
A study toward the practical use of WLAN-based
vehicular network systems

言語: en

出版者: Shizuoka University

公開日: 2022-06-15

キーワード (Ja):

キーワード (En):

作成者: Kato, Arata

メールアドレス:

所属:

メタデータ

https://doi.org/10.14945/00029013URL

Graduate School of Science and Technology,

Shizuoka University

Thesis

A study toward

the practical use of WLAN-based

vehicular network systems

5594–5006

Arata Kato

March 2022

Contents

Chapter 1 Introduction 15

1.1 Growing expectation to vehicular networking 15

1.2 Problems on deploying vehicular network systems in the real world . . . 19

1.3 Contributions of this dissertation . 22

Chapter 2 Wireless LAN emulation with wireless network tap devices 25

2.1 Introduction . 25

2.2 Related work . 28

2.2.1 Virtualization technologies relative to realizing IEEE 802.11 net-

work emulation . 28

2.2.2 Hypervisor-based network emulation 32

2.2.3 Container-based/Namespace-based network emulation 33

2.2.4 Network emulators using nested virtualization 34

2.2.5 Network emulators based on hardware-based channel emulation . . 35

2.2.6 Virtual network devices designed for IEEE 802.11 network emulation 36

2.2.7 Problems of IEEE 802.11 network emulation 37

2.2.8 Requirements for emulating IEEE 802.11 network systems. 39

2.3 System architecture . 39

2.3.1 Wireless network emulation framework 40

2.3.2 wtap80211-daemon . 45

2.3.3 Mechanisms of WiNE-Tap . 46

2.4 Operation validation and performance evaluation 49

2.4.1 Setting up the experiment environment 49

2.4.2 Operation validation during IEEE 802.11 link establishment 51

3

2.4.3 RTTs and throughput comparisons between the real and emulated

network . 55

2.4.4 Investigation of the performance degradation in the network simulator 55

2.4.5 Performance improvement by High Precision Event Timer 58

2.4.6 Discussion . 64

2.5 Conclusions . 66

Chapter 3 Link Setup Time and bulk data transmission investigation in

V2V 69

3.1 Introduction . 69

3.1.1 Problems of the current disaster communication systems in Japan . 70

3.1.2 Disaster communication system based on VDTNs with heteroge-

neous wireless systems . 74

3.2 Problems and requirements on developing the VDTN-based disaster com-

munication system . 76

3.3 Related work . 77

3.3.1 Individual authentication on IEEE 802.11 78

3.3.2 Individual authentication on vehicular networks 80

3.4 Fast Initial Link Setup . 81

3.4.1 Channel scanning enhancement . 81

3.4.2 Active scanning optimization . 82

3.4.3 IP address assignment during the IEEE 802.11 association 82

3.4.4 Authentication information caching 82

3.4.5 Effectiveness . 83

3.5 Experimental setup . 84

3.5.1 Details of the FILS implementation used in this study 84

3.5.2 Laboratory experiment configuration 87

3.6 Experiment results and discussion . 90

3.6.1 Results measured in the laboratory environment 90

3.6.2 Results measured in the real field environment 92

3.6.3 Bottleneck in initial link setups . 95

3.7 Conclusions . 99

4

Chapter 4 Conclusions 101

4.1 Summary of this dissertation . 101

4.2 Future direction . 104

4.3 Prospects of vehicular networks . 106

References 111

5

List of figures

2.1 Differences among machine virtualization technologies 29

2.2 Wireless Network Emulation Framework 41

2.3 WiNE-Tap architecture . 47

2.4 Message format used in wtap80211 . 48

2.5 Configuration of the experiment environment for WiNE-Tap 52

2.6 Logs captured from the emulation host machine #1 during emulating the

IEEE 802.11 link establishment . 54

2.7 Logs captured from the emulation host machine #2 during emulating the

IEEE 802.11 link establishment . 56

2.8 Round Trip Time (RTT) comparison between real and emulated environ-

ments . 57

2.9 UDP throughput comparison between emulation and real environments . . 57

2.10 Flame graph of all the function calls during generating UDP data traffic

with 2.5 Mbps . 59

2.11 Flame graph of the function calls by the network simulator during gener-

ating UDP data traffic with 2.5 Mbps . 59

2.12 Throughput measured with CBR application and ACPI PMT 61

2.13 Throughput measured with iPerf3 and ACPI PMT 61

2.14 Throughput measured with CBR application and HPET 63

2.15 Throughput measured with iPerf3 and HPET 63

2.16 Round trip time measured with ACPI PMT 64

2.17 Round trip time measured with HPET . 65

2.18 Change of throughput and received signal strength in the emulated network 65

7

3.1 Photo capturing the damage of landslips in Heavy rain of July, Heisei 30

from Disaster Photo Database of Institute for Fire Safety and Disaster

Preparedness (http://www.saigaichousa-db-isad.jp/) 72

3.2 Overview of the disaster communication system based on VDTNs with het-

erogeneous wireless communication: The figures depicts a situation where

disaster management agencies such as fire departments use the system to

establish communication links between the control center and remote places

in the radio quiet zone. 75

3.3 WPA2-PEAP frame sequences . 79

3.4 FILS frame sequences . 83

3.5 Frame sequence of the FILS implementation used in this study 85

3.6 Onboard unit overview . 86

3.7 Laboratory experiment setup . 88

3.8 Antenna position . 89

3.9 Field experiment area . 90

3.10 Initial link setup times measured in the laboratory experiment 91

3.11 Transmitted bytes measured in the laboratory experiment 91

3.12 Initial link setup times measured in the field experiment (Scenario 1) . . . 92

3.13 Initial link setup times measured in the field experiment (Scenario 2) . . . 92

3.14 Transmitted bytes measured in the field experiment (Scenario 1) 93

3.15 Transmitted bytes measured in the field experiment (Scenario 2) 94

3.16 Details of FILS link setup times in the laboratory experiment 95

3.17 Details of FILS link setup times in the field experiment (Scenario 1) 95

3.18 Details of FILS link setup times in the field experiment (Scenario 2) 96

3.19 Details of WPA2-PEAP link setup times in the laboratory experiment . . . 96

3.20 Details of WPA2-PEAP link setup times in the field experiment (Scenario 1) 96

3.21 Details of WPA2-PEAP link setup times in the field experiment (Scenario 2) 97

8

List of tables

1.1 Vehicular network applications . 17

2.1 Pseudo wireless LAN device configuration information of wtap80211 43

2.2 Examples of control parameters that wtap80211 captures and provides to

the IEEE 802.11 protocol stacks and a network simulator 45

2.3 Host machine specification . 51

3.1 Onboard unit specifications . 87

9

Abstract

Vehicular networks realize cooperative awareness and collective perception and improve

road safety, traffic management, and driving experiences. Under disaster conditions,

vehicular networks can also be utilized as a communication system because they can

work without standing communication infrastructures like cellular networks. Although

the expectation for vehicular networks keeps growing, there are only a few precedents of

deploying vehicular network systems to the real world due to expensive costs for installing

network equipment to vehicles, implementating onboard units and their software, and

legislating. Especially, operation validation of vehicular network systems cannot be easily

performed in the real world due to high preparation cost of vehicles and network equipment

and legal permission to use public roads.

There are two ways to validate the operation of the vehicular network system imple-

mentations: Field testing and network emulation. Field testing reveals the practical

performance of the vehicular network system in the actual field. Therefore, the measure-

ment results of the real field performance of vehicular network systems are invaluable

for developing vehicular network systems, but there are not enough empirical reports,

especially, the bulk data transmission performance in vehicular networks using new wire-

less LAN technologies. Although the bulk data transmission in the vehicular network is

significant for sharing photos and videos in disaster conditions and disseminating in-car

infotainment contents, it is difficult to estimate their practical performance and validate

whether the evaluation results in a testbed match the practical performance.

Meanwhile, network emulation enables the vehicular network system to work in a vir-

tual network in which a network simulator reproduces the vehicles’ mobility and signal

propagation. Almost all existing network emulators focus on link emulation based on

Ethernet virtualization technologies such as a TUN/TAP device and allow a network

11

simulator to capture data packet flows using the TUN/TAP devices and apply the band-

width limitation, delay insertion, and packet loss for the captured packet flow based on

radio propagation and mobility models. However, the existing network emulators are

insufficient to be used for vehicular network emulation because they cannot reproduce

the behavior of the vehicular network protocols, such as IEEE 802.11p and ETSI Decen-

tralized Congestion Control (DCC). The vehicular network protocols adaptively control

transmission power based on received signal strengths to avoid interference, and their

behavior is a significant factor for operation validation of the vehicular network systems.

Therefore, it is important to emulate the behavior of the vehicular network protocols as

they perform in the real world.

This dissertation presents two contributions to encourage developing vehicular network

systems. The first contribution is a novel wireless network emulator with wireless network

tap devices. The wireless network emulator can reproduce the behavior of the Linux IEEE

802.11 protocol stacks and network applications in a virtual network as they perform in

the practical IEEE 802.11 network. The wireless LAN emulator allows the Linux IEEE

802.11 protocol stacks and a network simulator to exchange IEEE 802.11 frame flows and

IEEE 802.11 device configuration flows, such as transmission power change and received

signal strength notification, by using the wireless network tap devices, which is a virtual

IEEE 802.11 device developed by the author. This study shows that the wireless network

emulator can reproduce the behavior of an actual WLAN-based network by using the real

Linux IEEE 802.11 implementation and network applications. This study also proposes

some techniques to improve the real-time property of network emulation with the proposed

emulator. The effectiveness of the techniques is validated through experiments.

