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Abstract: An ultra-high-speed computational CMOS image sensor with a burst frame rate of
303 megaframes per second, which is the fastest among the solid-state image sensors, to our knowl-
edge, is demonstrated. This image sensor is compatible with ordinary single-aperture lenses and
can operate in dual modes, such as single-event filming mode or multi-exposure imaging mode,
by reconfiguring the number of exposure cycles. To realize this frame rate, the charge modulator
drivers were adequately designed to suppress the peak driving current taking advantage of the
operational constraint of the multi-tap charge modulator. The pixel array is composed of macropixels
with 2 × 2 4-tap subpixels. Because temporal compressive sensing is performed in the charge do-
main without any analog circuit, ultrafast frame rates, small pixel size, low noise, and low power
consumption are achieved. In the experiments, single-event imaging of plasma emission in laser
processing and multi-exposure transient imaging of light reflections to extend the depth range and to
decompose multiple reflections for time-of-flight (TOF) depth imaging with a compression ratio of
8× were demonstrated. Time-resolved images similar to those obtained by the direct-type TOF were
reproduced in a single shot, while the charge modulator for the indirect TOF was utilized.

Keywords: ultra-high-speed imaging; multi-tap CMOS image sensor; charge modulator; compressive
imaging; computational imaging

1. Introduction

Ultra-high-speed (UHS) cameras are utilized to observe ultrafast phenomena in the
fields of science and industry [1]. Solid-state UHS cameras are advantageous compared
with other technologies based on streak cameras or ultra-short pulse lasers [2,3] in terms
of compactness, durability, and mass productivity, although increasing the frame rate is a
challenge. To realize ultrafast frame rates that cannot be achieved by ordinary continuous-
readout image sensors, the burst readout scheme is utilized. Burst readout UHS image
sensors are equipped with on-chip frame memory, where images are stored for a short
time. There are several implementations, such as CCD or CMOS, with pixelwise or column-
wise memory. UHS image sensors with on-chip analog frame memory have achieved
20 megaframes per second (Mfps)) [4]. UHS CMOS image sensors with in-pixel memory
are more suitable for high frame rates, and have demonstrated burst image acquisition at
over 100 Mfps [5,6]. The maximum frame rate is limited by the time to write a pixel value
into the frame memory or to operate the CCD registers with an acceptable charge transfer
efficiency.
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We proposed a multi-aperture UHS image sensor that adopted an entirely different
scheme using compressive sensing, which was motivated by computational photogra-
phy [7,8]. Compressive video is a similar technique, although the frame rates are close to
video rates, namely, 30 fps [9,10]. In this scheme, input optical images are compressed in the
charge domain as an inner-product or correlation with a random, temporally coded shutter
at each pixel. Because the pixels themselves work as the frame memory, no additional
frame memory or signal processing circuit on the chip is required. The most important
advantage is that the burst frame rate is determined only by the speed of one-step charge
transfer from the photodiode to the storage diode. Furthermore, this image sensor can be
used for both multi-exposure imaging, such as time-of-flight (TOF) range imaging, and
single-event filming, whereas conventional UHS image sensors can implement either of
these two filming modes. The key device in this image sensor is a charge modulator, which
is mainly used in indirect time-of-flight image sensors [11]. For example, charge modulators
based on photogate [12], transfer gate [13,14], and lateral electric field charge modulator
(LEFM) [15] have been demonstrated. A single-electron avalanche diode (SPAD) [16] is
the core device of direct TOF, and it cannot be used in single-event ultrafast imaging
because of the limitation of the photon rate, which is determined by the dead time and
shared time-to-digital converters. The charge modulator is suitable for the compression
of UHS images because low-level time-domain signal processing, i.e., the inner-product
or correlation operation between an incident light signal and an electric gating signal, is
performed in the charge domain. However, one of the drawbacks of a multi-aperture UHS
image sensor is that it requires unconventional multi-aperture optics, making it difficult
to combine this image sensor with traditional single-aperture lenses. This limitation can
be overcome by adopting a macro-pixel-based architecture [17], which is compatible with
conventional lenses. However, the design issues of the pixel driver limit the burst frame
rate to 73 Mfps.

