RNA-Seq analysis of Phanerochaete sordida YK-624 degrades neonicotinoid pesticide acetamiprid

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2022-02-04
	キーワード (Ja):
	キーワード (En):
	作成者: Wang, Jianqiao, Liu, Yilin, Yin, Ru, Wang, Nana,
	Xiao, Tangfu, Hirai, Hirofumi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00028578

RNA-Seq analysis of *Phanerochaete sordida* YK-624 degrades neonicotinoid pesticide acetamiprid

Jianqiao Wang ^a, Yilin Liu ^a, Ru Yin ^a, Nana Wang ^a, Tangfu, Xiao ^a, Hirofumi Hirai ^{b,}

^a Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China

^b Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

^c Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

* Corresponding author: Hirofumi Hirai

Mailing address: Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku,

Shizuoka 422-8529, Japan

Tel. & Fax: +81 54 238 4853

E-mail address: hirai.hirofumi@shizuoka.ac.jp

Abstract

1	Acetamiprid (ACE) belongs to the group of neonicotinoid pesticides, which have
2	become the most widely utilized pesticides around the world in the last two decades.
3	The ability of Phanerochaete sordida YK-624 to degrade ACE under ligninolytic
4	conditions has been demonstrated; however, the functional genes involved in ACE
5	degradation have not been fully elucidated. In the present study, the differentially
6	expressed genes of P. sordida YK-624 under ACE-degrading conditions and in the
7	absence of ACE were elucidated by RNA sequencing (RNA-Seq). Based on the gene
8	ontology enrichment results, the cell wall and cell membrane were significantly
9	affected under ACE-degrading conditions. This result suggested that intracellular
10	degradation of ACE might be mediated by this fungus. In addition, genes in metabolic
11	pathways were the most enriched upregulated differentially expressed genes
12	according to the KEGG pathway analysis. Eleven differentially expressed genes
13	characterized as cytochrome P450s were upregulated, and these genes were
14	determined to be particularly important for ACE degradation by P. sordida YK-624
15	under ligninolytic conditions.

Keywords: *Phanerochaete sordida* YK-624; acetamiprid; biodegradation; RNA-Seq; cytochrome P450s

1. Introduction

17	Acetamiprid (ACE) is a neonicotinoid pesticide. Neonicotinoids are a relatively
18	new major group of pesticides that were developed in the 1990s. These pesticides are
19	selective agonists of nicotinic acetylcholine receptors (nAChRs), which bind more
20	strongly to nAChRs in insects than in vertebrates, causing receptor blockage, paralysis
21	and death at high concentrations [1-3]. Neonicotinoid pesticides have become the
22	most extensively utilized pesticides in the world with registration of over 140 crops in
23	more than 120 countries [4-5]. Although neonicotinoid pesticides are selective to pest
24	insects, recent studies suggest that they can also affect nontarget organisms, such as
25	pollinators and birds [6-7]. Neonicotinoids may affect the development of neurons
26	associated with such functions as learning and memory [8]. In recent years, some
27	studies have shown that neonicotinoid pesticides have similar excitatory effects on
28	mammalian developmental neurotoxicity [9]. Therefore, neonicotinoid pesticides
29	might be harmful to humans.
30	According to an analysis of 29 studies in 9 countries, neonicotinoids were
31	detected in 74% of surface waters [10]. Neonicotinoid pesticides have high water
32	solubility and can persist in soil for extended periods of time, leading to soil and water
33	contamination [11]. In recent years, a number of ACE degradation methods have been
34	reported. Heterogeneous photocatalysis and Fenton reaction degradation methods for
35	ACE have been reported [12-13]. Compared with chemical methods, microbial
36	degradation has the advantages of not producing secondary pollution and having low
37	cost. Rhodotorula mucilaginosa strain IM-2 selectively transformed ACE to
38	metabolite N -[(6-chloro-3-pyridyl)methyl]- N -methylacetamide (IM 1-3) through $_3$