The second contribution is empirical measurement of field performance of link setup

time and bulk data transmission in WLAN-based inter-vehicular communications. This

study presents the first empirical report of the initial link setup time reduction for IEEE

802.11-based inter-vehicular communication using Fast Initial Link Setup (FILS) and Wi-

Fi Protected Access with Protected Extensible Authentication Protocol (WPA-PEAP).

The performance evaluation reveals that FILS enables the initial link setup to complete

within about 130 ms between vehicles with a high relative speed of 80 km/h, ten times

shorter than WPA2-PEAP authentication, and transfer a maximum of 75 MB while the

12

vehicles are passing each other.

13

Chapter 1 Introduction

This chapter describes the background of this study and a brief summary of the con-

tributions of this dissertation.

1.1 Growing expectation to vehicular networking

Vehicular networks have attracted attention from academia, industries, and govern-

ments, with increasing interest in intelligent transport systems (ITS) and smart cities.

Figure 1.1 shows examples of vehicular network applications. For example, the vehic-

ular networks are expected to improve road safety by realizing cooperative awareness,

collective perception, etc. Cooperative awareness[1] makes vehicles broadcast beacons,

including the vehicles’ position and velocity, and allows the vehicles receiving the beacons

to detect the sender vehicles if the senders are at non-line-of-sight (NLOS) positions from

the receivers. European Telecommunication Standards Institute (ETSI) standardizes the

specification of cooperative awareness in ETSI EN 302 637-2[1], and some researchers re-

port cooperative awareness is effective to reduce accidents based on simulation results[2].

Collective perception[3] makes vehicles to send sensor information to the other vehicles

and allows the receiver vehicles to detect vehicles in their blind spots using the sensor

information. The sensor information includes the photos captured by cameras, point

group data from LiDAR (Light Detection and Ranging) devices, GPS (Glocal Positioning

System) locations of neighboring vehicles, etc. If cooperative awareness and collective

15

Chapter 1 Introduction

perception are realized, the number of traffic accidents can be reduced.

In a vehicular network, a connected vehicle, which is a vehicle equipped with a commu-

nication device, communicates with other connected vehicles or communication entities

such as road-side units and personal mobile devices wirelessly. A vehicular network con-

sists of various communication systems based on the classification of the communication

entities, for example, Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-

to-Pedestrian (V2P), Vehicle-to-Network (V2N) communication systems. The communi-

cation systems used in a vehicular network are collectively called Vehicle-to-Everything

(V2X) communication. Current two popular radio communication technologies used in

vehicular networks are standardized in IEEE 802.11p[15] and LTE-V2X[16], which are

based on Wi-Fi and Cellular communication, respectively.

IEEE 802.11p was standardized in 2012. It is based on IEEE 802.11a including mod-

ifications for road safety application and devices with high mobility. The road safety

application is, for example, that a vehicle broadcasts beacons including their current po-

sitions and allows other vehicles not detecting the vehicle to recognize it and encourage

avoiding a collision. The first version of LTE-V2X was standardized in 2018 and defines

direct communication mechanism between vehicles without a relay via a cellular base sta-

tion. In addition, next-generation radio communication standards for vehicular networks,

IEEE 802.11bd[17] and 5G NR V2X[18, 19], are under establishment to improve a large

amount of data transmission performance.

Vehicular networks can be used for not only road safety but also various network services

using various communication systems. For example, vehicular networks can be utilized as

a communication infrastructure in urban areas and are expected to serve intelligent navi-

gation and optimize road traffic[20, 21]. V2I/V2N communication enable road-side units

(RSUs) connected to a traffic control center and sensors equipment installed along roads

to gather sensor information, such as photos capturing road traffics and GPS positions of

vehicles and enable the traffic control center to monitor road traffic and navigate vehicles

to clear up traffic congestions[22]. In addition, the U.S. Department of Transportation

(U.S. DOT) indicates in [23] that clearing up traffic congestion with vehicular network-

ing makes it reduce fuel consumption and benefits the natural environment. Vehicular

networks are also beneficial to provide infotainment services to passengers in cars[24, 25].

16

1.1. Growing expectation to vehicular networking

Table 1.1: Vehicular network applications

System Type Description

Cooperative

awareness[4, 5]
V2V

Connected vehicles disseminate their location and ve-

locity to other vehicles and avoid collisions with them.

Collective

perception[6]
V2V

Connected vehicles collect sensor information such as

camera images and LiDAR/LADAR data of other ve-

hicles via V2V and detect vehicles in blind spots.

Platooning/

Cooperative adaptive

cruise control (CACC)

[7, 8, 9]

V2V

A connected vehicle receives messages including the

accelaration and velocity of another vehicle running

ahead and adjusts its velocity to keep the distance

between the vehicles or make a space for a vehicle

approching from another lane.

Infortainment content

dissemination[10]
V2I

Road-side units disseminate movies and advertise-

ments to neighboring vehicles and provide infotain-

ment contents to the vehicles.

Driving Safety

Support System

(DSSS)[11, 12]

V2V,

V2I,

V2P

Road-side units with sensors around intersections de-

tect approaching vehicles and disseminate approach-

ing warnings to other vehicles and pedestrians to pre-

vent accidents.

Urban monitoing

(MobEyes)[13]
V2X

A sensor network constructed with connected vehicles

collects sensor information from the vehicles and use

the sensor data to monitor traffic congestion, road sur-

face diagnosis, atomosphere pollution analysis, etc.

Disaster

Vehicular DTN[14]
V2X

Connected vehicles form a delay/disruption tolerant

network (DTN) in disaster sites, and the vehicles carry

data to isolated/radio blind areas where lost commu-

nication links such as cellular/optical fiber links by

natural disasters to keep connectivity with the areas.

17

Chapter 1 Introduction

For example, broadcasting local advertisement content like commercial videos from shops

along a road where vehicles are moving has a good impact on the economic effect in the

local market.

As of 2021, the growing expectation for vehicular networks triggers several countries to

propose the concept of a smart city integrated with vehicular networks in their national

programs of science and technology1 and competitively develop vehicular network systems.

A smart city means a modern city that provides advanced citizen services with informa-

tion and communication technology (ICT) systems for growing the benefit of citizens and

businesses. In the smart city, vehicular networks are expected to provide communication

infrastructures in urban areas and collect sensors data such as photos captured by on-

board cameras and location information that are used to analyze and manage transport

systems[26].

Vehicular networking is recently becoming a significant technology to improve commu-

nication under disaster conditions (disaster communication). The government of Japan

mentions in Society 5.0[26] that they aim to utilize vehicular networks under disaster

conditions because the vehicular network works without standing communication infras-

tructures such as cellular networks and optical fiber networks and has the robustness to

these infrastructure failures. Meanwhile, Asia Pacific Telecommunity (APT) recommends

using a vehicular delay/disruption tolerant network (VDTN) as a means of communica-

tion under disaster conditions[30]. The VDTN is one type of vehicular network. In the

VDTN, the connected vehicles carry application data between remote places with no di-

rect communication links. Even if natural disasters break the standing communication

infrastructures, the connected vehicles keep communications between the remote places.

Although the various systems using vehicular networks are proposed, there are some

problems on deploying vehicular network systems to the real world.

1As of 2021, Japan, the United States, Europe, and China have proposed their concepts of a smart city
in Society 5.0[26], Smart City Challenge[27], Industry 5.0[28], and Made in China 2025[29], respectively.

18

1.2. Problems on deploying vehicular network systems in the real world

1.2 Problems on deploying vehicular network sys-

tems in the real world

As of 2021, various organizations have been actively working for implementing vehic-

ular network systems for years. However, there are not enough precedents of deploying

vehicular network systems to the real world[31, 32, 33, 12] due to the following reasons.

• There are not enough development environments for the software and hardware of

onboard units and road-side units.

• Initial cost for installing network equipment such as onboard units and road-side

units is expensive.

• Legal revisions about radio regulation and road traffic act are required to deploy

vehicular network systems in public.

On developing the vehicular network systems’ components, two technical barriers make

it difficult to develop vehicular network systems. The first barrier is not enough operation

validation environments for vehicular network systems. The second barrier is not enough

empirical reports of the practical performance of bulk data transmission in vehicular

networks due to the difficulty of conducting field testing.

Validating the operation of vehicular network systems is essential before deploying the

systems to the real world. Since vehicular network systems will be used for traffic accident

prevention, it is not preferrable that the systems malfunction and do not prevent a traffic

accident. For example, vehicles periodically broadcasting basic safety messages are re-

quired to check channel congestion from received signal strengths and adjust transmission

power level or interval of the messages to avoid signal interference with other vehicles. If

the system malfunctions and causes interference of basic safety messages, a vehicle may

not identify another vehicle approaching from its blind spot and cannot avoid a collision.

To validate the operation of the transmission power/interval adjustment function, it is

necessary to execute the program implementing the adjustment function and reproduce

the received signal strength changes following vehicles’ movement.

Operation validation of vehicular network systems is also important to keep compat-

ibility and functionality of the systems. Vehicular network systems will be widely used

19

Chapter 1 Introduction

across various types of vehicles from various manifacturers, and developers of vehicular

network systems need to implement their system to fulfill the requirements necessary to

keep compatibility and functionality of vehicular network systems components. For exam-

ple, the Society of Automotive Engineers (SAE) international standardizes the minimum

requirements of onboard units for safety applications in SAE J2945/1[34]. SAE J2945/1

benefits keeping reliability and interoperability between onboard units implemented by

different manufacturers and requires developers to check the operation of the hardware/-

software components according to the requirements. For example, SAE J2945/1 defines

the minimum requirements for the IEEE 802.11 MAC and PHY services necessary for V2V

applications. Therefore, it is essential to have a test environment for the actual software

implementation of onboard units and enlarge the knowledge about the field performance

of vehicular network systems.