This paper presents the fastest silicon UHS image sensor that utilizes charge-modulator-
based macropixels with 2× 2 4-tap subpixels (16 taps per macropixel). The burst frame rate
is 303 Mfps. To achieve this frame rate, the pixel drivers were adequately designed to sup-
press the peak current, taking advantage of the driving constraint of the multi-tap charge
modulators. In total, 32 images are reproduced from 4 compressed mosaic images captured
in a single shot. This image sensor can operate in dual modes, such as single-event mode or
multi-exposure mode, selectively, although conventional UHS image sensors cannot used
as TOF image sensors and vice versa. In Section 2, the fundamental procedures of image
acquisition and signal processing are shown. In Section 3, the implementation of a new
image sensor is described. In Section 4, the fabricated image sensor is characterized and
temporally compressive filming in single-event and multi-exposure modes is demonstrated.
In Section 5, some issues with the sensor and future work are discussed.

2. Macro-Pixel Multi-Tap Computational CMOS Image Sensor Architecture
2.1. Imaging System Configuration

Figure 1 shows an overview of the image sensor and imaging system. The image
sensor has an array of macropixels. They are composed of 2 × 2 4-tap subpixels, each
of which has a photodiode and four storage diodes. Charge transfer is controlled by a
temporally coded shutter. First, an optical image of the object is formed on the image
sensor by a single-aperture lens with a point spread function (PSF) that can cover the
whole macropixel. In filming, an inner-product, or correlation, of the optical images and a
temporally-coded shutter for each subpixel and tap is stored in the storage diode of each
tap. Next, four temporally compressed mosaic images or inner-product images are read
out. Finally, a series of original images is reproduced by solving an inverse problem on
a computer with a compressive sensing solver with the PSF and the temporal impulse
response of the taps measured beforehand.
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Figure 1. Flow of image acquisition and reproduction. * is the convolution operator.

2.2. Compressive Sensing and Imaging

Image acquisition and reproduction are based on compressive sensing [18–21]. The
mathematical representation of compressive sensing is briefly mentioned here. When we
consider an N-dimensional column vector x, an M× N matrix A, and an M-dimensional
column vector y, the relationship is denoted by

y = Ax. (1)

Note that x is an original input signal, and y is the signal measured through the
measurement matrix A, which is known. When N > M, the original signal x is compressed.
We can reproduce the original input signal x by solving the inverse problem from y and A
with a sparsity constraint.

The image sensor response, applied coded shutters, and PSF of the imaging lens
are represented by the single measurement matrix A. When we think of a single point
measurement case for simplicity, it is assumed that A is composed of M sets of temporal
shutters given by an M× N-dimensional matrix. Note that N is the shutter length or the
number of input images, and M is the number of compressed images. Note that in the
case of two-dimensional imaging with image sensors, the dimensions of N and M are
multiplied by the number of pixels of the image sensor. The number of total taps is as many
as that of the taps in the subpixel times that of the subpixels in the macro-pixel, namely,
M = 4 × 4 = 16. When the number of the pixels for one reproduced image is equal to that
of the subpixels of the image sensor, the compression ratio is defined by the ratio of the
number of the reproduced images to that of the taps in each subpixel.

We assume that the original input signal x is K-sparse, which means that only K
elements have non-zero values and all the other elements are zero. Total variation (TV)
minimization is widely used to solve l1-norm minimization problems. The original input
signal x is estimated as

x̂(TV) = argmin
x

Σi ‖ Dix ‖1 subject to y = Ax, (2)
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where Di is the differential operator used to subtract an adjacent element from the i-th
element.

