(n/M ) for 203 

n/M = 1/N are considered unlikely events when the total number N is large but finite. Note 204 

that the threshold size Smax is determined by N if M is sufficiently large. In fact, it increases 205 

steadily as N increases. In Figure 2, the threshold values Smax for N = 10, 100 and 1000 are 206 

indicated with vertical lines. The dashed lines with N =100 correspond to the n=10,000th 207 

biggest result of the M=1,000,000 simulations. Roughly speaking, this value (𝑆 ≃ 50) 208 

corresponds to the 100th biggest result in the total of 10,000 simulations, the 10th biggest 209 

result in 1,000 simulations, and similarly the 1st biggest result in 100 simulations. 210 

Accordingly, we expect that tail values ST larger than this value are unlikely to be realized 211 

if the total number of simulations is as small as N=100.  212 
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To take it into account that sample size N is finite, we consider the conditional 213 

expectation value in which large tail values 𝑆  𝑆  are omitted from consideration. 214 

Consequently, we aim at providing an answer to the problems remarked in the introduction, 215 

i.e., the theoretical basis on the relevance of the geometric mean concept and its range of 216 

validity. In this approach, we follow and quantify the argument of Lewontin and Cohen 217 

(1969), in which more emphasis is put on the probability of occurrence of stochastic 218 

processes than on their average over all possible outcomes. It is noted that 𝑆  depends on 219 

N as mentioned above (Fig. 2). Mathematically, the conditional expectation is given by 220 

⟨𝑆 ⟩ 𝐸 𝑆 |𝑆   𝑆  . (2.1) 221 

It is expected that this conditional expectation expresses biological reality more properly 222 

than the ideal mathematical expectation calculated for the hypothetical infinite samples. 223 

Numerical evaluation shows that ⟨𝑆 ⟩  varies approximately exponentially depending on 224 

generation (time) T. Accordingly, it is convenient to focus on the ‘growth rate’ log[⟨St⟩N] /t 225 

(the logarithm of the average, not to be confused with the average of the logarithm 226 

⟨log 𝑆 ⟩ /𝑡). Here, the logarithm is taken just for the sake of presentation. Figure 3 shows 227 

the t-dependence of log[⟨St⟩N] /t for N = 10, 100 and 1000, where the horizontal axis 228 

(generation t) is plotted with a logarithmic scale. The numerical results indicate that the 229 

growth rate log[⟨St⟩N] /t gradually shifts from the logarithm of the arithmetic mean value 230 

𝑚  to that of the geometric mean value 𝑚  as generation (time) t increases. It is 231 

remembered that these means 𝑚  and 𝑚  are given by Eqs. (1.6) and (1.4), 232 

respectively, in terms of the stochastic growth rates of the multiplicative model in Eq. (1.1). 233 
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The larger N, the slower the approach to 𝑚 . Thus, the geometric-mean growth ratio 234 

provides a good approximation in a long term, especially for a not too large sample size N. 235 

It is important to remark that the approach to 𝑚  is due to N being finite (not infinite). 236 

While we assume that the environment fluctuates randomly between two possible states in 237 

Figs. 1-3, the above result on 𝑚  does not depend on this assumption (Appendix).  238 

The above results indicate that the geometric mean mgeo is an appropriate measure 239 

beyond a certain crossover scale tcr, i.e., for generation 𝑡 ≫ 𝑡 . This scale should increase 240 

as the sample size N increases. Indeed, an analytical expression for tcr is obtained as 241 

follows. According to the central limit theorem, the probability distribution of log 𝑆242 

log 𝑆 ∑ log𝑅  converges to the normal distribution with mean µt and variance σt, where 243 

 𝜇 ∑  𝑝 log 𝑟   (2.2) 244 

and  245 

𝜎 ∑ 𝑝 log 𝑟 𝜇 , (2.3) 246 

are the mean and variance of the random variable log Rn (Lewontin and Cohen 1969). 247 

Accordingly, St obeys the log-normal distribution with its µ and σ2 parameters as given by 248 

the last two equations. Using an approximation for the log-normal distribution, we obtain 249 

𝑡 𝐶 𝑁 /𝜎 , (2.4) 250 

where C(N ) = Φ−1(1 − 1/N ) with Φ−1 being the inverse of the cumulative distribution 251 

function (cdf) of the standard normal distribution (Appendix).  252 

 In Fig. 4(a), this crossover scale tcr is plotted against the sample size N. For 253 
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example, we have 𝑡 ≃ 26 for N = 1000 (cf. Fig. 3). The scale tcr increases with the sample 254 

size N.  Accordingly, it diverges in the mathematical limit of infinite size 𝑁 → ∞, where 255 

the geometric mean mgeo ceases to be relevant while the arithmetic mean marith holds good. 256 