There are two ways that realize operation validation of vehicular network systems using

real implementations: field testing and network emulation. Field testing is the most effec-

tive evaluation method to reveal the functional performance of vehicular network systems.

The performance of a vehicular network system is influenced by various factors such as ve-

hicles’ mobility, radio propagation, signal fading, line of sight between connected vehicles,

and network topology, road conditions, etc. Field testing can reveal the field performance

of vehicular networks including the influence of these factors. However, field testing is

the most difficult method to perform due to some barriers such as initial monetary cost

for vehicles and network equipment and legal permission to use the prototype system in

public roads.

On the other hand, network emulation can be performed easier than field testing.

Network emulation enables network applications in a virtual network in which a network

simulator reproduces radio propagation and mobility. The network simulator typically

utilizes virtual Ethernet technologies such as TUN/TAP devices to capture data packet

flows from the network applications and applies bandwidth limitation, delay insertion,

and packet loss for the captured packet flows. By changing the radio propagation and

mobility models, the network simulator can reproduce the behavior of vehicular network

systems. However, the existing network emulators depend on a specific network simulator

and do not allow the network protocol stacks in the low-layers of an operating system,

20

1.2. Problems on deploying vehicular network systems in the real world

such as IEEE 802.11 MAC protocol implementation. According to SAE J2945/1, the

IEEE 802.11 protocol stacks have an important role in the vehicular network systems

to control signal congestions and avoid interference, and the operation validation of the

IEEE 802.11 protocol stacks is significant for developing the vehicular network systems.

As described above, it is important to validate the software operation of an onboard unit to

provide users advanced traffic accident prevention services by vehicular network systems.

The vehicular network emulation environment should be able to reproduce the behavior of

onboard unit’s software in the real environment with consideration of dynamics of vehicles’

mobility. However, the existing network emulators comes from link emulation technology

for wired networks such as Ethernet and are insufficient to emulate the behavior of the

IEEE 802.11 protocol stacks.

It is also essential to understand of the field performance of vehicular network systems.

Many researchers and developers have proposed various vehicular network systems and

related technologies. The effectiveness of these proposed ones are often presented based on

simulation results due to the difficulty of performing field testing. These simulation results

should be compared with the actual performance measured in the real environment to

check their validity because they can incompletely include the effect of some factors that

are highly abstracted in simulation models, such as network equipment implementations

and road environments. While emulation results have more reliable than simulation results

because they partially come from some behavior of the real implementations, emulation

results should also be checked with actual performance measured in the real environments.

However, few reports of field performance of vehicular network systems make it difficult

to identify whether these simulation/emulation results are close to the actual performance

of vehicular network systems in the real environment.

For example, revealing the bulk data transmission performance in inter-vehicular com-

munications is essential to transfer a large amount of data such as photos and videos

between vehicles. If the inter-vehicular bulk data transmission performance is not identi-

fied, it is impossible to estimate how many photos and videos can be transfferred to use

up the bandwitdh between the vehicles. On the other hand, if the bulk data transmission

performance is identified, the sender vehicle selects data whose total size is the same as

the bandwidth between the vehicles and effectively utilizes the bandwidth. In addition,

21

Chapter 1 Introduction

the measurement results in the real fields are necessary to compare the network emula-

tion results and check the validity of the network emulation results. However, field testing

cannot be easily performed because it takes many preparation costs.

1.3 Contributions of this dissertation

This dissertation presents two contributions to encourage developing vehicular network

systems. The first contribution is a novel wireless LAN emulator with wireless network tap

devices (WiNE-Tap), which can be used for the operation validation system for network

applications and IEEE 802.11 protocol implementation for Linux systems. As discussed

above, the developers and researchers of vehicular network systems should be responsi-

ble for developing onboard units that meet the requirements for V2V applications. The

implementation of the vehicular network systems can be validated by network emulation

or field testing. Network emulation is beneficial for the development of vehicular network

systems because it does not require experiment setup in the real world and can be con-

ducted at low costs. However, the existing network emulators focus on link emulation.

In other words, it emulates the throughput and packet loss in vehicular networks and

does not allow the IEEE 802.11 protocol implementation to operate with the network

applications. The existing network emulators incompletely meet the needs for the devel-

opment of vehicular networks. For this reason, this study proposes a novel wireless LAN

emulator with wireless network tap devices that enables validating the operation of both

network applications and IEEE 802.11 protocol stacks for Linux systems with the support

of flexible radio propagation and mobility simulation using a network simulator.

The second contribution is the first empirical investigation of the initial link setup

time and bulk data transmission in inter-vehicular communications. This study reveals

initial link setup time reduction by Fast Initial Link Setup (FILS) in IEEE 802.11-based

vehicular networks based empirical measurements. In an inter-vehicular communication

between vehicles passing each other with high speeds, the vehicles have only a short time

to establish a link and trasfer bulk data. To increase the amount of transmitted data size

between the vehicles, the overhead for link establishment should be as short as possible.

FILS can complete IEEE 802.11 link establishment in 100ms and has the potential to

22

1.3. Contributions of this dissertation

shorten the link establishment overhead in the inter-vehicular communication, but no

paper investigates the FILS performance in the inter-vehicular communication in the real

world as far as the author know. Therefore, this study investigates and shows the field

performance of FILS in the inter-vehicular communication in the real world. In addition,

this study shows the field performance of bulk data transmission between vehicles passing

each other with high relative speed. This study compares the field performance of FILS

and Wi-Fi Protected Access with Protected Extensible Authentication Protocol (WPA-

PEAP) in inter-vehicular communication and reveals that FILS can shorten the practical

initial link setup time ten times than WPA-PEAP and allows vehicles to transfer 75MB

while passing each other with high relative speed.

The remainder of this dissertation is structured as follows. Chapter 2 describes the wire-

less LAN emulator with wireless network tap devices (WiNE-Tap). WiNE-Tap enables a

wireless LAN emulation that the implementation of IEEE 802.11 protocol stacks of Linux

works cooperatively with the behavior of the physical layer, such as radio propagation and

network nodes’ mobility, which is simulated by a network simulator. Chapter 3 describes

the performance evaluations of initial link setup time and bulk data transmission in in-

termittent inter-vehicular communications based on empirical measurements. Chapter 3

also shows the field performance comparison of FILS and WPA-PEAP and the FILS ef-

fectiveness on improving the inter-vehicular bulk data transmission. Chapter 4 concludes

this dissertation and discuss the utilization of the contributions of this dissertation: the

wireless network emulator and the field measurement results of bulk data transmission in

inter-vehicular communications, and the prospects of vehicular networks.

23

Chapter 2 Wireless LAN emulation

with wireless network

tap devices

This chapter describes a novel wireless LAN emulator with wireless network tap devices.

The wireless network emulator can reproduce the behavior of Linux IEEE 802.11 protocol

stacks and network applications with their actual implementation as they work in the real

IEEE 802.11 network. This study shows the architecture and performance evaluations of

the wireless network emulator and some techniques to improve the performance of the

emulator based on the experiment results. This chapter is written based on the author’s

paper [35].

2.1 Introduction

Operation validation using the practical implementation is a vital process for developing

a vehicular network system to avoid any accidents due to the malfunction of the system.

Network simulation is often used to validate the performance of vehicular network proto-

cols or applications, and several vehicular network simulation environments and models

have been proposed in[36, 37, 38, 39]. For example, Veins[40] and VENTOS[39] are net-

work simulators consisting of OMNeT++ network simulator and a traffic simulator SUMO

(Simulation of Urban Mobility)[36]. Based on the real-world GIS (Geographic Informa-

25

Chapter 2 Wireless LAN emulation with wireless network tap devices

tion System) map and propagation models of the network simulator, veins simulates the

behavior of a vehicular network system with realistic traffic traces simulated by SUMO.

On the other hand, since network simulation abstracts the behavior of the entire vehic-

ular network system with simulation models, it does not minutely reproduce the behavior

of the vehicular network system with implementation to the actual onboard units. The

behavior of the vehicular network system in the real road environment depends on the

implementation to onboard units and other actual network equipment of the vehicular

network system and communication environments in a field in where the system is used.

Therefore, it is essential to validate the operation of the vehicular network system with

its implementation.

There are two ways to conduct the operation validation using implementation: field

testing and network emulation. Field testing reveals the practical performance of the

vehicular network system in the real field. Meanwhile, network emulation allows network

applications to work in a virtual network in which a network simulator reproduces the

radio propagation and the mobility of network nodes and signal transmission and reception

by network equipment. Network emulation is more convenient than field testing in the

early phase of developing the vehicular network systems because it can be performed

without the preparation of network and vehicle equipment necessary for building the

network in the real world.

Some existing network simulators, such as ns-3[41], Mininet[42], Scenargie[43], and

EXata[44], support network emulation. These network simulators capture packet flows

exchanged between network applications via virtual network devices such as a TUN/TAP

device[45] and apply transmission delays insertion, bandwidth limitation, and packet loss

based on radio propagation and mobility models. However, the existing network emulators

have some restrictions listed below.

• They incompletely emulate the control of wireless network devices by operating

systems because their network emulation mechanism applies wired network virtual-

ization and focuses on link emulation between network applications.

• A network simulator and network applications work on the same host machine and

allow the high load computing load to the host machine.

26

2.1. Introduction

• They depend on some specific network simulators’ architecture and do not allow

users of the emulators to select a network simulator they want to use.

The existing network emulators enable link emulation using network applications used

in the real environment, considering the radio propagation and network node mobility

but do not focus on reproducing the behavior of wireless network protocols such as Linux

IEEE 802.11 implementation. For example, ETSI DCC changes transmission power levels

based on received signal strengths to avoid interference. However, since the existing

network emulators do not allow the network protocol stacks such as Linux IEEE 802.11

implementation to work with the network applications in the virtual network, they do

not emulate the behavior of these vehicular network protocols.