Applications of compressive sensing have been widely studied in a variety of fields,
such as video capturing [22], multi-spectral imaging [23], astronomy [24], medicine [25],
security [26], manufacturing [27], and so on. Dedicated spatio-temporal compressive
CMOS image sensors have been developed for efficient image acquisition with low power
consumption, higher frame rates, or higher pixel count. Articles on compressive image
sensors based on the image compression by analog or digital circuits are reviewed in [28].
The authors of [9,10] adopt a different signal compression scheme where the signal is
compressed in the charge domain in pixel. This scheme is advantageous in temporal
compression in terms of pixel size and power consumption. Our method is also based
on charge domain signal compression to achieve ultra-high frame rates, as described in
Section 1.

3. Chip Implementation
3.1. Sensor Architecture

The sensor architecture is shown in Figure 2. There are two major issues in the circuit
design of the UHS computational CMOS image sensor. Firstly, to realize a high operational
frequency, which is the same as the burst frame rate, the portion of the shutter controller
circuits operating at the maximum frequency should be minimized. This operation scheme
is also effective at reducing the power consumption. Secondly, for the charge modulator
drivers, the suppression of the peak driving current is key. Because the drivers share
the same power and ground lines, the number of drivers that operate at the same time
should be reduced. Otherwise, the voltage drop in the shared lines will cause a significant
performance degradation in the charge modulation. These issues are solved by the circuit
architecture design, as mentioned below.
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Figure 2. Image sensor architecture.

The shutter controller (SC) stores shutter patterns and provides them to the charge
modulator drivers. The start and stop timings of filming are controlled by the external
signal, TRG. The shutter patterns are denoted by GSPx[4:1] (x: subpixel index, number in
the brackets: tap index, as shown in Figures 1 and 3. The shutter pattern memory stores 1
to 32 8-bit patterns for each of the 16 taps, which are programmed via SPI-1 (SPI: serial to
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parallel interface). The shutter pattern length, phase lock loop (PLL) frequency, and other
image sensor operation parameters are programmed via SPI-2. As described below, tap-4
can work as a charge drain when ENDRN is asserted. During the capture-ready state, the
drain controller always sets GSPx[4] to H.
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3.2. Pixels and Drivers

Figure 3 shows the architecture of the charge modulator drivers and macropixel array,
which reduces the peak driving current of the drivers at a high operational frequency by
taking advantage of the driving constraint of the multi-tap charge modulator. One of the
most significant design issues of the charge modulator driver is an IR voltage drop on the
power lines, since huge charge/discharge and transient currents for the whole pixel array
flow into them. In this design, power lines are separately prepared for each subpixel. Note
that for multi-tap charge modulators, it is allowed to turn on only one tap for a multi-tap
charge modulator, since the amount of charge transferred to the taps becomes uncertain
when multiple taps turn on at the same time. Taking advantage of this operational rule,
the maximum current that flows into the power lines can be limited. In the architecture
shown in Figure 3, the Hamming distance of the shutter pattern for a subpixel between
the adjacent timings is necessarily zero or four (not more). A subpixel circuit is also shown
in Figure 3. The charge modulator is based on the LEFM shown in [29]. The charges are
stored at FDs. The value j indicates a row position (j = 0, 1, . . . ). Because tap-4 can work as
a drain, a reset signal RS4 <2j + 1> is separately prepared. When ENDRN is H, RS4 <2j + 1>
always becomes H to drain the charges transferred to tap-4.