39	hydrolysis [14]. The bacteria Ensifer meliloti CGMCC 7333, Variovorax
40	boronicumulans CGMCC 4969 and Pseudaminobacter salicylatoxidans CGMCC
41	1.17248 could degrade ACE, and the major metabolite was $(E)-N^2$ -carbamoyl- N^l -[(6-
42	chloro-3-pyridyl)methyl]- N^{1} -methylacetamidine (IM 1-2) [15-17]. The bacteria
43	Rhodococcus sp. BCH2, Pigmentiphaga sp. AAP-1 and D-2 and Stenotrophomonas
44	sp. THZ-XP transformed ACE to N-methyl-(6-chloro-3-pyridyl)methylamine (IM 1-
45	4) [18-21]. The white-rot fungus <i>Phanerochaete sordida</i> YK-624 and the bacterium
46	Stenotrophomonas maltophilia CGMCC 1.1788 were able to demethylate ACE to
47	form (<i>E</i>)- N^{l} -[(6-chloro-3-pyridyl)-methyl]- N^{2} -cyano-acetamidine (IM 2-1) [22-23].
48	There are many studies describing ACE-degrading microorganisms and the
49	identification of ACE metabolites. However, the functional genes involved in the
50	degradation of ACE by <i>P. sordida</i> YK-624 have not been identified.
51	RNA sequencing (RNA-Seq) has gradually improved in the last ten years [24-
52	25]. The transcriptome is the link between genome and proteome information and
53	gene biological function. Therefore, the transcriptome has become an important tool
54	in molecular biology and plays an important role in understanding genomic function.
55	RNA-Seq is most commonly employed to analyse differentially expressed genes
56	(DEGs). In the present study, we utilized RNA-Seq to explore the DEGs of the white-
57	rot fungus P. sordida YK-624 under ACE-degrading conditions and in the absence of
58	ACE. The findings of this study may help to determine the functional genes involved
59	in the degradation of ACE by white-rot fungi.

2. Materials and methods

60 2.1 Fungal culture conditions

61	The strain P. sordida YK-624 (ATCC 90872) was preserved on potato dextrose
62	agar (PDA) at 4 °C. Next, the fungal disk was inoculated onto another PDA plate and
63	cultured at 30 °C for 3 d. Two fungal blocks with a diameter of 10 mm were drilled
64	out at the edge of the PDA plate and added to each 100-mL conical flask containing
65	10-mL Kirk medium, which was described by Kirk et al. [26]. The terminal
66	concentration of ACE was 10 μ M, and the culture without ACE was used as a control.
67	Samples were harvested to perform RNA sequencing after 15 d of incubation (three
68	replicates). The ACE residue in the cultivation was quantified by high-performance
69	liquid chromatography (HPLC) using an InertSustain C18 column (4.6×150 mm; GL
70	Sciences, Japan). During the measurement, 30% methanol aq. was used as a mobile
71	phase and flowed in HPLC at a speed of 0.5 mL/min, and ACE was inspected at a
72	wavelength of 270 nm.
73	2.2 Transcriptomic analysis and quantitative real-time PCR (qRT-PCR)
74	The RNA isolation, cDNA library construction, and quantitative real-time PCR
75	methods are described in the Supplemental Materials. The library preparations were
76	sequenced on an Illumina Novaseq platform, and 150-bp paired-end reads were
77	generated. First, clean reads were obtained by removing low-quality reads, and the
78	reads containing adapter or ploy-N sequences from the raw data and Q20, Q30 and
79	GC content were calculated. No reference genome-based reads mapping was
80	performed in this study. After transcriptome assembly by Trinity, gene function was
81	annotated based on NCBI nonredundant protein sequences (Nr), NCBI nonredundant

82	nucleotide sequences (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes
83	(KEGG) and Gene Ontology (GO) databases. Differential expression analysis of the
84	ACE_K (Kirk medium with ACE) and K_c (control: Kirk medium without ACE)
85	samples was performed using the DESeq2 program [27]. The sample of mycelium
86	without ACE was regarded as the control. Genes with adjusted P -values < 0.05 and
87	\log_2 fold changes > 1 were defined as differentially expressed. GO and KEGG
88	enrichment analyses of the DEGs were performed using the clusterProfiler R package
89	[28]. The read sequences were deposited in the NCBI Sequence Read Archive (SRA)
90	under accession number PRJNA690204.
91	RNA samples (1.5 μ g) extracted as described in section 2.4 were used for the
92	reverse-transcriptase reaction, with the Hifair® II 1st strand cDNA synthesis kit
93	(Yeasen, Shanghai, China). qRT-PCR was performed using SYBR Green Master Mix
94	(Yeasen, China) on an ABI-Viia7 instrument (ABI, America). The amplification
95	reaction program was set as follows: predenaturation, 95 °C for 5 min; amplification,
96	40 cycles at 95 °C for 10 s and 60 °C for 30 s. After amplification, the temperature
97	was raised to 90 °C at a rate of 0.05 °C/s, and the melting curve was detected. Actin
98	was used as an internal reference to test the variations in the expression of upregulated
99	genes, and the primers used in this study are shown in Table S1. Test results were
100	quantified by the $2^{-\Delta\Delta Ct}$ method [29].
101	2.3 Evolutionary analysis of cytochrome P450
102	The evolutionary history was determined by the neighbour-joining method
102	And the MECA 7 [20, 21] Chuster 261 2694 mer net used because its same length

according to MEGA 7 [30-31]. Cluster-261.3684 was not used because its gene length

- 104 was short. The sum of branch length = 1049.39612815 is shown in the optimal tree.
- 105 The evolutionary distances were computed using the maximum composite likelihood
- 106 method and were presented in units of the number of base substitutions per site [32].
- 107 The codon positions included were $1^{st} + 2^{nd} + 3^{rd} + noncoding$. There were a total of
- 108 1250 positions in the final dataset.

