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ABSTRACT 15 

A novel compound (1) and three known compounds (2−4) were isolated from the 16 

fruiting bodies of Hypholoma fasciculare. The structure of 1 was determined by the 17 

interpretation of spectroscopic data. Compounds 2−4 were identified by comparing the 18 

spectra data of known compounds. In the bioassay examining growth inhibitory activity 19 

against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae and 20 

Peptobacterium carotovorum, compounds 1, 2 and 4 showed inhibition effects on C. 21 

michiganensis only. 22 
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Hypholoma fasciculare (Japanese name: Nigakuritake) is a small, bitter 26 

poisonous mushroom of the genus Hypholoma. The mushroom is widely distributed 27 

worldwide and grows on the stumps of old trees in tufts (Shiono et al. 2004). This 28 

mushroom is known to produce diverse compounds including steroids, triterpenoids 29 

and sesquiterpenoids, and the toxic components have been identified as lanostane 30 

triterpenoids. (Kim et al.1997; Ikeda et al. 1997; Kubo et al. 1985; Suzuki et al. 1983; 31 

Takahashi et al. 1989; Doi et al. 1990). Fasciculols A−F inhibited the growth of Chinese 32 

cabbage seedlings (Ikeda et al. 1997a-c). Fasciculol D also showed antimicrobial 33 

activity against Staphylococcus aureus and Klebsiella pneumoniae (Ikeda et al. 1997a). 34 

Moreover, fasciculols E and F paralyzed the respiratory center of mice and caused death 35 

(Suzuki et al. 1983). Fasciculic acids A−C have been isolated as calmodulin inhibitors 36 

(Takahashi et al. 1989).  37 

Phytopathogenic fungi and bacteria can reduce crop yields and cause extensive 38 

damage (Dang et al. 2014). Among the phytopathogenic bacteria, most are Gram-39 

negative, however, of some Gram-positive phytopathogens sometimes can also cause 40 

significant losses in crop cultivation (Gartemann et al. 2003). To control the plant 41 

disease rapidly and effectively, one generally achieved way is using synthetic pesticides 42 

and antibiotics (Kotan et al. 2014). However, these chemicals are associated with 43 

undesirable effects on the environment due to their slow biodegradation in the 44 

environment and some toxic residues in the degraded products for mammalian health 45 

(Barnard et al. 1997; Isman et al. 2000). Therefore, it is important to look for effective 46 

chemicals from natural sources that can be used against phytopathogenic bacteria 47 
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without affecting the environment. Although the lanostane triterpenoids from this 48 

mushroom have been reported many biological activities, any research based on the 49 

aspect mentioned above has not been carried out. In this study, we describe the isolation, 50 

structural determination, and anti-phytopathogenic bacterial activity of the compounds. 51 

  52 
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Results and discussion 53 

The fresh fruiting bodies of H. fasciculare were extracted with EtOH and 54 

acetone. The solutions were combined and concentrated under reduced pressure. The 55 

concentrated extracts were partitioned between n-hexane and water, and then EtOAc 56 

and water, successively. The water soluble part was dried under reduced pressure, and 57 

then extracted with EtOH. The EtOAc soluble part was fractionated by repeated 58 

chromatography and four compounds (1–4) were purified (Figure 1). 59 

Compound 1 was obtained as a colorless gum with a molecular formula of 60 

C40H67NO10 deduced by the molecular ion peak [M + Na] + at m/z 744.4650 (calcd for 61 

C40H67NO10Na, 744.4657) in the HRESIMS. The structure of 1 was elucidated by 62 

interpretation of NMR spectra (Table 1) including DEPT, COSY, HMQC, and HMBC 63 

(Figures S1-5). The 13C NMR, DEPT and HMQC data established the presence of 10 64 

methyls, 12 methylenes, 7 methines and 11 tetrasubsutituted carbons, including two 65 

olefinic carbons [δC 133.7 and 136.7], two oxygenated tetrasubsutituted carbons [δC 71.6 66 

and 73.9], and three carboxy groups [δC 171.3, 173.1 and 174.0]. The 1H NMR showed 67 

the presence of signals due to nine methyls [δH 0.65 (s), 0.91 (s), 0.91 (s), 1.08 (s), 1.11 68 