3.3. Timing Chart

This image sensor can be set to operate in dual modes, such as single-event mode or
multi-exposure mode, selectively, by reconfiguring the number of exposure cycles. Figure 4
shows example waveforms of the control signals. Filming begins when TRG = H is detected
at the negative edge of CLK. The other parts of SC work at the positive edge of CLK. Next,
RDY, which indicates capture-ready, turns to L, and the shutter patterns are read out from
memory. In the single-event mode, TRG should turn to L once RDY becomes L. Memory
readout is performed for each of the 16 taps in parallel. SYNC is an output signal to indicate
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the beginning of the cycle of the shutter patterns. SYNC is used to trigger the emission of
pulsed light e.g., in time-of-flight range imaging applications. To control the number of
cycles or exposure time in multi-exposure mode, users are to count the number of SYNC
pulses. When the count reaches an expected value, TRG should turn to L.
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Here, the operation for a tap is described. To speed up the pattern readout and reduce
power consumption, the shutter pattern is first transferred to the 8-bit shift register for every
8 bits and is then output bit by bit. The address of the memory is specified by ADR[4:0].
The length of the shutter pattern is given by SHLN[5:0]. When FETCH is asserted, the 8-bit
output from the memory is fetched by the shift register. Otherwise, the content of the shift
register is shifted by one bit. This configuration minimizes the number of circuits operating
at the highest frequency, and is suitable for increasing the operational frequency of the
shutter controller. Operation at 1 GHz was verified by simulation.

If TRG turns to L, RDY and ADR go back to H and 0, respectively, after the shutter
patterns for the on-going cycle are read out. Next, the compressed signals stored in the
storage diodes are read out in the same manner as in ordinary CMOS image sensors.

4. Experimental Results
4.1. Basic Characteristics

The proposed image sensor was fabricated in a 0.11-micrometer CMOS image sensor
process. A performance table and chip microphotograph are shown in Table 1 and Figure 5,
respectively. The shown power consumption is for the whole chip. Table 2 summarizes the
measured characteristics of the fabricated image sensor. The read noise and dark current
are relatively high as the charge modulators store the charges in the floating diffusions.
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Table 1. Comparison of specifications and performance.

This Work ISSCC’15
[7]

IISW’19
[6] MDPI Sensors [5] ISSCC’12

[4]

Technology 0.11 µm
CMOS FSI

0.11 µm
CMOS FSI

0.18 µm
CMOS FSI

0.13 µm
CMOS/CCD BSI

0.18 µm
CMOS FSI

Chip size 7.0 mmH × 9.3 mmV 7.0 mmH × 9.3 mmV 4.8 mmH × 4.8 mmV - 15 mmH × 24 mmV

(Macro)pixel size 22.4 µmH × 22.4 µmV 11.2 µmH × 5.6 µmV 70 µmH × 35 µmV 12.73 µmH × 12.73 µmV 32 µmH × 32 µmV

Effective (sub)pixel
count 212H × 188V 320H × 324V 50H × 108V 576H × 512V 400H × 250V

(Sub)pixel count per
macro pixel/aperture 2H × 2V 5H × 3V - - -

Tap count per
(sub)pixel/aperture 4 1 + drain - - -

Maximum shutter
length 256b 128b - - -

Number of frames in
burst operation

12@1×,
32@8×

15@1×,
30@2×

368 (in-pixel),
184 (off-pixel) 10 248

Maximum burst
frame rate 303 Mfps 200 Mfps

100 Mfps
(in-pixel),
125 Mfps
(off-pixel)

100 Mfps 20 Mfps

Image readout frame
rate 21 fps 22 fps N/A - 15 kfps

Power consumption 2.8 W 1.62 W N/A - 24 W

Multiple exposure Yes Yes No No No

Compatibility with
normal optics Yes No Yes Yes YesSensors 2022, 22, x FOR PEER REVIEW 7 of 16 
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Table 2. Measured characteristics.