Note that the geometric (arithmetic) mean becomes approximately valid for 𝑡 ≫ 𝑡  (𝑡 ≪257 

𝑡 ). Similarly, the traditional arithmetic mean marith holds good ( 𝑡 → ∞) when there is no 258 

variation (σ = 0) in the population growth (Eq. (2.3)). The main result is schematically 259 

shown in Fig. 4(b).  260 

 261 

4. Applications and Discussions 262 

4.1 Adaptive coin-flipping 263 

Consider the ptarmigan adopting white or dark coloration as a prototypical example of 264 

adaptive coin-flipping (Cooper and Kaplan 1982). If one chooses white, it will be well 265 

camouflaged in case the winter ground is snow-covered but will be conspicuous if there is 266 

no snow. Conversely, the dark coloration will be advantageous if the winter is snowless but 267 

disadvantageous if it is not. Assume that snowy and snowless winters occur randomly with 268 

equal frequency, and moreover that the population will double in size in each season if its 269 

members are cryptically colored but shrink to 40% of its former size if the coloration is 270 

conspicuous. The geometric mean fitness of pure strategies (whether white or dark) is 20.5 × 271 

0.40.5 = 0.89, which (being less than one) signifies that either is not maintained in the long 272 

run. On the other hand, the mixed strategy where each individual randomly chooses white 273 

or dark by “flipping a coin” gives 1.20.5 × 1.20.5 = 1.2. Thus, the latter “gambling” genotype 274 



15 
 

is substantially fitter than either of its deterministic competitors (Cooper and Kaplan 1982). 275 

In this case, the coin-flipping strategy gives no difference between the geometric and 276 

arithmetic mean fitnesses (1.20.5 × 1.20.5 = 1.2= 0.5× 1.2 + 0.5× 1.2). Accordingly, we 277 

should assess the significance of the geometric mean in pure strategies. Note that the 278 

advantage of the coin-flipping strategy cannot be explained by using the arithmetic mean 279 

fitness (pure white strategy gives: 0.5× 2 + 0.5× 0.4 = 1.2; pure dark strategy gives:  0.5× 280 

0.4 + 0.5×2 = 1.2).  281 

 According to the present results (Fig. 4(a)), since σ = 0.80 from Eq. (2.3), we obtain 282 

tcr = 18 and 31 generations for N = 100 and 1000, respectively. This means that we find the 283 

crossover point is the 18th generation for sample size of 100. If we consider fewer 284 

generations, the usual arithmetic mean fitness is a sound, valid measure. In contrast, if we 285 

consider more generations, we better use the geometric mean fitness. These 18 (31) 286 

generations for the sample size of 100 (1000) are not so unrealistically large as to invalidate 287 

the use of the geometric mean.  Thus, Cooper and Kaplan (1982) is valid in arguing for the 288 

adaptation of the coin-flipping strategy. Various cases of adaptive coin-flipping are also 289 

discussed (Kaplan and Cooper 1984). 290 

 291 

4.2 Risk-spreading behavior 292 

The next example is risk-spreading behavior of the cabbage butterfly (Pieris rapae) 293 

(Yoshimura and Jansen 1996; Jansen and Yoshimura 1998). Suppose a female butterfly 294 

distributing its offspring (eggs) over two types of habitat with different qualities. One 295 
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habitat, say habitat 1, is highly productive but suffers from occasional catastrophes in 296 

which only very few offspring survive, while the other habitat is constant in quality but the 297 

quality is low so that a population that uses this habitat only is doomed to extinction. An 298 

individual produces total m offspring, of which a fraction f is deposited in habitat 1. In 299 

habitat 1, the survivorship of offspring takes values Sa (< 1/m) with probability p and Sb (> 300 

1/m) with probability 1 − p, where p is the probability of a catastrophe to occur. In habitat 301 

2, it is Sc (< 1/m) with certainty. The optimal fraction f* is obtained by maximizing the 302 

geometric mean of the growth rates 𝐺 𝑓  𝑚 𝑓𝑆  1  𝑓 𝑆 𝑓𝑆303 

1  𝑓 𝑆 . Specifically, we obtain f∗ = 0.617 and G(f ∗) = 1.45 for mSa = 0.005, mSb = 304 