3. Results and discussion

109 **3.1 Overview of transcriptomic analysis**

In our previous study, P. sordida YK-624 was able to degrade 45% ACE under 110 111 ligninolytic conditions after 15 d of incubation [22]. The degradation rate of ACE in this study was similar to our previous result. To compare the results of this study with 112 the findings of previous research, samples cultured for 15 d were used in this study. 113 114 RNA-Seq was performed to study the transcriptome of P. sordida YK-624 under ACE-degrading conditions and in the absence of ACE. The clean bases of ACE K 115 (with ACE) were 11.4 Gb, 10.8 Gb, and 10.21 Gb, and those of K c (without ACE) 116 117 were 9.93 Gb, 10.28 Gb, and 9.97 Gb, respectively (Table S2). The percentage of Q30 reached over 92.27% with a 0.02% error rate, and the GC contents were all 118 approximately 61% (Table S2). Based on adjusted P-values < 0.05 and \log_2 fold 119 changes > 1, we identified 413 upregulated and 429 downregulated DEGs in ACE-120 degrading conditions compared with the absence of ACE (Fig. 1). We used qRT-PCR 121 to test the biological reproducibility of the fold change obtained by RNA-Seq data. 122 Five upregulated genes in ACE-degrading conditions were selected to perform qRT-123 PCR (Table S3). Similar trends regarding the expression levels of these genes were 124

obtained through qRT-PCR and RNA-Seq, thereby validating the reliability of theRNA-Seq results (Fig. 2).

127	3.2 GO and KEGG enrichment analysis of the DEGs of <i>P. sordida</i> YK-624
128	DEGs were assigned to three categories in the GO enrichment analysis (correct
129	<i>P</i> -value < 1): 26 terms in biological process (BP), 9 terms in cellular component (CC),
130	and 5 terms in molecular function (MF), whereas no significantly enriched GO terms
131	were observed in upregulated DEGs. Among the BP categories, the top 5 enriched
132	terms were lipid biosynthetic, lipid metabolic, oxidation-reduction, cellular lipid
133	metabolic, and single-organism metabolic processes. Among the MF categories, the
134	most enriched terms were structural constituents of the cell wall, whereas the most
135	enriched terms were fungal-type cell walls in the CC category (Fig. 3). Lipids are
136	constituents of membranes in all organisms, and the fungal-type cell wall provides
137	protection from stresses and contributes to cell morphogenesis. Based on the GO
138	enrichment results, the cell wall and cell membrane of P. sordida YK-624 were
139	significantly affected under ACE-degrading conditions. This effect was probably
140	observed because injury to the cell wall and cell membrane of <i>P. sordida</i> YK-624
141	might be caused under ACE-degrading conditions. The cell membrane permeability of
142	Stenotrophomonas maltophilia was changed when $benzo[\alpha]$ pyrene was present, and
143	cell membrane ruptures were also observed [33]. White-rot fungi can secrete
144	ligninolytic extracellular peroxidases for lignin degradation and the three main types
145	of peroxidases, namely, lignin peroxidase, manganese peroxidases and versatile
146	peroxidases. Generally, only one upregulated DEG was characterized as lignin

peroxidase, and ligninolytic extracellular peroxidases played only minor roles in ACE 147 degradation by P. sordida YK-624. It has reported that ACE was N-demethylated to 148 $(E)-N^{1}-[(6-\text{chloro-3-pyridyl})-\text{methyl}]-N^{2}-\text{cyano-acetamidine}$ (IM 2-1) by *P. sordida* 149 YK-624 [22]. This result suggested that the intracellular degradation of ACE might be 150 151 mediated by this fungus. On the other hand, the KEGG enrichment analysis of the upregulated DEGs 152 showed that tryptophan metabolism, arginine and proline metabolism, inositol 153 phosphate metabolism, MAPK signalling pathway-yeast and thiamine metabolism 154 155 were the top 5 enriched genes. Relationships to metabolic pathways were the most enriched in upregulated DEGs according to the KEGG pathway analysis (Fig. 4). 156 3.3 ACE-degrading functional genes of P. sordida YK-624 157 158 In our previous study, the degradation of ACE by P. sordida YK-624 was observed to be affected by the addition of the cytochrome P450 inhibitor piperonyl 159 butoxide. Cytochrome P450 plays an important role in the degradation of ACE by P. 160 161 sordida YK-624 [22]. In the present study, 13 DEGs were characterized as cytochrome P450 (Table S4). Cluster-261.1191, cluster-261.5282, cluster-261.6286, 162 cluster-261.3684, cluster-261.3747, cluster-261.2857, cluster-261.7977, cluster-163 261.4980, cluster-261.5914, cluster-261.7094 and cluster-261.6823 were upregulated 164