Conversion gain 32.5 µV/e−

Read noise 85 e−rms
Full-well capacity 33,000 e−

Dark current (average) 3043 e−/s@room temperature
Quantum efficiency 40.6%@660 nm
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Figure 6 shows the measured sensor responses for non-compression with sliding time
windows and 8× compression with random shutters. To implement non-compression
filming, tap-4 was used as a charge drain. Therefore, the number of time windows became
12. The random shutters were designed by the method described in [8]. The shutter patterns
are shown in Figure 1. In measurement, a short pulse semiconductor laser (Tama Electric
Inc., Hamamatsu, Japan, OPG-1000PL, wavelength of 445 nm, pulse width of <80 ps) and
a delay controller (Stanford Research Systems, DG645) were used. It was found that the
shortest time window (~3.3 ns) was resolved.
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Figure 6. Sensor responses measured with a short pulse semiconductor laser (λ = 445 nm, pulse
width < 80 ps). (a) Non-compression with sliding time windows. (b) 8× compression with random
shutters. SP: subpixel.

4.2. Single-Event Filming

As a single-event filming demonstration, a laser-induced plasma in the laser processing
of a metal plate (SPCC) was captured. Figure 7 shows the experimental setup and captured
and reproduced images. The burst frame rate was 303 Mfps. The shutters shown in Figure 1
were applied to perform compressive sensing with a compression ratio of 8×. A pulsed
laser (Hamamatsu, L12968, wavelength of 1064 nm, pulse width of 0.5–2 ns, pulse energy
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of 10 mJ) was used. The laser emission and image capturing were triggered by a pulse
from a function generator. Because the laser emission timing fluctuated due to the nature
of the laser, the image sensor repeated exposure cycles and stopped when the plasma
emission was detected by an external photodetector (Menlo Systems, FPD 310-FV). An
ordinary commercial objective lens was placed in front of the image sensor. As shown in
Figure 7b, from the four mosaic images captured at once, the number of which corresponds
to that of the total taps in a macropixel, 32 sequential images were reproduced using the
TV minimization method [30]. Note that the dimension of the TV was extended from two
to three (x, y, and t). In the image reproduction, the measured temporal sensor response
shown in Figure 6b and the PSF were incorporated as the matrix A in Equation (1). The
number of pixels of the reproduced image was 188 × 212, which was the same as that of
the subpixels. The generation and dispersion of the plasma were observed.
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4.3. Transient Imaging of Light

Transient imaging is referred to as an emerging imaging modality in which the propa-
gation of short light pulses in a scene is captured like a slow-motion film. Light emission
and exposure were repeated multiple times to integrate the signal with the assumption
that the scene was static while one frame was captured. A two-dimensional array of SPAD
for the direct-type TOF (for example, see [31]) can perform transient imaging because a
complete temporal waveform of the reflected light is recorded at each pixel. In the field of
computational photography, the implementation of transient imaging has been attained
with image sensors for the indirect-type TOF, since they are more cost effective or have
more pixels compared with those for the direct-type TOF [32–34]. However, the techniques
in the literature need multiple images to reproduce the time-sequential images, because the
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additional scanning of the light emission timing or modulation frequency of the light source
is necessary. Therefore, they are not suitable for dynamic scenes. By contrast, our method
can perform transient imaging in a single shot without any scanning. The reproduced
temporally sequential images are similar to the histograms obtained in direct-type TOF
depth imaging [35]. Although the charge modulators were developed for the indirect-type
TOF, the proposed scheme enables us to perform quasi-direct-type TOF with simpler pixels
and image sensor structure. Two different experiments were conducted: (1) the extension
of the measurable range and (2) the decomposition of multiple reflections.