(s), 1.13 (s), 1.16 (s), 1.26 (t) and 1.41 (s)], a secondary methyl [δH 1.03 (d, J = 6.5 Hz)], 69 

and four oxygenated methines [δH 3.22 (m), 3.82 (ddd, J = 12.0, 10.1, 4.6 Hz), 4.00 (d, 70 

J = 7.8 Hz), and 4.57 (d, J = 10.1 Hz)]. All these data showed that 1 is a lanostane 71 

triterpenoid. The lanostane skeleton was elucidated by the HMBC correlations (H-1/C-72 

2, 3, 5, 10; H-3/C-2, 4, 28, 29; H-5/C-3, 4, 6, 7, 10; H-7/C-5, 8, 9, 14; H-11/C-8, 9, 12; 73 

H-12/C-9, 13, 14, 18; H-15/C-13, 14, 16, 30; H-17/C-13, 14, 20; H-18/C-13, 14, 17; H-74 
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19/C-1, 5, 9, 10; H-21/C-20, 22; H-22/C-21; H-23/C-22; H-24/C-22, 23, 25, 26; H-75 

26/C-24, 25, 27; H-27/C-24, 25, 26) and the COSY correlations (H-1/H-2, H-2/H-3, H-76 

5/H-6, H-6/H-7, H-11/H-12, H-16/H-17, H-17/H-20, H-23/H-24) (Figure 2). Moreover, 77 

the HMBC correlations (H-3/C-1') confirmed the presence of the side chain is 78 

combined with C-3. The structure of side chain was elucidated by the HMBC 79 

correlations (H-2’/C-1’, 3’, 4’, 5’; H-4’/C-2’, 3’, 5’; H-5’/C-2’, 3’, 4’, 6’; H-7’/C-6’, 8’; 80 

H-9’/C-8’, 10’; H-10’/C-9’) (Figure 2). As a result, the plane structure of 1 was 81 

determined as shown in Figure 1, which is similar to fasciculol G (2) except an ethoxy 82 

group at C-8’. The absolute configuration except for C-3’of 1 was determined by the 83 

comparation of NMR chemical shift (Kim et al. 2013) and the CD spectrum of 2 84 

(Figure S6), however, the absolute configuration at C-3’ remains unknown (Figure 1).  85 

Since EtOH was used for the extraction and fractionation, there is a possibility 86 

that 1 is an artifact. To confirm that 1 is a natural product, the fruiting bodies of H. 87 

fasciculare were extracted with MeOH and fractionated by middle pressure liquid 88 

chromatography not using EtOH. As a result, LC-MS/MS analysis showed the 89 

existence of 1 in a fraction (Figure S7). 90 

Compound 2 was identified as fasciculol G, which has significant selective 91 

cytotoxicity against the SK-MEL-2 cell line of malignant melanoma (IC50＝8.60 M) 92 

(Kim et al. 2013) (Figures S8-12). Compound 3 was identified as fasciculic acid B, 93 

which showed inhibition activity of plant growth (Takahashi et al. 1989) (Figures S13-94 

17). Compound 4 has been isolated from the mushroom of Naematoloma sublateritium 95 

as fasciculol B (Bernardi et al. 1981) (Figures S18-22), which has the activity to inhibit 96 
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the root elongation of the plant (Ikeda et al. 1977c) (Figure 1).  97 