Almost all existing network emulators also have some inconvenience limitations to be

used for vehicular network systems. The first limitation is that the existing network

emulators can hardly be scalable because network applications and a network simulator

work on the same machine. The system load concentrates on the machine on the current

network emulators, such as ns-3’s DCE[46] and Mininet-WiFi[47]. The second limita-

tion is that existing network emulators are designed for a specific network simulator and

depend on their limitations. For instance, Mininet-WiFi[47] simulates transmission de-

lays over Wireless LAN by the tc command[48], a traffic control command for Linux, or

wmediumd[49], a lightweight frame loss/delay simulator. However, tc command does not

simulate radio propagation and network nodes’ mobility. Wmediumd supports few ra-

dio propagation models, such as free space propagation, and cannot emulate complicated

IEEE 802.11 networks such as vehicular networks. To remove the limitations, vehicular

network emulatioin should be meet the items listed below.

• Network simulators supporting IEEE 802.11 emulation should also support import-

ing/exporting IEEE 802.11 frames and IEEE 802.11-related control parameters,

such as transmission power and received signal strength.

• Mechanisms that enable an operating system and a network simulator to exchange

IEEE 802.11 frames and IEEE 802.11-related control parameters should be im-

plemented. Concretely, they require interfaces to import/export the IEEE 802.11

frames and IEEE 802.11-related control parameters and middleware that converts

27

Chapter 2 Wireless LAN emulation with wireless network tap devices

message formats if needed and exchange the frames and parameters between the

interfaces.

This study presents a new wireless network emulator, WiNE-Tap, covering these so-

lutions. We implemented the mechanisms that convert message formats and enable the

Linux kernel and a network simulator to exchange IEEE 802.11 frames and control pa-

rameters for manipulating IEEE 802.11 devices. This chapter also presents the first

implementation of functions importing/exporting IEEE 802.11 frames and IEEE 802.11-

related control parameters to a network simulator, Scenargie. In the following sections,

the architecture and performance evaluation of WiNE-Tap are descibed after introducing

the related work.

2.2 Related work

This section explains the mechanisms of the existing network emulators, focusing on

IEEE 802.11 network emulation. Most of the existing network emulators utilize virtu-

alization technologies such as hypervisors and containers. This section first introduces

the virtualization technologies and classifies the existing network emulators into several

categories based on the differences between virtualization technologies.

2.2.1 Virtualization technologies relative to realizing IEEE 802.11

network emulation

Virtualization has several meanings in the computing world and can be roughly defined

as abstracting the hardware and software resources of a computer, for example, CPU,

memory, storage devices, network devices, file systems. The virtualization mechanisms

can be categorized according to which computer resources are abstracted and what ab-

stracted resource is used. This chapter focuses on two of the categories used in network

emulation: machine virtualization and network virtualization.

28

2.2. Related work

3

Hypervisor-based

Host OS

Hypervisor

Guest OS

Application

Libraries/
Binaries

Guest Machine

Guest OS

Application

Libraries/
Binaries

Guest Machine

Linux Container/Namespace

Host OS

Container
Engine

App

Containers

App

Libraries/
Binaries

Namespaces

Libraries/
Binaries

Application

Host OS

Host only

Libraries/
Binaries

Nested virtualization

Host OS

Hypervisor

Guest OS

Guest Machine

App

Containers

App

Libraries/
Binaries

Container Engine

App

Containers

App

Libraries/
Binaries

App App

Figure 2.1: Differences among machine virtualization technologies

■ Machine virtualization

Machine virtualization is a technique that abstracts the whole single computer and

creates a virtual machine (VM) on a real computer. The virtual machine works as a

real computer without any difference, except it does not have the hardware. There are

two systems to realize machine virtualization: hypervisor-based machine virtualization

and container-based virtualization. Figure 2.1 shows the differences between machine

virtualization technologies.

The hypervisor is a software program that allows operating systems (OSs) and user

applications to work on virtual machines and reproduces the operation of the hardware

of a computer, for example, CPUs, chipsets on a motherboard, storage devices, network

devices by using virtual devices. A virtual device is a program that returns the output

values as those returned from the actual hardware against the input value from the op-

erating system. The hypervisor-based machine virtualization creates the virtual machine

that minutely reproduces a computer.

Container-based machine virtualization logically divides computer resources and en-

ables the divided resources to be assigned to specific processes. For example, Docker[50],

which is one of the container-based virtualization platforms, assigns the logically divided

computer resources to instances. An instance is a set of software packages that include

all software components required to work as a single computer. The instance behaves like

a single computer on a real computer.

29

Chapter 2 Wireless LAN emulation with wireless network tap devices

Hypervisor-based machine virtualization is different from container-based machine vir-

tualization at the point that the former reproduces the behavior of hardware components

by software, but the latter just assigns divided computer resources to the instances. In

other words, the container-based machine virtualization executes the software compo-

nents of an operating system on another operating system, and the instances and the

host machine share computing resources. While the hypervisor-based machine virtualiza-

tion emulates the operation of the CPU architecture differently from the host machine,

the container-based machine virtualization does not emulate such operation. For exam-

ple, QEMU[51], a generic and open source machine emulator and virtualizer, works as a

hypervisor and allows an ARM-based virtual machine to run on an AMD64-based real

machine.

■ Network virtualization

Network virtualization is a technique to construct a virtual network and allows user

applications to perform in the virtual network as if they work on a real network. In par-

ticular, network virtualization is used to reproduce and examine the performance of the

network applications or protocol stacks based on a specific network scenario. For exam-

ple, the Linux traffic controller (tc)[48], netem[52], Dummynet[53], KauNet[54] enable to

classify packet flows and restrict bandwidth and packet loss ratio of the classified packet

flow based on the preconfigured values or the trace data of the actual bandwidth and

packet loss ratio on a real network. The network emulation methodology that conducts

bandwidth restriction and delays insertion to packet flows is called link emulation, and the

network emulators, which abstract the network layer or below and perform link emulation,

are called link emulators[53]. The basic idea of link emulators, such as link classification

and bandwidth limitation, can be applied to IEEE 802.11 network emulation. For exam-

ple, KauNet[54], an extension of Dummynet implementation, allows a wireless network

emulator W-NINE[55] to control classified packet flows based on the trace data calculated

from the radio propagation, mobility, and IEEE 802.11b/g protocol models.

30

2.2. Related work

■ Virtualization technologies for network devices

The network simulators described in the previous section capture packet flows through

virtual network devices such as TUN/TAP device[45], Virtual Ethernet device (namely

veth device)[56], and virtual interface (namely vif). Although the word, network interface,

can be referred to as both the network device such as an Ethernet card or a software entry

point in charge of sending and receiving data packets, this study defines a network device

and a network interface as hardware able to exchange data with other hosts over a network

and a software entry point between network applications and the network protocol stacks,

respectively. Following the definition of the network device and interfaces, the virtual

network device can be defined as the program that receives packets via the network

interface associated with itself and forwards the packets to a user application instead of

a network.

A TUN/TAP device provides a virtual network interface and a file descriptor to user

applications and transfers captured IP packet flows or Ethernet frame flows from the

interface or the TCP/IP stacks to the file descriptor. It can also transfer data sent through

the file descriptor to the virtual network interfaces, in which the data are encapsulated

into packets or frames in the network protocol stacks before they reach the virtual network

interfaces. The TUN/TAP device is available on various operating systems such as Linux,

FreeBSD, Windows, and macOS.

A virtual ethernet device is a virtual network device for Linux systems and functions

similar to the TUN/TAP device, but it provides user applications with a pair of two

virtual network interfaces instead of providing a file descriptor. The virtual interfaces are

connected through a Linux Netlink socket[57], which is one of socket APIs and is used

for inter-process communication between the user space and the kernel space. Thus, user

applications connected via the veth device perform as they communicate through network

interfaces.

The virtual interface (vif) is a virtual network interface associated with another network

interface such as a bridge interface, and a network interface is associated with a network

device. The virtual interface is used as a wrapper interface of the real network interface

to set different network configuration parameters to the real one simultaneously.

Some researchers proposed a network emulator with unique virtual devices. For exam-

31

Chapter 2 Wireless LAN emulation with wireless network tap devices

ple, EMPOWER [58] is a network emulator using a virtual device that works between the

IP stack and the device driver. EMPOWER’s virtual device captures IP packet flows and

applies for the bandwidth limitation, delay insertion, and packet loss before forwarding

the captured IP packet flows to the device drivers.

EtsiNet [59] uses a network tunneling interface that captures IP packet flows similar

to TUN/TAP devices and forward the captured packet flows to the simulation engine,

which conducts link emulation for wired networks. EtsiNet’s simulation engines reproduce

the behavior of network protocol stacks between the physical and Media Access Control

(MAC) layers instead of the native protocol stacks embedded in the operating system.

2.2.2 Hypervisor-based network emulation

Network emulators with hypervisor-based machine virtualization have been proposed in

[60], [61], [62]. In the hypervisor-based network emulation, a virtual machine performs as

a network node. The virtual machine executes network applications and network protocol

stacks as these programs work in the real environment.