In the first experiment, by using compressive sensing, the measurable range was
doubled, with a compression ratio of 8× in terms of the pixel count. Because the number
of taps in the macropixel is 16 and the frame rate is 303 Mfps, the depth resolution for
one frame and the measurable depth range in time-of-flight depth imaging are about
0.5 m and 8 m, respectively. The range was extended to 16 m with compressive sensing.
In the measurement, four objects were placed 4 m, 6 m, 8 m, and 13 m away from the
camera. A semiconductor pulsed laser (Tama Electric Inc., Hamamatsu, Japan, LDB-320,
wavelength of 660 nm) emitted light pulses with a full width of ~7 ns, triggered by SYNC.
From the captured images for the 391,807 light pulses, a series of 32 time-resolved images
was reproduced (Figure 8b). 100 images were averaged to improve the signal-to-noise
ratio. Each object was observed at the frames that corresponded to their distances. An
ordinary single-aperture imaging lens (Edmund Optics, C series VIS-NIR fixed focal length
lens, focal length of 16 mm, f-number/1.4) was used. The time of flight was calculated at
each pixel by the temporal centroid of each intensity peak from the reproduced images
in Figure 8b. This was then converted to the depth based on d = τc/2, where d, τ, and c
are depth, time of flight, and speed of light, respectively. Figure 8c shows the reproduced
depth map in the point cloud representation.

In the second experiment, interference light was introduced by a weak diffusive
plastic sheet placed in front of the letters “SU” (Figure 9a). Such a situation is referred
to as multipath interference [36], where multiple reflections are on the same line of sight.
The distance between them was 3.3 m. After reproduction, two reflections from the two
objects were separated, as shown in Figure 9b. The separation was 3.465 m, based on
the detected frame positions. The light source and optical and electrical setup were the
same as those in the first experiment. While it was difficult to decompose mixed multiple
reflections in the conventional indirect TOF based on charge modulators, compressive
sensing solved this problem. Figure 9c shows a point cloud of the reproduced depth map
from the captured images. It is shown that the two objects were separated, although there
was some crosstalk between them. The crosstalk could have been caused by the difference
between the measured and real sensor responses. Further investigation is required to
reduce it.
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5. Discussion

In this paper, the concept, implementation, and demonstration of the UHS CMOS
image sensor based on computational photography were presented. The image acquisition
scheme is based on compressive sensing, and signal compression is performed in the
charge domain in pixels. Therefore, our method is free from the limitations from which
conventional CCD and CMOS UHS image sensors suffer. The frame rate of 303 Mfps
was achieved, and further improvement in the performance will be possible, as discussed
below. From the viewpoint of applications, the compatibility with conventional single-
aperture optics is crucial, as the developed image sensor can be combined with a variety
of conventional optical systems. The dual-mode operation for single-event filming and
multi-exposure filming is also important, since the same cost-effective image sensor can
serve both in consumer markets and the sciences. It is expected that new applications will
be explored based on these features. In autonomous driving applications, SPAD-based
TOF image sensors are regarded as the most promising. However, as demonstrated in
Section 4.3, the developed image sensor provides time-resolved images similar to those
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obtained by SPAD-based TOF image sensors, although the pixel structure is much simpler
than that of the SPAD. Our imaging scheme and image sensor architecture can be an option
to implement a pseudo-direct-type TOF.

To improve the image sensor’s performance, several issues on skew, observation
period, reproductions algorithms, and response time for long wavelengths are discussed
below.

For UHS image sensors, accuracy in time and frame rate (or time resolution) are
of significant importance. The accuracy in time means the difference in the observation
timings among the pixels and taps, which is defined by the skew of the shutter signals.
Figure 10 shows the measured skew histogram and distribution for the rising edge of the
same time window timing, whose width should ideally be zero. The finite distribution is
caused by the fact that the shutter timings are different among the taps or pixels. Figure 10a
is the histogram of the skew among all the pixels and taps. The distribution is almost the
same at the shortest exposure duration, namely, 3.3 ns for 303 Mfps. Because the temporal
response of every tap and pixel is measured and incorporated in inverse problem solving,
the skew is cancelled. However, the skew should be smaller to simplify the post-processing.
Figure 10b shows the distribution of the skew for the tap-1 of pixel-1. Because the charge
modulator drivers are situated only at the bottom of the image, the skew becomes larger
in the top. Probably due to the voltage drop of the power and ground lines of the charge
modulator drivers, the skew in the center in horizontal becomes larger. Note that our image
sensor has optical black pixels in the right of the image, which is not depicted in Figure 10b.
Therefore, the skew distribution appears asymmetric.
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Figure 10. (a) Skew histogram for all taps and pixels and (b) the distribution of skew for tap-1 of
subpixel-1.