Compounds 1 to 4 were tested for effect on the growth of Clavibacter 98 

michiganensis, Burkholderia glumae, and Pectobacterium carotovorum. C. 99 

michiganensis, a Gram-positive plant pathogenic bacterium, is the causal agent of 100 

bacterial canker disease of tomato (Davis et al. 1984). B. glumae, a Gram-negative 101 

bacterium, was first described in Japan as the cause of grain rotting and seedling blight 102 

on rice (Gartemann et al. 2003; Goto et al. 1956). P. carotovorum causes soft-rot disease 103 

in diverse plants (Roh et al. 2010). As a result, 1, 2 and 4 inhibited the growth of C. 104 

michiganensis at 0.1 mol/paper disc (Figure 3, Table 2), while all the compounds 105 

showed no activity against the growth of B. glumae and P. carotovorum.  106 

A comparison of the structures between 1 to 4 indicated that the carboxy group 107 

at C-6’ of 3 weakened the inhibition of the growth of C. michiganensis. This bacterium 108 

is one of the most severe pathogens of tomato (Jacques et al. 2012). Control of the 109 

bacterium is known to be very difficult (Fatmi et al. 2017). In addition, there are very 110 

few control measures for gram-positive bacterial plant pathogens. 1, 2 and 4 could be 111 

leading compounds for development of specific antibacterial agents against C. 112 

michiganensis. 113 

  114 
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Experimental 115 

General Experimental procedures 116 

1H NMR spectra (one- and two-dimensional) were recorded on JNM-ECZ500R 117 

spectrometer at 500 MHz, and 13C NMR spectra were recorded on the same instrument 118 

at 125 MHz (JEOL, Tokyo, Japan). HRESIMS spectra were measured on a JMS-119 

T100LP mass spectrometer (JEOL, Tokyo, Japan). An FT/IR-4100 (Jasco, Tokyo, Japan) 120 

instrument was used to record the IR spectra, and the specific rotation values were 121 

measured by a Jasco DIP-1000 polarimeter (Jasco, Tokyo, Japan). CD spectra was 122 

recorded by J-820 Spectropolarimeter. HPLC separations were performed with a Jasco 123 

Chromatography Data Station ChromNAV system using reverse-phase HPLC columns 124 

(ODS-P, InertSustain, Tokyo, Japan). Silica gel plate (Merck F254), ODS gel plate 125 

(Merck F254), and silica gel 60 N (Kanto Chemical, Tokyo, Japan) were used for 126 

analytical TLC and for flash column chromatography. All solvents used throughout the 127 

experiments were obtained from Kanto Chemical Co. (Tokyo, Japan). 128 

 129 

Fungal Material 130 

Fresh fruiting bodies of H. fasciculare were collected at Narusawa village, 131 

Yamanashi Prefecture, Japan, in 2018 and identified by one of the author, H. Ko.. The 132 

fruiting bodies (aerial part) were cut with a knife and preserved in a refrigerator at     133 

-30°C until extraction. 134 

 135 

Extraction and Isolation  136 
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The fresh fruiting bodies of H. fasciculare (9.0 kg) were extracted with EtOH 137 

(27 L, 3 times) and then with acetone (15 L, 3 times). The solutions were combined, 138 

concentrated under reduced pressure, and partitioned between n-hexane and water, 139 

ethyl acetate (EtOAc) and water, and the water part concentrated under reduced 140 

pressure, and extracted with EtOH, successively. The EtOAc soluble part (35.7 g) was 141 

fractionated by silica gel flash column chromatography (50% n-hexane/CH2Cl2, 142 

CH2Cl2, 80%, 60%, 50%, 40%, 30%, 20%, 10% CH2Cl2/acetone, 70%, 50%, 40%, 30%, 143 

20% CH2Cl2/MeOH, MeOH) to obtain 18 fractions (Fractions 1~18), and fraction 12 144 

(1.0 g) was further separated by silica gel flash column chromatography (CH2Cl2, 95%, 145 

90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 146 

15%, 10%, 5% CH2Cl2/MeOH; MeOH; acetone and MeOH; 1.5 L each) to obtain 15 147 

fractions (Fractions 12-1~12-15). Fraction 12-3 (210.3 mg) was further separated by 148 

reverse-phase HPLC (ODS-P, 80% MeOH) to afford compound 1 (1.9 mg). Compound 149 

2 (4.0 mg) was purified from fraction 12-2 (90.7 mg) by reverse-phase HPLC (ODS-P, 150 