Kawai’s network emulator[60] utilizes the kernel-based virtual machine (KVM). The

KVM is a hypervisor implemented in the Linux kernel and works as Linux kernel mod-

ules. In Kawai’s network emulator, the KVMs are connected to a discrete-event network

simulator, Scenargie[43], through inter-process communication (IPC) and communicate

with each other via Scenargie. Scenargie supports IEEE 802.11 network simulation and

restricts the data rate and packet loss ratio of data transmission between the KVMs based

on its IEEE 802.11 PHY/MAC and mobility models. Kawai et al. also have implemented

a virtual wireless LAN device in the KVMs, which works as a Qualcomm Atheros AR9160

Wireless LAN card operates. The virtual wireless LAN device enables the Linux Atheros

device driver, ath9k, to operate on the KVM. Thus, Kawai’s network emulator emulates

the behavior of network user applications, network protocols stacks, and the Atheros

wireless LAN device driver.

Akashi’s network emulator[61] works on a computer cluster and executes multiple vir-

tual machines on the computer cluster simultaneously. The virtual machines connect

through the backbone network that connects the cluster machines. The data traffic among

the virtual machines are controlled by the program that calculates the bandwidth, packet

32

2.2. Related work

loss ratio, and connectivity among the virtual machines in the virtual network based on

(pre-)configured network scenario. Akashi’s network emulator enables a large-scale wire-

less network emulation with sufficient computing resources from the computer cluster.

While Kawai’s network emulator works on a single computer and has limited computer

resources, Akashi’s network emulator can utilize more computing resources from the com-

puter cluster and enables a large-scale network emulation.

Staub et al. [63] use Xen hypervisor to emulate virtual wireless mesh network nodes.

The virtual mesh network nodes are connected to a network simulator, OMNeT++, and

the network simulator calculates radio propagation between the virtual network nodes.

The network emulator proposed by Luca et al. uses Java VM instead of the KVM[64].

Luca et al. use Java VMs with network applications and TCP stacks written in Java

instead of the KVMs and connect the Java VMs over the TUN/TAP devices on the host

machine. The network emulator lacks the reality of network emulation due to the re-

implemented TCP/IP stack in Java, but it is an example of network emulators using

virtual machines.

As of 2021, since various cloud platforms that support hypervisor-based machine vir-

tualization are provided by Amazon[65], Microsoft[66], and Google[67], some researchers

have extended network emulation environments to the cloud platforms. For example,

Michael et al. [62] implemented a network virtualization environment in Google Cloud

Platform (GCP)[67] and reported that their network emulation environment scales up a

virtual network to 10,000 virtual machines.

2.2.3 Container-based/Namespace-based network emulation

The container-based network emulation uses instances as network nodes in a virtual

network. Since the instances consume less computing resources than virtual machines,

the container-based network emulation has good scalability. Most of the container-based

network emulators connect the instances using the virtual network devices and network

bridge interfaces such as the Linux bridge interface[68] and Open vSwitch[69]. The net-

work bridge interface emulates a Layer 2 (L2) Ethernet switch and allows multiple network

interfaces to communicate frames with each other and relays packet flows among the vir-

tual network devices in container-based network emulation environments. For example,

33

Chapter 2 Wireless LAN emulation with wireless network tap devices

DOCUEMU [70] is a network emulator using Linux containers connecting via bridge in-

terfaces on a single Linux machine.

For example, the network emulator proposed by Handigol et al.[71] or Yan et al.[72] use

Open vSwitch to connect containers and conduct link emulation by controlling the packet

flows via Open vSwitch. Open vSwitch is a distributed virtual network switch and forms

a virtual network switch over multiple network hosts. Open vSwitch has the packet flow

control function and performs as a link emulator.

The Extendable Mobile Ad-hoc Network Emulator (EMANE) is a wireless network em-

ulation framework and supports containers[73]. EMANE consists of several subsystems

which enable real-time wireless link emulation with the simulation models of radio propa-

gation, mobility, and wireless network protocol stacks such as IEEE 802.11 and Long Term

Evolution (LTE) and 4G networks. EMANE provides the user spaces with TUN/TAP

devices as the interfaces between user applications and the EMANE subsystems. EMANE

allows user applications and instances to be network nodes in the emulated network and

communicate via the TUN/TAP device and applies link emulation to the packet flows

among the network nodes.

2.2.4 Network emulators using nested virtualization

Nested virtualization is a technique that allows instances to work in a virtual machine.

Nested virtualization is more scalable than hypervisor-based virtualization in network

emulation because the instances consume less computing resources than virtual machines

when they emulate the same number of network nodes. For example, the network emulator

proposed by Grau et al.[74] is constructed with Linux containers on virtual machines

running on the Xen hypervisor[75]. Grau’s network emulator aims to provide highly

accurate time synchronization among the instances by adjusting a virtual time clock of

the Xen hypervisor.

34

2.2. Related work

2.2.5 Network emulators based on hardware-based channel em-

ulation

Simulation models incorrectly calculate radio propagation fluctuations in vehicular net-

works because they cannot consider indefinite factors from natural environments and

hardware characterizations such as RF modulation. For emulating the fluctuation of ra-

dio propagation, some network emulators have hardware-based channel emulation mech-

anisms.

The network emulators proposed in [76, 77, 78] emulate radio frequency (RF) behav-

iors with Field Programmable Gate Array (FPGA) based channel emulation board. These

network emulators allow the FPGA board with a channel emulator using real RF signals

emitted from network cards to emulate radio propagation delays instead of a network

simulator. Using the FPGA board helps to reproduce the behavior of radio signal pro-

cessing. FPGA reduces the calculation overhead on radio propagation simulation and

realizes better performance than a network simulator. On the other hand, these network

emulators require users to prepare FPGA devices and program the FPGA boards. Thus,

these network emulators force users to spend additional time on programming.

Ghiaasi et al. [79] propose a vehicular network emulator collaborating with Software

Defined Radio (SDR) devices to emulate IEEE 802.11p radio propagation. The SDR

device is connected to the real onboard units using coaxial cables and generates signals

based on the control by the host computer. Using the real onboard units, the network

emulator can reproduce the behavior of the onboard units when they communicate over

the radio with the actual radio interface. However, it is less scalable because it requires

many onboard units when emulating a large-scale network.

Network emulation with hardware-based channel emulation has better strictness to

evaluation results than others, but it forces to take extra time to construct the network

emulation testbed and conduct complicated setups. In addition, FPGA-based channel

emulation makes it difficult to simulate large-scale network emulation considering radio

propagation and mobility of many vehicles.

35

Chapter 2 Wireless LAN emulation with wireless network tap devices

2.2.6 Virtual network devices designed for IEEE 802.11 network

emulation

Although almost all the existing network emulators utilize virtual Ethernet devices

to capture data packet flows, two virtual network devices are designed for IEEE 802.11

networks. Weighgartner et al. developed a virtual wireless network device with functions

similar to the TUN/TAP device in [80]. Weighgartner’s virtual network device works

with Wireless Extension, an IEEE 802.11 protocol implementation for Linux systems and

supports IEEE 802.11n and older IEEE 802.11 protocols. It provides a user application

with a virtual wireless network interface and exports IEEE 802.11 frames to another user

application. The Wireless Extension generates the IEEE 802.11 frames from data packets

via the virtual wireless network interface. Weighgartner’s device enables wireless LAN

emulation using real IEEE 802.11 frames. The Wireless Extension was replaced with

the Linux wireless subsystem, a newer IEEE 802.11 implementation than the Wireless

Extension. The Wireless Extension does not support the latest IEEE 802.11 standards

such as IEEE 802.11ac or newer protocols and is no longer updated. Thus, Weigngartner’s

virtual wireless network device does not also support the latest IEEE 802.11 standards.

Another virtual wireless network device is mac80211 hwsim, a virtual SoftMAC driver.

mac80211 hwsim aims to be used for debugging the implementation of the IEEE 802.11

protocol stacks for Linux systems and supports the Linux wireless subsystem. Therefore,

it has limitations inconvenient to be used for network emulation. The SoftMAC driver

notifies a wireless LAN device of configuration parameters configured by network appli-

cations such as transmission frequency and transmission power. For example, if a user

configures the channel number using Linux wireless LAN configuration utility (iw), the

SoftMAC driver configures the wireless network device with the changed parameters. Sim-

ilar to Weighgartner’s virtual wireless network device, mac80211 hwsim sends and receives

IEEE 802.11 frames to/from user applications but does not notify user applications of

the changed parameters. Thus, the user application cannot realize that the IEEE 802.11

protocol stacks configure the wireless network device through mac80211 hwsim.

Some network emulators use mac80211 hwsim[81]. The network emulators using mac80211 hwsim

collaborate with other network simulators supporting link emulation for IEEE 802.11 net-

works because mac80211 hwsim does not have the link emulation function.

36

2.2. Related work

For example, the network emulator proposed by Gilles et al.[81] uses mac80211 hwsim

to connect network applications isolated with Linux namespaces. Gilles’s network em-

ulator connects the virtual wireless network devices emulated by mac80211 hwsim using

the bridge interface, but it does not have interfaces to provide user applications with the

IEEE 802.11 frames and the configuration parameters for wireless network devices. Thus,

it is difficult to collaborate with network simulators running on the userspace such as ns-3

and Scenargie.

Another example of such a network emulator is Wmediumd[49]. Wmediumed is a link

emulator working with mac80211 hwsim. Wmediumd captures IEEE 802.11 frames from

mac80211 hwsim and inserts the propagation delays to the frame flow based on radio

propagation model such as the free space model before repeating the frame flow back

to mac80211 hwsim. Wmediumd is supported by the Linux kernel because mac80211 hwsim

has the interface to connect to Wmediumd. However, it supports a few radio propagation

models and no dynamic mobility simulation. Wmediumd calculates the propagation delays

if the mobility trace files of network nodes are given before link emulation.

2.2.7 Problems of IEEE 802.11 network emulation

The problems of the existing IEEE 802.11 network emulation can be listed below.