- 165 2.02~3.14-fold in ACE-degrading conditions. Two genes (cluster-261.3761 and
- 166 cluster-261.1094) were downregulated. These results suggested that cytochrome
- 167 P450s played important roles in the degradation of ACE. The typical white-rot fungus
- 168 P. chrysosporium, which is the most extensively studied, has 156 cytochrome P450-

169	encoding genes in the genome [34]. Further evolutionary analysis of cytochrome
170	P450s in <i>P. chrysosporium</i> and 12 cytochrome P450-encoded genes in this study were
171	performed. Overall, cluster-261.2857, cluster-261.1191, and cluster-261.15914
172	exhibited a very close phylogenetic relationship, whereas cluster-261.6823, cluster-
173	261.4980, cluster-261.7977, cluster-261.7094 and cluster-261.1094 (downregulated)
174	were phylogenetically close. Cluster-261.3747, cluster-261.6286 and cluster-261.5282
175	were relatively close, while cluster-261.3761 (downregulated) was clearly separated
176	in the tree (Fig. 5). Recently, a cytochrome P450, CYP5147A3 (16 d) of P.
177	chrysosporium, was determined to be responsible for the degradation of ACE, and the
178	metabolites N'-cyano-N-methylacetamidine and 6-chloro-3-pyridinemethanol were
179	identified [35]. CYP5147A3 (16 d) showed a distant phylogenetic relationship to the
180	cytochrome P450-encoding genes identified in this study (Fig. 5). This result may
181	explain why different metabolites were identified in <i>P. sordida</i> YK-624 and <i>P.</i>
182	chrysosporium.
183	According to the relevant literature, in the microbial degradation of ACE, only a
184	small number of ACE-degrading enzymes have been identified. Pure nitrile hydratase
185	(NHase) obtained from <i>E. melilot</i> i CGMCC 7333 could degrade 93.9% of ACE in the
186	reaction, and ACE was transformed to IM 1-2 [15]. In addition, a novel amidase,
187	AceAB, was purified from Pigmentiphaga sp. strain D-2; this enzyme played a major
188	role in the hydrolysis of ACE to IM 1-4 [36]. In this study, we did not detect NHase
189	and amidase among the upregulated DEGs. Some genes in the upregulated DEGs
190	were determined to encode oxidoreductases and dehydrogenases based on the Swiss-

- 191 Prot database. The genes that we obtained under ACE-degrading conditions should be
- 192 further heterologously expressed to confirm their functions.

Data Availability Statement

- 193 The datasets supporting the results of this article are deposited in the NCBI
- 194 database under accession number PRJNA690204.

Acknowledgement

- 195 The work was financially supported by the Research Project of Bureau of
- 196 Education of Guangzhou Municipality, China (no. 201831801).

References

- 197 1. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB.
- 198 Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors.
- 199 Trends Pharmacol Sci. 2001; 22(11): 573-580.
- 200 2. Tomizawa M, Casida JE. Selective toxicity of neonicotinoids attributable to
- 201 specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol.
- 202 2003; 48: 339-364.
- 3. Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanismsof
 selective action. Annu Rev Pharmacol Toxicol. 2005; 45: 247-268.
- 4. Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect
- resistance to neonicotinoid insecticides. Pestic Biochem Physiol.2015; 121: 78-87.
- 5. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M,
- 208 Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D,
- 209 Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell

210		EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van
211		Dyck H, Van Praagh J, Van der Sluijs J, Whitehorn PR, Wiemers M. Systemic
212		insecticides (neonicotinoids and fipronil): trends, uses, mode of action and
213		metabolites. Environ Sci Pollut Res Int. 2015; 22: 5-34.
214	6.	Basley K, Goulson D. Neonicotinoids thiamethoxam and clothianidin adversely
215		affect the colonisation of invertebrate populations in aquatic microcosms. Environ.
216		Sci Pollut Res Int. 2018; 25(10): 9593-9599.
217	7.	Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V. Herbertsson L,
218		Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG. Seed coating with a
219		neonicotinoid insecticide negatively affects wild bees. Nature. 2015; 521(7750):
220		77-80.
221	8.	Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. Nicotine-like
222		effects of the neonicotinoid insecticides acetamiprid and imidacloprid on
223		cerebellar neurons from neonatal rats. PLoS One. 2012; 7(2): e32432.
224	9.	Christen V, Rusconi M, Crettaz P, Fent K. Developmental neurotoxicity of
225		different pesticides in PC-12 cells in vitro. Toxicol Appl Pharmacol. 2017; 325:
226		25-36.
227	10	. Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC,
228		Liber K. Neonicotinoid contamination of global surface waters and associated risk
229		to aquatic invertebrates: A review. Environ Int. 2015; 74: 291-303.
230	11	. Goulson D. An overview of the environmental risks posed by neonicotinoid
231		insecticides. J Appl Ecol. 2013; 50: 977-987.