To reduce the skew, it is effective to place the charge modulator drivers at both ends of
the pixel array (top and bottom). Furthermore, local drivers embedded in the pixel array
can alleviate the skew by virtually reducing the load of the charge modulator drivers [37].
The local driver is also effective at improving the frame rate because it can implement
shorter time windows. However, the local drivers will consume some areas in the pixel
array and reduce the fill factor. It is very effective to adopt the stacking technology [38]
to implement the local drivers without degrading the fill factor. High fill factors enable
us to use small f-number lenses, which is very important, since UHS imaging is mostly
photon-hungry. Stacking technology also allows elaborately designed clock trees to provide
the charge modulation signals to all the pixels at the same time.

To increase the number of frames for longer observation time or over longer ranges in
TOF, the total number of taps in a macro-pixel should be increased. Namely, we need more
subpixels in a macro-pixel and more taps in each subpixel. Increasing the compression
ratio is also important because it can extend the observation time or depth range. Although
a compression ratio of 8× was used in this study, a compression ratio of 32 has been
demonstrated in [9,39] based on dictionary or learning-based methods. For specialized
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applications, such as TOF depth imaging, these methods can be efficient. For real-time
applications, it is necessary to speed up the inverse problem-solving. Iteration-based
methods are slow, and it is difficult to exactly estimate the signal processing time beforehand.
Recently, deep-learning-based methods have been investigated in compressive video, which
does not require any iteration [40].

In this paper, a wavelength of 660 nm was used in the transient imaging of reflected
light because the response of the photodiode was relatively slow for near-infrared wave-
lengths. However, a fast near-infrared response is necessary in TOF depth imaging. The
response of the charge modulator is composed of those of the photodiode and charge
modulator itself. The modulator response is almost independent of the wavelength, while
the photodiode response is somewhat dependent on it due to the wavelength dependency
of the penetration depth of light in silicon. It was demonstrated that backside biasing was
effective at improving the response speed of a photodiode [41].

6. Conclusions

The design and demonstration of an ultra-high-speed computational CMOS image
sensor based on charge-domain temporally compressive sensing with a burst frame rate of
303 Mfps, which is the fastest among solid-state image sensors, to our knowledge, were
described. To achieve such a high frame rate, the charge modulator drivers are separated
into four blocks for each of the four subpixels to reduce the peak driving current on the
shared power and ground lines. The pixel array is composed of macropixels with 2 × 2
4-tap subpixels. The image sensor was fabricated in 0.11-micrometer CMOS image sensor
technology.

This image sensor is compatible with ordinary single-aperture optics and can operate
in dual modes, such as single-event filming mode or multi-exposure transient imaging
mode, selectively, so that it can be combined with any conventional optics and can be
applied to a variety of applications.

In the experiments, 32 images were reproduced from 4 compressed mosaic images
with a compression ratio of 8×. As an example of single-event filming, a laser-induced
plasma was observed at 303 Mfps. Transient imaging in a single shot and depth map
acquisition based on the time of flight were also demonstrated. The depth range was
doubled by compressive sensing. In addition, multiple reflections were separated, as with
direct-type TOF image sensors, although our image sensor utilized the charge modulator
designed for the indirect-type TOF.

To realize higher frame rates with low skew, local charge modulator drivers should be
integrated in the pixel array. Stacking technology is desired to implement the local drivers
at high fill factors. For TOF applications, the temporal response of charge modulators for
near-infrared wavelengths should be improved. The development of image reproduction
algorithms based on deep neural networks is also required to increase the compression
ratio and to reduce the image reproduction time.
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