80% MeOH). Fraction 12-5 (48.6 mg) was separated by reverse-phase HPLC (ODS-P, 151 

80% MeOH) to afford compound 3 (3.8 mg) and compound 4 (3.5 mg).  152 

 153 

 Compound 1: Colorless gum; 1H and 13C NMR, see Table 1; [α]D 25 +30 (c 0.20, 154 

MeOH); ESIMS m/z 744 [M + Na] +; HRESIMS m/z 744.4650 [M + Na] + (calcd for 155 

C40H67NO10Na, 744. 4657). 156 

 157 

Antibacterial Activity  158 
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YP medium (yeast extract 5 g/L, peptone 10 g/L, agar 15 g/L) was mixed with 159 

100 L of suspensions of three plant phytopathogenic bacterial (Burkholderia glumae 160 

SUPP1744, Peptobacterium carotovorum SUPP8, and Clavibacter michiganensis 161 

SUPP573). 0.1, 0.05, and 0.01 μmol of each compound were dissolved in MeOH, and 162 

40 L of sample was processed on paper discs. The discs were incubated at 28°C for 3 163 

days and observed. 164 

 165 
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Figure 1. Structures of 1−4. 

 

 

Figure 2. 1H−1H COSY and HMBC correlations for 1. 
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Figure 3. Activity of 1 to 4 against Burkholderia glumae, Pectobacterium carotovorum 

and Clavibacter michiganensis (positive control, ampicillin). 
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Table 1. NMR data for 1 in CD3OD.  

1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Symbols "*" and "**" represent that the values with the same symbol are interchangeable between 
each other. 

Position C, type H (type, multiplicity, J in Hz) 
1 45.0, CH2 1.36 (m) 

2.09 (m) 
2 68.0, CH 3.82 (ddd, 12.0, 10.1, 4.6) 
3 85.9, CH 4.57 (d, 10.1) 
4 40.1, C  
5 51.8, CH 1.27 (m) 
6 19.3, CH2 1.58 (m) 

1.72 (m) 
7 27.3, CH2 2.10 (m) 
8 136.7, C  
9 133.7, C  
10 39.0, C  
11 34.6, CH2 2.08 (m) 

2.67 (m) 
12 73.6, CH 4.00 (d, 7.8) 
13 50.6*, C  
14 50.7*, C  
15 33.2, CH2 1.16 (m) 

1.69 (m) 
16 29.0, CH2 1.38 (m) 

1.53 (m) 
17 44.1, CH 2.21 (m) 
18 17.0, CH3 0.65 (s) 
19 20.5, CH3 1.08 (s) 
20 37.6, CH 1.44 (m) 
21 18.0, CH3 1.03 (d, 6.5) 
22 34.4, CH2 1.28 (m) 

1.53 (m) 
23 29.0, CH2 1.38 (m) 

1.53 (m) 
24 79.8, CH 3.22 (m) 
25 73.9, C  
26,27 25.0, CH3 

25.7, CH3 
1.13 (s) 
1.16 (s)  

28 29.1**, CH3 0.91 (s)  
29 18.0**, CH3 0.91 (s)  
30 25.3, CH3 1.11 (s) 
1’ 173.1, C  
2’ 46.9, CH2 2.73 (s) 
3’ 71.6, C  
4’ 28.0, CH3 1.41 (s) 
5’ 47.3, CH2 2.59 (s) 
6’ 174.0, C  
7’ 42.0, CH2 3.92 (d, 17.5) 

3.95 (d, 17.5) 
8’ 171.3, C  
9’ 62.3, CH2 4.18 (q, 7.2) 
10’ 14.5, CH3 1.26 (t, 7.2) 
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Table 2. Inhibitory activity of 1–4 for C. michiganensis (0.1 mol/paper disca). 

Bacterial 
Diameter of inhibition zone (mm) 

ampicillin 1 2 3 4 

C. michiganensis 
33.0 9.7 10.7 na b 10.0 
33.1 10.1 11.8 na 10.1 

a paper disc (8.0 mm in diameter) 
b no activity 
 