232	12. Khan A, Haque MM, Mir NA, Muneer M, Boxall C. Heterogeneous
233	photocatalysed degradation of an insecticide derivative acetamiprid in aqueous
234	suspensions of semiconductor. Desalination. 2010; 261(1-2): 169-174.
235	13. Mitsika EE, Christophoridis C, Fytianos K. Fenton and Fenton-Like oxidation of
236	pesticide acetamiprid in water samples: kinetic study of the degradation and
237	optimization using response surface methodology. Chemosphere. 2013; 93: 1818-
238	1825.
239	14. Dai Y, Ji W, Chen T, Zhang W, Liu Z, Ge F, Yuan S. Metabolism of the
240	neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula
241	mucilaginosa strain IM-2. J Agric Food Chem. 2010; 58(4): 2419-2425.
242	15. Zhou L, Zhang L, Sun S, Ge F, Mao S, Ma Y, Liu Z, Dai Y, Yuan S. Degradation
243	of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate
244	(IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium
245	Ensifer meliloti CGMCC 7333. J Agric Food Chem. 2014; 62(41): 9957-9964.
246	16. Sun S, Yang W, Guo J, Zhou Y, Rui X, Chen C, Ge F, Dai Y. Biodegradation of
247	the neonicotinoid insecticide acetamiprid in surface water by the bacterium
248	Variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism. RSC
249	Adv. 2017; 7: 25387.
250	17. Guo L, Yang W, Cheng X, Fan Z, Chen X, Ge F, Dai Y. Degradation of
251	neonicotinoid insecticide acetamiprid by two different nitrile hydratases of
252	Pseudaminobacter salicylatoxidans CGMCC 1.17248. Int Biodeter Biodegr.
253	2021; 157: 105141.

254	18. Phugare SS, Jadhav JP. Biodegradation of acetamiprid by isolated bacterial strain
255	Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm
256	(Bombax mori). Clean: Soil, Air, Water. 2015; 43(2): 296-304.
257	19. Tang H, Li J, Hu H, Xu P. A newly isolated strain of Stenotrophomonas sp.
258	hydrolyzes acetamiprid, a synthetic insecticide. Process Biochem. 2012; 47(12):
259	1820-1825.
260	20. Yang H, Wang X, Zheng J, Wang G, Hong Q, Li S, Li R, Jiang J. Biodegradation
261	of acetamiprid by <i>Pigmentiphaga</i> sp. D-2 and the degradation pathway. Int
262	Biodeter Biodegr. 2013; 85: 95-102.
263	21. Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H. Biodegradation of the
264	neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain
265	AAP-1 isolated from soil. Bioresour Technol. 2013; 138: 359-368.
266	22. Wang J, Hirai H, Kawagishi H. Biotransformation of acetamiprid by the white-rot
267	fungus Phanerochaete sordida YK-624. Appl. Microbiol Biotechnol. 2012; 93:
268	831-835.
269	23. Chen T, Dai Y, Ding J, Yuan S, Ni J. N-demethylation of neonicotinoid
270	insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC
271	1.1788. Biodegradation. 2008; 19(5): 651-658.
272	24. Emrich SJ, Barbazuk WB, Li L, Schnable PS. Gene discovery and annotation
273	using LCM-454 transcriptome sequencing. Genome Res. 2007; 17(1): 69-73.
274	25. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH,

275 Ecker JR. Highly integrated single-base resolution maps of the epigenome in

- 276 Arabidopsis. Cell. 2008; 133(3): 523-536.
- 277 26. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. Influence of culture
- 278 parameters on lignin metabolism by *Phanerochaete chrysosporium*. Arch
- 279 Microbiol. 1978; 117: 277-285.
- 280 27. Love MI, Huber W, Anders S. Moderated estimation of fold change and
- dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550.
- 282 28. Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing
- biological themes among gene clusters. OMICS. 2012; 16(5): 284-287.
- 284 29. Livak K, Schmittgen T. Analysis of relative gene expression data using real-time
- quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods. 2001; 25(4):
- **402-408**.
- 30. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing
 phylogenetic trees. Mol Biol Evol. 1987; 4: 406-425.
- 289 31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics
- analysis version 7.0 for bigger datasets. Mol Biol Evo. 2016; 33(7): 1870-1874.
- 291 32. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by

using the neighbor-joining method. PNAS. 2004; 101(30): 11030-11035.