• Insufficient interoperability between the IEEE 802.11 protocol stacks in the kernel

and the network simulator

• Trade-off between the scalability of the network emulators and the strictness of the

emulation results

• Limited collaboration with a network simulator

Hypervisor-based network emulation enables to emulate the behavior of a network sys-

tem more strictly than other methods because the implementation of network protocol

stacks and network device drivers work on a virtual network. However, it emulates net-

work nodes using hypervisor-based machine virtualization and consumes more computing

resources as the number of network nodes increases. Remarkably, the network emulators

37

Chapter 2 Wireless LAN emulation with wireless network tap devices

like Kawai’s network emulator execute virtual machines and a network simulator on a sin-

gle machine and allow the computing load to concentrate on the host machine. Thus, the

high computing load due to emulating many network nodes takes the correctness of the

results of network emulation from these network emulators. In other words, hypervisor-

based network emulation benefits validating the correctness or finding the software bugs

of these implementations.

Network emulators built on a single machine has less scalability than network emulators

dispersively built on multiple machines because the former allows the computing load to

concentrate on the machine.

Using cloud computing resources benefits scaling up the network emulation and re-

ducing the computing load for executing many virtual machines because it is practical

to use multiple host machines to execute many virtual machines. However, it imposes

complicated configuration management for constructing computing clusters and network

emulation environments on its users. Some researchers suggest the problem and proposed

configuration tools to reduce the loads for configuration management. Major configura-

tion utilities for constructing cloud computing environments such as Kubernetes(k8s)[82],

Ansible[83], Chef[84], and Vagrant[85] possibly helps to mitigate the burden on the con-

figuration management. However, the complicated configuration management is contrary

to the needs of most users of network emulation, which they aim to spend time to test

their network applications, not to build the network emulation environment.

The existing virtual network devices have sufficient functionality to emulate link em-

ulation for IEEE 802.11 networks. However, they are insufficient to examine the IEEE

802.11 protocol stacks on network emulation. Some virtual network devices can provide

user applications with IEEE 802.11 frames the same as those exchanged between the

wireless network hosts in a real wireless network but do not provide configuration pa-

rameters when the IEEE 802.11 protocol stacks change them. The network emulators

using mac80211 hwsim enable wireless network emulation using the Linux wireless sub-

system but do not have the function to inform the wireless LAN configuration of user

applications such as network simulators.

The discussion above indicates that the strictness and scalability in network emulation

have the relation of trade-off. In addition, most of the existing network emulators focus

38

2.3. System architecture

on expanding the scale of a virtual network and emulating the performance of application

data transmission. This is in contrast to the requirements of developing wireless communi-

cation devices for vehicular networks. As mentioned in Chapter 1, since the development

of onboard units requires developers to observe the requirements[34] of the onboard units,

the network emulation environment that meets the requirements of developing vehicular

network systems is indispensable for the developers and researchers to encourage their

works.

2.2.8 Requirements for emulating IEEE 802.11 network sys-

tems.

There are two requirements that the existing network emulators do not meet for IEEE

802.11 network emulation.

• Expanding to multiple physical machines

• Interoperability with various network simulators

The existing network emulators focus on link emulation only. An IEEE 802.11 de-

vice controls not only data transmission but also the IEEE 802.11 MAC operations; for

example, it configures channels and adjusts transmission power depending on the radio

link-state, such as received signal strength. In the existing network emulation, the IEEE

802.11 MAC operations are fully simulated by a network simulator, and the IEEE 802.11

protocol stacks implemented in the kernel of an operating system do not work in network

emulation. Therefore, it is difficult to link emulation for IEEE 802.11 networks is based

on radio propagation, mobility, and IEEE 802.11 protocol models.

2.3 System architecture

This section proposes the wireless LAN emulator with wireless network tap devices

(WiNE-Tap), a novel wireless network emulator fully supporting the IEEE 802.11 protocol

stacks implemented in the Linux kernel, and describes the architecture and mechanisms

39

Chapter 2 Wireless LAN emulation with wireless network tap devices

of WiNE-Tap. The source code of WiNE-Tap is available online at the Github page at

https://github.com/ishilab/wine-tap.

The wireless LAN emulator with wireless network tap devices (WiNE-Tap) consists

of three software components: wireless network tap device (wtap80211) that is a virtual

network device supporting IEEE 802.11 networks, a user daemon process that assists

the functions of wtap80211 (hereafter, wtap80211-daemon), and the software library that

provides user applications with interfaces to connect to wtap80211-daemon (hereafter,

Libwinetap). In addition, wtap80211 and wtap80211-daemon consist of the wireless net-

work emulation framework. The feature of WiNE-Tap is that it enables emulating data

transmission over IEEE 802.11 networks with actual IEEE 802.11 frames and the config-

uration parameters held in the Linux wireless subsystem. WiNE-Tap enables the Linux

wireless subsystem and user applications such as network simulators to exchange the

IEEE 802.11 frames and the configuration parameters in real-time and allows the Linux

wireless subsystem to operate following the radio propagation and mobility of network

nodes in a virtual network simulated by the network simulator. Therefore, WiNE-Tap

enables emulating the operation of the IEEE 802.11 protocol stacks for Linux systems in

the virtual network.

The wireless network emulation framework helps user applications to know the behavior

of the IEEE 802.11 protocol stacks, which are usually invisible to the user applications.

The Libwinetap helps user applications such as network simulators decode the messages

from the wireless network emulation framework, including the IEEE 802.11 frames and

the configuration parameters captured by wtap80211.

Since the wireless network emulation framework utilizes the APIs of the IEEE 802.11

protocol stacks for Linux, the following sections explain the mechanisms of the Linux

wireless subsystem and the wireless network emulation framework. Then they describe

the architecture of WiNE-Tap.

2.3.1 Wireless network emulation framework

The wireless network emulation framework is developed by the author and consists of

the wireless network tap device (wtap80211) and the user daemon process (wtap80211-

daemon) that assists encoding/decoding messages that wtap80211 sends or receives. Fig-

40

https://github.com/ishilab/wine-tap

2.3. System architecture

Wi-Fi management!
app

Network!
app

!
 U

se
r s

pa
ce

1 Send user data
2. Transmit WLAN frames!
 Control TX pow, detect RSSI..

Simulate radio propagation,!
move network nodes…

5. Receive data 4. Receive WLAN frame5

2

4

3

Unix domain!
socket

Network!
simulator

3

wtap80211

cfg80211 Linux
wireless
subsystemTCP, UDP, & IP!

stack

K
er

ne
l s

pa
ce

 " Generic
netlink

2 4

1 5

wtap80211!
daemon

Socket API nl80211

Linux network namespace

Wireless network
emulation

framework

mac80211

Figure 2.2: Wireless Network Emulation Framework

ure 2.2 shows the architecture of the wireless network emulation framework.

■ Wireless network tap devices

The wireless network tap device (wtap80211) is a virtual IEEE 802.11 network de-

vice. wtap80211 captures IEEE 802.11 frames such as association, authentication, and

data frames, which the IEEE 802.11 protocol stacks in the Linux kernel generate and

sends to IEEE 802.11 network devices, and transfers the captured IEEE 802.11 frames

to user applications via Linux Netlink sockets. In addition, wtap80211 also monitors the

IEEE 802.11 network device configuration and notifies the configuration parameters of

the IEEE 802.11 network devices to the user applications when the IEEE 802.11 protocol

stacks change the configuration parameters. The function to transfer the configuration

parameters to the user applications is the original function of wtap80211, and other virtual

network devices do not have such function.

41

Chapter 2 Wireless LAN emulation with wireless network tap devices

The wireless network tap device is implemented as a virtual SoftMAC driver. Although

the real SoftMAC driver informs the IEEE 802.11 protocol stacks of the device configu-

ration information read from the firmware on the IEEE 802.11 network device and allows

the IEEE 802.11 protocol stacks to recognize and control the device, wtap80211 notifies

the IEEE 802.11 protocol stacks of pseudo IEEE 802.11 network device configuration in-

formation shown in Table 2.1 and makes the IEEE 802.11 protocol stacks recognize that

the IEEE 802.11 network device is attached to the Linux system even though the IEEE

802.11 device does not actually exist.

42

2.3. System architecture

Table 2.1: Pseudo wireless LAN device configuration in-

formation of wtap80211

Name Specification

Kernel version Linux 3.19, 4.0.x ˜ 4.4.x

Standards IEEE 802.11a/b/g/n/ac, IEEE 802.11p/s/p (limited support)

Operation modes Managed (STA), Master (AP), IBSS (Ad-hoc),

Monitor, Mesh, OCB (Out context of BSS)

The IEEE 802.11 protocol stacks for Linux systems comprises two Linux kernel modules,

cfg80211[86] and mac80211[87]. cfg80211mediates the network application in the user

space such as hostapd and wpa supplicant and either mac80211 or the IEEE 802.11

network device driver depending on which the IEEE 802.11 device driver is the FullMAC

driver or the SoftMAC driver[88]. If the IEEE 802.11 network device driver is the FullMAC

driver, cfg80211 directly accesses the IEEE 802.11 network device via the FullMAC driver.

If not, cfg80211 indirectly accesses the IEEE 802.11 network device through mac80211.

The SoftMAC and FullMAC drivers are different types of implementation methods of

IEEE 802.11 network device drivers for Linux systems. The FullMAC driver performs as

the IEEE 802.11 Mac Access Control Sublayer Management Entity (IEEE 802.11 MLME).

In contrast, the SoftMAC driver does not implement the IEEE 802.11 MLME and allows

the IEEE 802.11 network devices to process the tasks of the IEEE 802.11 MLME. In Linux

systems, mac80211 takes the IEEE 802.11 MLME. cfg80211 registers the IEEE 802.11

network devices to the IEEE 802.11 protocol stacks in the Linux kernel and manages the

channel configuration of the IEEE 802.11 network devices based on the regulatory domain

database. cfg80211 is also responsible to manages the power control of the IEEE 802.11

devices. For this reason, mac80211 and cfg80211 are closely related to the behavior of

the IEEE 802.11 network systems.