5, mSc = 0.7 and p = 1/3 (Fig. 2 of Jansen and Yoshimura (1998)).  305 

In this example, we obtain µ = 0.37 and σ = 1.2 from Eqs. (2.3) and (2.4). For this large 306 

value of σ, the critical generation tcr in Eq. (2.4) is sufficiently small to guarantee the use of 307 

the geometric mean G(f ) without any severe restriction to the generation number t (e.g., tcr 308 

= 3, 4 and 5 for N = 50, 110 and 250, respectively). This example shows that the geometric 309 

mean fitness becomes a reliable measure in the presence of a strong variation in the growth 310 

rates (a large value of σ), where the population is susceptible to extinction.     311 

 312 

4.3 General discussions 313 

The geometric mean growth rate provides a good picture of long-term behavior. The 314 

present study indicates that this is approximately true beyond a crossover time scale tcr 315 

determined by sample size N. The crossover scale increases without limit as N increases. 316 
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However, the N dependence of tcr is so weak that it is rather practical to consider that tcr is 317 

moderately finite, i.e., not exceeding hundreds (Fig. 4a). Note that the x-axis of Fig. 4a is 318 

logarithmic, so that the N dependence of tcr is logarithmically weak. It is admittedly a 319 

difficult problem to evaluate N practically. However, a rough guess may be made by noting 320 

that its inverse 1/N is related to the accuracy of observation data. The accuracy in 321 

ecological systems should be some orders of magnitudes less than in physical systems, 322 

where an accuracy of several orders of magnitude is not rare. Accordingly, it is not 323 

practical to assume N as large as a million in ecological systems. The scale depends also on 324 

the variation σ2 of random growth rates. The larger σ2, the smaller tcr. Accordingly, the 325 

geometric mean picture holds good when the random variation in the growth rate is strong 326 

(Fig. 4). Especially, a population on the verge of extinction may have a strong variation of 327 

the growth rate. The emerging picture of the present study is shown in Fig. 4b, which 328 

illustrates the applicability regimes of arithmetic and geometric means. It is remarked that a 329 

similar figure is presented in a different context (Haaland et al. 2019). 330 

 In biological evolution, it is important to remember that we are concerned with a 331 

finite number of temporal sequences of events. In mathematical treatment of random 332 

events, it is almost always implicitly assumed that the statistical average over all 333 

theoretically possible outcomes represents a typical outcome. However, there can be many 334 

real-life situations in which this assumption may not hold good. This remark holds 335 

particularly in such a situation as the present model describes, where theoretically possible 336 

outcomes of a stochastic population dynamics diverge away from each other in an 337 

exponential manner. Consequently, the statistical mean over observed events is strongly 338 
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affected by whether some extremely unlikely events occur actually. In practice, e.g., the 339 

events of probability 0.0001 may be ignored when we survey 100 trials at most. This is the 340 

basic idea of our approach, in which a crossover timescale manifests itself owing to the 341 

temporal diversification of random outcomes.  342 

 The present study shows that it is not true that the geometric mean concept of wide 343 

use in various fields is valid without reservation or qualification. There is a time window 344 

within which this concept serves as a convenient and approximate, if not mathematically 345 

exact, measure of long-term optimization. The time window depends on the number of 346 

trials, and so on the situation. Therefore, the limit of applicability of the geometric-mean 347 

growth rate is not determined solely by the mathematical details of the random process but 348 

it also depends on the actual situation usually not considered in a mathematical model. At 349 

an extreme end lies the view of history as contingency, where any past event is singular 350 

(occurred only once in the past) (Gould 1989, 2002). At the opposite end lies the recurrence 351 

view of history that assumes the mathematical ideality of an infinite number of similar 352 

repeated events. The latter recurrence view enables us to predict the evolutionary direction 353 

in life (Vermeij 2004, 2006). The actuality lies in between the two extremes. The actual 354 

problem can be practically akin more to a singular (one-time) event than to the 355 

mathematical limit of infinite repetitions, so that the geometric mean fitness becomes more 356 

appropriate than the arithmetic mean fitness in discussing the evolutionary history of life.  357 

 The above argument may explain why the view of biological evolution is so 358 

different between biologists and paleontologists (Simons 2002). The punctuated equilibria 359 

in the geological time scale may be more appropriately considered under the geometric 360 
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mean fitness (Eldredge and Gould 1972; Gould and Eldredge 1977), while the gradual 361 

evolution of genetic traits in population genetics is under the arithmetic mean fitness 362 