- 293 33. Chen S, Yin H, Ye J, Peng H, Liu Z, Dang Z, Chang J. Influence of co-existed
- benzo[a]pyrene and copper on the cellular characteristics of *Stenotrophomonas*
- 295 *maltophilia* during biodegradation and transformation. Bioresour Technol. 2014;
- 158: 181-187.
- 297 34. Hirosue S, Tazaki M, Hiratsuka N, Yanai S, Kabumoto H, Shinkyo R, Arisawa A,

298	Sakaki T, Tsunekawa H, Johdo O, Ichinose H, Wariishi H. Insight into functional
299	diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete
300	chrysosporium: Involvement of versatile monooxygenase. Biochem Bioph Res
301	Co. 2011; 407(1): 118-123.
302	35. Wang J, Ohno H, Ide Y, Ichinose H, Mori T, Kawagishi H, Hirai H. Identification
303	of the cytochrome P450 involved in the degradation of neonicotinoid insecticide
304	acetamiprid in Phanerochaete chrysosporium. J Hazard Mater. 2019; 371: 494-
305	498.
306	36. Yang H, Hu S, Wang X, Chuang S, Jia W, Jiang J. Pigmentiphaga sp. strain D-2
307	uses a novel amidase to initiate the catabolism of the neonicotinoid insecticide

acetamiprid. Appl Environ Microbiol. 2020; 86(6): e02425-19.

Figure Legends

Fig. 1 Volcano plot of DEGs in ACE_K (with ACE) versus K_c (without ACE) of *P. sordida* YK-624. Red plot: upregulated genes; green plot: downregulated genes; blue plot: nonsignificant genes.

Fig. 2 GO classification of DEGs of *P. sordida* YK-624. Blue: biological process (BP) categories; yellow: cellular component (CC); green: molecular function (MF) categories.

Fig. 3 KEGG pathway classification of upregulated genes involved in ACE degradation.Fig. 4 Correlation analysis between qRT-PCR (histogram) and RNA-Seq (line) results for upregulated genes.

Fig. 5 Evolutionary relationships of cytochrome P450s. The analysis involved 168 nucleotide sequences. Codon positions included were $1^{st} + 2^{nd} + 3^{rd} + Noncoding$. All positions containing gaps and missing data were eliminated. Red: upregulated; blue: downregulated.

Supplementary material

Table S1 Primers used for qRT-PCR.

Table S2 Summary of transcripts information.

Table S3 Details of the five upregulated DEGs for qRT-PCR.

Table S4 Details of cytochrome P450 monooxygenase in the DEGs of P. sordida YK-

624.

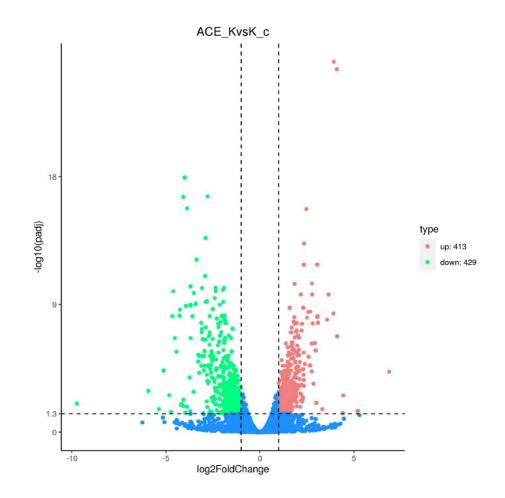


Fig. 1 Volcano plot of DEGs in ACE_K (with ACE) versus K_c (without ACE) of *P. sordida* YK-624. Red plot: upregulated genes; green plot: downregulated genes; blue plot: nonsignificant genes.

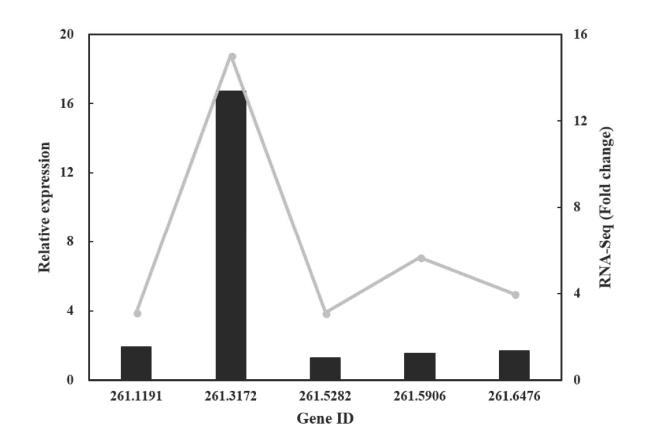


Fig. 2 Correlation analysis between qRT-PCR (histogram) and RNA-Seq (line) results for upregulated genes.