For example, ETSI Decentralized Congestion Control (DCC) adjusts transmission power

based on the change of received signal strength to avoid signal interference[89]. Since

cfg80211 controls the transmission power of IEEE 802.11 network devices in Linux sys-

tems, the IEEE 802.11-based vehicular network system emulation requires cfg80211 to

43

Chapter 2 Wireless LAN emulation with wireless network tap devices

operate with network applications during emulation and makes it follow the simulated

behavior of radio propagation and mobility among IEEE 802.11 network nodes in the

virtual network.

The conventional virtual network devices such as TUN/TAP devices are based on Eth-

ernet device drivers and do not work with the IEEE 802.11 protocol stacks for Linux

systems. Therefore, they do not have mechanisms to provide the received signal strength

simulated in the virtual network to the IEEE 802.11 protocol stacks and do not have a

mechanism to inform the behavior of the IEEE 802.11 protocol stacks such as transmission

power changes to the network simulator. For this reason, it is difficult for the existing net-

work emulators to emulate the behavior of the IEEE 802.11 protocol stacks. In contrast,

wtap80211 is based on the IEEE 802.11 network device drivers and has mechanisms to

provide the received signal strength, transmission power, and other configuration values

to the IEEE 802.11 protocol stack and the network simulator each other. Table 2.2 shows

the examples of parameters that wtap80211 captures and provides to the IEEE 802.11

protocol stacks and a network simulator.

As shown in Figure 2.2, the IEEE 802.11 protocol stacks for Linux work independently

from other network protocol stacks such as TCP/IP. The data flow and configuration flow

are separated at the IEEE 802.11 protocol stacks. When receiving an IEEE 802.11 data

frame, the IEEE 802.11 protocol stacks decapsulate an IP packet from the received frame

and turn the IP packet over to the TCP/IP stack. Meanwhile, when the IEEE 802.11

protocol stacks receive an IEEE 802.11 management/control frame, the IEEE 802.11 pro-

tocol stacks retrieve the parameters included in the received management/control frame

and notifies the parameters to particular user applications such as hostapd[90] an IEEE

802.11 access point implementation for Linux, or wpa supplicant[91], Linux WPA suppli-

cant implementation.

44

2.3. System architecture

Table 2.2: Examples of control parameters that

wtap80211 captures and provides to the IEEE 802.11 pro-

tocol stacks and a network simulator

Parameter by categories Type Description

Device configuration

SIGNAL DBM bool Signal values are in dBm if true.

AMPDU AGGREGATION bool AMPDU aggregation is enabled if true.

QUEUE CONTROL bool TX queue is controlled by software if true.

Hardware state information

IDLE bool the device is in idle state if true.

POWER bool the device is turned on by software if true.

MONITOR bool the device operates in monitor mode if true.

Channel configuration

BAND int8 Current channel band number

CENTER FREQ int32 Center frequency in MHz

MAX POWER int8 maximum transmission power in dBm

MAX ANTENNA GAIN int8 maximum antenna gain in dBi

BSS information

SSID char[] Extended SSID

IBSS bool the device is in an IBSS network if true.

BEACOM bool beacon parameter is changed if true.

OCB bool the device is in an OCB network if true.

2.3.2 wtap80211-daemon

wtap80211-daemon is a user daemon process to assist communication between wtap80211

and user applications by encoding and decoding messages between them. Since the mes-

sages from wtap80211are packed in Generic Netlink messages, the user applications that

communicate with wtap80211 are responsible for encoding and decoding the messages

from wtap80211. The Generic Netlink message can be decoded using libnl, a static

45

Chapter 2 Wireless LAN emulation with wireless network tap devices

library containing convenient wrapper functions for the native Netlink APIs. However,

the Generic Netlink APIs requires user applications to define the payload format with

the data structures specified by the Generic Netlink APIs and are more complicated than

other network socket APIs such as TCP/IP sockets, and it possibly enforces on developers

to spend more time to implement the message encoding/decoding function to their user

applications. Therefore, wtap80211-daemon decodes the message from wtap80211 instead

of user applications.

The wireless network emulation framework makes the behavior of the Linux wireless

subsystem visible to the user applications but works on a single machine only and cannot

be scalable to multiple machines simultaneously. Thus, the author extended the function-

ality of the wireless network emulation framework and newly developed a wireless LAN

emulator using the wireless network emulation framework (WiNE-Tap).

2.3.3 Mechanisms of WiNE-Tap

The wireless LAN emulator with wireless network tap devices (WiNE-Tap) is an IEEE

802.11 network emulator for Linux systems and can consist of single or multiple machines.

Figure 2.3 shows the architecture of WiNE-Tap. WiNE-Tap extends the functions of

the wireless network emulation framework and makes the behavior of the Linux wire-

less subsystem visible to the user applications running on multiple machines by using

the extension of wtap80211-daemon and an additional software component, Libwinetap.

Concretely, WiNE-Tap enhances the message forwarding function of wtap80211-daemon

to transfer the decoded message from wtap80211 to other machines connected via Eth-

ernet. Libwinetap provides APIs to network simulators to decode the messages from

wtap80211 and encode the data packet with the simulated received signal strengths and

other parameters to the message format wtap80211‘ receives and decodes.

wtap80211-daemon connecting over Ethernet communicates the messages from wtap80211

with jumbo frames. The maximum length of an IEEE 802.11 frame is 2346 bytes or much

longer when multiple IEEE 802.11 frames are aggregated. However, the maximum length

of an Ethernet frame is 1500 bytes and smaller than the maximum length of the IEEE

802.11 frame, and the IEEE 802.11 frame should be transferred after being divided into

multiple Ethernet frames. The division and unity of IEEE 802.11 frames during the emu-

46

2.3. System architecture

1 Send data
TransmitWLAN frames/!
Control TX pow., etc.

2

7 Receive data

Forward the frames,!
TX pow. & freq., etc.

3 Simulate radio!
propagation, etc.

4

Forward the frames and
simulation results!
(RSSI, etc.)

5Receive WLAN frames/!
Detect RSSI, etc.

6

Network simulator

wtap80211!
daemon

Simulation!
host machine

4

libwinetap

Wi-Fi Management AppNetwork App

!
 U

se
r s

pa
ce

wtap80211

TCP/UDP, IP
Stack

K
er

ne
l s

pa
ce

 "

Socket API

Linux network namespace

Linux wireless
subsystem

Emulation host!
machine #1, #2 …

Generic
netlink

wtap80211!
daemon

1 7

2 6

3 5

We implemented!
the communication
function between
the daemons and
the simulator over a
Wired LAN.

Wi-Fi management!
app

Network!
app

!
 U

se
r s

pa
ce

1 Send user data
2. Transmit WLAN frames!
 Control TX pow, detect RSSI..

Simulate radio propagation,!
move network nodes…

5. Receive data 4. Receive WLAN frame5

2

4

3

Unix domain!
socket

Network!
simulator

3

wtap80211

cfg80211 Linux
wireless
subsystemTCP, UDP, & IP!

stack

K
er

ne
l s

pa
ce

 " Generic
netlink

2 4

1 5

wtap80211!
daemon

Socket API nl80211

Linux network namespace

Wireless network
emulation

framework

mac80211

Wireless network emulator framework that
we have proposed previously in [13].

nl80211

Figure 2.3: WiNE-Tap architecture

47

Chapter 2 Wireless LAN emulation with wireless network tap devices

Semaphore

Bu!er block

16 bytes

UUID Payload"
length

Message"
type

Attribute"
ID

Device control"
information Payload

32 bytes 32 bytes 32 bytes 64 bytes Variable size

Figure 2.4: Message format used in wtap80211

lation host machines increase the transmission delays between wtap80211 and the network

simulator and make WiNE-Tap lose the real-time property of its emulation results. There-

fore, in WiNE-Tap, wtap80211-daemon packs an IEEE 802.11 frame into a jumbo frame

and transfer the jumbo frame to another wtap80211-daemon.

wtap80211-daemon provides APIs based on the Unix domain socket[92] for user appli-

cations to communicate with wtap80211-daemon. The Linux system supports a variety of

inter-process communication mechanisms such as pipeline, filesystem, memory-mapped

files, shared memory, and sockets. Memory-based inter-process communication systems

are faster than other systems because of no access to secondary storage devices. However,

memory-based inter-process communication requires mutual exclusion to avoid conflicting

access to the memory and makes it harder to manage the mutual exclusion as the number

of network nodes increases in the host machine. Meanwhile, an unix domain socket real-

izes lightweight inter-process communication and provides similar socket APIs to TCP/IP

sockets, it makes it easy for the user applications to communicate with wtap80211 daemon

using socket APIs.

Libwinetap is the static library to help developers implement the function to communi-

cate with wtap80211-daemon via the Unix domain socket. Libwinetap also provides APIs

to receive and send messages, including IEEE 802.11 frames or the configuration param-

eters of the IEEE 802.11 network device with wtap80211-daemon. Figure 2.4 shows the

message format sent from wtap80211. The UUID can only be used for wtap80211 to iden-

tify the messages. The payload length is basically equal to the length of an IEEE 802.11

frame. The message type is used to identify whether the message carries the IEEE 802.11

frames or the IEEE 802.11 network device configuration. The device control information

includes some data structures defined in the Linux wireless subsystem.