(Fisher 1930; Dobzhansky 1937; Hartl and Clark 1997). Thus, both views of evolution are 363 

complementary and valid in its own domain of applications. It is an interesting future 364 

research direction to study if the finiteness of actual trials has an observable effect on the 365 

evolution of a biological system, or more generally on evolving complex systems.  366 

 367 

Appendix 368 

In the long-time limit t → ∞, St obeys the log-normal distribution with its µ and σ2 369 

parameters as given in the main text. In the log-normal distribution, the probability that St is 370 

less than K is given by Prob 𝑆 𝐾 Prob ∑ log 𝑟 log𝐾 Φ
√

, 371 

where Φ 𝑦  is the cumulative distribution function (cdf) of the normal distribution with 372 

mean 0 and standard deviation 1. Owing to Prob 𝑆 𝑆 1/𝑁, or Prob 𝑆373 

𝑆 1  , we obtain 𝑆 𝑒 √ , where 𝐶 𝑁 Φ 1 . On the other 374 

side, the conditional expectation is also expressed as 𝐸 𝑆 |𝑆 𝐾375 

𝑒 Φ
√

/Φ
√

 𝑒 Φ 𝐶 𝑁 𝜎√𝑡 / 1 , where we 376 

substituted K = Smax in the second equation. For a sufficiently large t, we may use an 377 

asymptotic formula Φ 𝑥 ≃ 𝑒 / |𝑥|√2𝜋  valid for x → ±∞. Consequently, we obtain 378 

𝐸 𝑆 |𝑆 𝑆 ≃ 𝑒  / √2𝜋𝑡𝜎 , for 𝜎√𝑡 ≫ 𝐶 𝑁 , or for 𝑡 ≫ 𝑡  with 𝑡 𝐶 𝑁 /𝜎 . 379 

Noting that 𝑒 𝑚  by Eqs. (1.2) and (2.2), we obtain ⟨𝑆 ⟩ ∼ 𝑚  for 𝑡 ≫ 𝑡 . 380 
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Figures 474 

 475 

Figure 1. Sample variations of population size St. Starting from initial size S0=1, size St of 476 

sample 1 shows a steady decrease with little fluctuations, while sample 2 shows large 477 

fluctuations before settling to a decrease. Additionally, two smooth curves are theoretical, 478 

exponential variations 𝑚  and 𝑚 , where 𝑚  and 𝑚  are the arithmetic 479 

mean and the geometric mean, respectively, of the growth ratio (ri) that varies randomly 480 

with given probability (pi) (r1=0.5, r2=1.7, p1=p2=1/2).  481 
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 482 

Figure 2. Frequency distribution of population size St. The results St=20 at t=20 are obtained 483 

by a total of M = 106 simulations. For later use we show vertical lines indicating Smax for 484 

N=100 and 1000 (see Sec. 3). (a) A linear-log plot. (b) A log-log plot. The same data are 485 

plotted differently in (a) and (b). In (a), large data St=20>200 on the x-axis are omitted for 486 

the purpose of illustration, while they are included in (b). In the limit of an infinite M, the 487 

plot in (b) is unimodal with its peak at the geometric mean ( 𝑚 ≃ 0.197). (r1 = 488 

0.5, r2 = 1.7, p1 = p2 = 1/2). 489 
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 490 

Figure 3. Sample size (N) dependence of the conditional expectation ⟨St⟩N. The logarithm of 491 

⟨St⟩N divided by t is shown against t. Two horizontal lines represent the logarithms of the 492 

arithmetic mean (upper line) and the geometric mean (lower line). (M = 106, r1 = 0.5, r2 = 493 

1.7, p1 = p2 = 1/2).  494 

  495 
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 496 

 497 

Figure 4. The crossover scales tcr and Ncr. (a) The crossover generation number tcr is plotted 498 

against sample size N. The geometric-mean growth rate becomes valid when the generation 499 

number t is significantly larger than tcr. The middle line for σ =0.61 corresponds to the 500 

parameters r1 = 0.5, r2 = 1.7 and p1 = p2 = 1/2 in Figs. 2 and 3, while two other results for σ 501 

= 0.4 and 1 are shown for comparison. Here, σ is the standard deviation of the logarithmic 502 

growth rate. (b) Schematic illustration of the main result. A similar figure is presented in a 503 

different context (Haaland et al. 2019). 504 
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