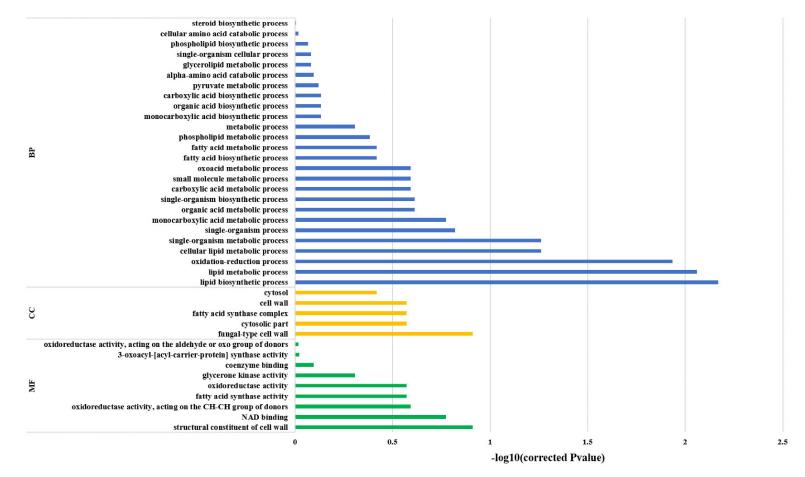


Fig. 3 GO classification of DEGs of *P. sordida* YK-624. Blue: biological process (BP) categories; yellow: cellular component (CC); green: molecular function (MF) categories.

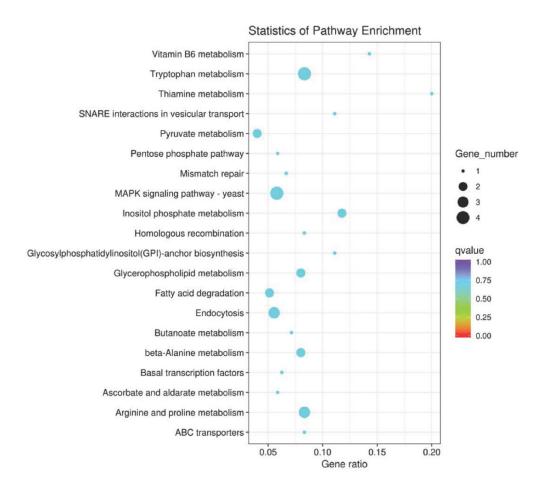


Fig. 4 KEGG pathway classification of upregulated genes involved in ACE degradation.

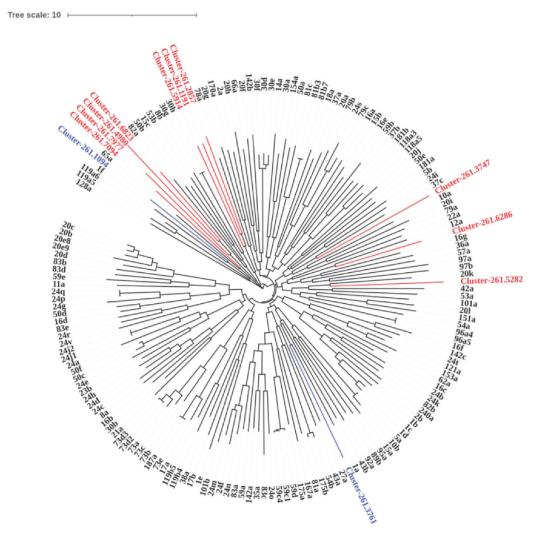


Fig. 5 Evolutionary relationships of cytochrome P450s. The analysis involved 168 nucleotide sequences. Codon positions included were $1^{st} + 2^{nd} + 3^{rd} + Noncoding$. All positions containing gaps and missing data were eliminated. Red: upregulated; blue: downregulated.

RNA-Seq analysis of *Phanerochaete sordida* YK-624 degrades neonicotinoid pesticide acetamiprid

Jianqiao Wang ^a, Yilin Liu ^a, Ru Yin ^a, Nana Wang ^a, Tangfu, Xiao ^a, Hirofumi Hirai ^{b,} c*

^a Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China

^b Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

^c Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

* Corresponding author: Hirofumi Hirai
Mailing address: Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku,
Shizuoka 422-8529, Japan
Tel. & Fax: +81 54 238 4853 *E-mail address:* hirai.hirofumi@shizuoka.ac.jp

Materials and methods

RNA isolation and cDNA library construction

Total RNA was extracted by RNAprep Pure Plant Kit (DP441, TianGen, China) and the quality was assessed by the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). For cDNA library construction, mRNA was purified form 1 µg total RNA and then fragmentated using divalent cations. The first strand of cDNA was synthesized by M-MULV reverse transcriptase and random hexamer primer. The second strand of cDNA was synthesized from dNTPs by DNA Polymerase I system. The library fragments were filtrated by AMPure XP system (Beckman Coulter, Beverly, USA) for cDNA fragments selection. The cDNA library was obtained after PCR amplification and then purified by AMPure XP system. Lastly, the quality of the cDNA library was Agilent 2100 Bioanalyzer and qRT-PCR used for assay.

Primer	Sequence (5'-3')
261.1192-F	GGGTAGGCAGTCGAAGCAG
261.1192-R	TCGTCCCAACGATCCAAAGC
261.3172-F	AGCTTCCAGACTCGCCTCTA
261.3172-R	TTCACGCTGTTCTCGTTTGC
261.5282-F	GACGCGCATAGACGTACTCA
261.5282-R	ACGTCCACACTTGCTCTCTG
261.5906-F	GTGCAGATAGGGGGGAGGAGA
261.5906-R	ATCGAGGTTCCTGGCTCAAC
261.6476-F	TGTGTCTTGTGCGCTGTAGT
261.6476-R	TCTCGTATGGGTCGGTCCTT
ActinF	AGCACGGTATCGTCACCAAC
ActinR	AGCGAAACCCTCGTAGATGG

Table S1 Primers used for qRT-PCR.

Sample	Raw	Clean	Clean	Error	Q20	Q30	GC Content
	Reads	Reads	Bases	(%)	(%)	(%)	(%)
ACE_K_c1	34077422	33105452	9.93G	0.02	98.45	95.55	61.97
ACE_K_c2	36250896	34277777	10.28G	0.02	98.43	95.64	61.68
ACE_K_c3	35179092	33236392	9.97G	0.02	98.38	95.51	61.61
ACE_K1	38974305	37992959	11.4G	0.02	98.47	95.6	61.84
ACE_K2	37208058	36011948	10.8G	0.02	98.41	95.48	62.06
ACE_K3	35101066	34038581	10.21G	0.02	98.27	95.15	61.89

Table S2 Summary of transcripts information.

Gene_id	ACE_K	ACE_K_c	Log ₂ Fold	<i>P</i> value	padj	Gene	Swiss-prot
	readcount	readcount	Change			Length	Description
Cluster-	4213.2621	279.83648	3.9116	1.93E-11	4.25E-09	3327	Oxidoreductase
261.3172	72	85					ptaJ
Cluster-	58258.055	10253.102	2.5064	4.77E-11	8.38E-09	5122	Dehydrogenase
261.5906	95	36					citC
Cluster-	15179.940	3805.8387	1.9959	1.41E-06	6.25E-05	5870	Carboxylesterase
261.6476	34	79					В
Cluster-	518.97072	164.95542	1.6528	2.26E-04	4.34E-03	2069	Cytochrome P450
261.1191	74	65					monooxygenase
							FUM15
Cluster-	815.75998	262.11546	1.638	8.07E-10	9.32E-08	3726	Cytochrome P450
261.5282	34	7					monooxygenase
							FUM15

Table S3 Details of the five upregulated DEGs for qRT-PCR.

Log₂Fold change values of transcripts upregulated in ACE addition is represented by positive numbers and downregulated is represented by negative numbers.

Padj: adjust P-value

Gene_id	ACE_K	ACE_K_c Log ₂ Fold		<i>P</i> value	padj	Gene	
	readcount	readcount	Change			Length	
Cluster-	518.97072	164.95542	1.6528	0.00022579	0.0043409	2069	
261.1191	74	65					
Cluster-	815.75998	262.11546	1.638	8.07E-10	9.32E-08	3726	
261.5282	34	7					
Cluster-	1487.4563	498.17270	1.5783	2.73E-07	1.58E-05	2294	
261.6286	22	06					
Cluster-	63.816578	21.569511	1.5604	0.0022831	0.026072	430	
261.3684	86	35					
Cluster-	3479.5366	1194.0427	1.543	0.00040496	0.0068331	2560	
261.3747	6	86					
Cluster-	602.23945	226.80849	1.4075	3.88E-05	0.0010313	4057	
261.2857	42	03					
Cluster-	451.00553	176.05949	1.3557	0.00018763	0.0037126	1980	
261.7977	59	75					
Cluster-	6138.9863	2436.9011	1.3329	0.001496	0.018731	6664	
261.4980	43	9					
Cluster-	2210.3949	916.67368	1.2696	0.0022931	0.026123	4241	
261.5914	82	79					
Cluster-	2651.5234	1149.4526	1.2056	3.92E-05	0.0010376	9394	
261.7094	59	61					
Cluster-	308.57741	152.62394	1.0158	0.00084337	0.01213	2651	
261.6823	78	3					
Cluster-	482.64103	989.95265	-1.0361	0.0019228	0.022956	3780	
261.3761	08	78					
Cluster-	233.78145	518.58893	-1.1504	0.00032666	0.0058306	4566	
261.1094	96	34					

Table S4 Details of cytochrome P450 monooxygenase in the DEGs of *P. sordida* YK-624.

Log₂Fold change values of transcripts upregulated in ACE addition is represented by positive numbers and downregulated is represented by negative numbers.

Padj: adjust P-value