48

2.4. Operation validation and performance evaluation

The data structures in the device control information are the same as the data struc-

tures used in the Linux wireless subsystem, such as struct ieee80211 conf, struct

ieee80211 bss info, struct ieee80211 rx status, and struct ieee80211 tx options

defined in the Linux kernel source codes [93], except some data fields of the data struc-

ture containing the pointer to the kernel resources. Which data structure is packed in

the device control information field is packed field depends on what configuration the

Linux wireless subsystem changes. For example, if the message from wtap80211 carries

an IEEE 802.11 data frame for transmission, the device control information field has the

data structure as the same as struct ieee80211 tx options, which defines transmission

power and center frequency. If the message is a notification related to RFkill, the de-

vice control information field is structured with struct ieee80211 conf, containing the

bit flags of hardware power status. RFkill provides user applications with APIs to turn

on/off the RF signal transmission and the power supply of IEEE 802.11 network devices.

However, the device control information field does not have multiple data structures

simultaneously. For example, a user turns the operation mode of an IEEE 802.11 device to

the ad-hoc mode, and the IEEE 802.11 Basic Service Set (BSS) and the software switch

of the IEEE 802.11 network device power status is changed at the same time. Then

wtap80211 sends two messages that each has struct ieee80211 bss info and struct

ieee80211 conf in their device control information field.

2.4 Operation validation and performance evaluation

This section describes the performance evaluation of WiNE-Tap. The performance

evaluation aims to check that WiNE-Tap works correctly and clarify the conditions for

improving the real-time property of the emulation results.

2.4.1 Setting up the experiment environment

For the performance evaluation of WiNE-Tap, the author built an experimental im-

plementation of WiNE-Tap as shown in Figure 2.5, which shows the configuration of the

experiment environment for the performance evaluation. The performance evaluation

49

Chapter 2 Wireless LAN emulation with wireless network tap devices

first aims to check that WiNE-Tap sufficiently functions to emulate IEEE 802.11p-based

vehicular network systems. Therefore, the experiment environment assumes to emulate

an IEEE 802.11a Ad-hoc network consisting of two wireless network nodes.

The experiment environment comprises three physical machines. Two of the physical

machines work as emulation host machines, and the other machine works as a simulation

host machine. The emulation host machines execute Linux systems with the wireless

network emulation framework and network applications. Each of the emulation host

machines performs as a wireless network node. The simulation host machine executes

a network simulator, Scenargie, and wtap80211-daemon. The three physical machines

connect over two Gigabit Ethernet networks, the machine control network and the data

transfer network. The machine control network is used to monitor the physical machines

and sends commands necessary to manage WiNE-Tap. The data transfer network carries

the messages, including IEEE 802.11 frames, and the configuration parameters exchanged

between wtap80211 and the network simulator. The reason for using the two Ethernet

networks is to avoid the observer effect and accurately measure the practical performance

of WiNE-Tap. The physical machines have the exact specification as shown in Table 2.3.

50

2.4. Operation validation and performance evaluation

Table 2.3: Host machine specification

Component Specification

Linux distribution/Kernel Ubuntu 16.04.6 LTS / Linux 4.4.170-generic

CPU AMD Athlon PRO 200GE @ 3.2 GHz

Memory DDR4-2666 4 GB

Storage SSD 120 GB / HDD 1 TB

Wi-Fi chips RTL8822BE IEEE 802.11a/b/g/n/ac wireless card

Wi-Fi Antenna Omnidirectional antenna

The emulation host machines form an IEEE 802.11a ad-hoc network that imitates

an IEEE 802.11p-based vehicular ad-hoc network and transfers bulk data using iPerf3

and the Constant Bit Rate (CBR) application scripted by the author in Python. The

emulation host machines have a wireless LAN card made by RealTek, RTL8822BE. In

the real environment, the emulation host machines are far away with a 1-meter distance

in the room where no access points communicate over 5 GHz bands. The validation of the

emulation results of WiNE-Tap is performed by comparing with the measurements in the

real environment. The emulated network and the real network are formed by using the

same configuration. The validation of the emulation results is performed by comparing

the emulated results with the measurements in the real environment

2.4.2 Operation validation during IEEE 802.11 link establish-

ment

First, the author confirms that WiNE-Tap emulates the IEEE 802.11 link establish-

ment in the virtual IEEE 802.11 Ad-hoc network by monitoring the logs output by the

wtap80211-daemon. Figure 2.6 and Figure 2.7 show the logs captured from the emulation

host machines while emulating the IEEE 802.11 link establishment. The lines in Figure

2.6 show the configuration sequence from the beginning of creating an ad-hoc network to

the end of completing the association with another wireless network node. The detailed

descriptions of the lines are written here:

51

Chapter 2 Wireless LAN emulation with wireless network tap devices

WLAN frames / TX Power, RSSI, etc.)
Command / Logs, etc.Monitor 

PC

IEEE 802.11a Ad-hoc Network

Emulation 
host #1

wtap80211

Network 
App #1

wtap80211 
daemon

Protocol 
Stack

Em
ul

at
io

n
←

→
 R

ea
l

The same
machine

eth0

eth1

Emulation 
host #2

wtap80211

Network 
App #2

Protocol 
Stack

wtap80211 
daemon

The same
machine

Scenargie
simulator

Inserts
simulated 
delays

eth1eth0

L2 switch #1
eth0

eth1
The same network
apps and stack were
used in the
emulation and real
environments.

wtap80211 
daemon

L2 switch #2

Figure 2.5: Configuration of the experiment environment for WiNE-Tap

52

2.4. Operation validation and performance evaluation

• Line 1 to 6: The emulation host machine begins to create a new ad-hoc network and

initialize the wireless network device whose hardware address is 0c:ff:fa:00:00:01.

Note that the virtual wireless network device emulated by wtap80211 has a hardware

address whose 24 bits from the most significant bit is 0c:ff:fa. Thus, the wireless

network device is wtap80211.

• Line 7 to 14: The new channel context information is created, and the transmission

power and center frequency are set to the wireless network device. In this case, the

transmission power and frequency are 20 dBm and 5180 MHz, respectively.

• Line 15 to 23: The contention window sizes of QoS queues are configured to the

wireless network device. In this case, all the contention window sizes are the same

because the QoS function is disabled.

• Line 25 to 37: The Basic Service Set (BSS) information is updated for the created

ad-hoc network. Line 31 means the beacon interval is set to 102,400 µs = 102.4 ms.

The value comes from the equation: 100×1[TU] = 100×1024[µs] = 102.4[ms]. The

Time Unit (TU) is a standard time unit used in IEEE 802.11 standards. Line 36

means that beaconing is enabled to disseminate IEEE 802.11 advertisement frames

to notify other wireless network devices of the ad-hoc network. Line 38 means that

the Service Set ID (SSID) of the ad-hoc network is set to 74:65:73:74:00:00, which

is test in ASCII code.

Figure 2.7 shows the logs captured from the other emulation host machine. The em-

ulation host machine is the client of the ad-hoc network. The lines shown in Figure 2.7

are almost the same as the lines shown in Figure 2.6. The differences between Figure 2.6

and Figure 2.7 are written below:

• Line 1 to 10: the wireless network device whose hardware address is 0c:ff:fa:00:00:00

is turned on by a user. Concretely, the idle flag is true in Line 2, but it turns false

in Line 7.

• Line 37 to 40: The wireless network device joined the ad-hoc network whose SSID

is 74:65:73:74:00:00 (that is an ASCII string, “test.”), which is the same SSID of

the ad-hoc network created by the emulation host machine #1.

53

Chapter 2 Wireless LAN emulation with wireless network tap devices

1.[4627.491892] wlan1: Creating new IBSS network, BSSID 56:60:7e:70:76:12
2.[4627.491899] wtap80211d: info: wtap_ops_config: HWconfig changed (HWaddr = 0c:ff:fa:00:00:01)
3.[4627.491902] wtap80211d: info: wtap_ops_config: freq = 0, idle = 0, ps = 0, smps = automatic
4.[4627.491904] wtap80211d: info: wtap_ops_config: ps_dtim_period = 0, ps_timeout = 0
5.[4627.491907] wtap80211d: info: wtap_ops_config: radar detection disabled
6.[4627.491909] wtap80211d: info: wtap_ops_config: minimum TX power changed 0 => 0 [dBm]
7.[4627.491923] wtap80211d: info: wtap_ops_add_chanctx: channel context added (HWaddr = 0c:ff:fa:00:00:01, ctx_id =

0xc969be6f): 5180[MHz/width], freq1: 5180[MHz], freq2: 0[MHz] max_power = 20[dBm]
8.[4627.491926] wtap80211d: info: wtap_ops_assign_vif_chanctx: assigned vif (addr = 0c:ff:fa:00:00:01, id =

0x536d3658) to channel context (freq = 5180[MHz], max_power = 20[dBm] ctx_id = 0xc969be6f)
9.[4627.491928] wtap80211d: info: wtap_ops_assign_vif_chanctx: vif->chanctx_conf is null
10.[4627.491931] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:01):
11.[4627.491934] wtap80211d: info: wtap_ops_bss_info_changed: TX power changed: 20 => 20 [dBm]
12.[4627.491937] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:01):
13.[4627.491940] wtap80211d: info: wtap_ops_bss_info_changed: NIC status: active -> active
14.[4627.491944] wtap80211d: info: wtap_ops_change_chanctx: channel context changed (HWaddr = 0c:ff:fa:00:00:01,

ctx_id = 0xc969be6f): 5180[MHz/width], freq1: 5180[MHz], freq2: 0[MHz], max_power = 20[dBm]
15.[4627.491947] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
16.[4627.491950] wtap80211d: info: wtap_ops_conf_tx: queue = 0, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
17.[4627.491953] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
18.[4627.491956] wtap80211d: info: wtap_ops_conf_tx: queue = 1, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
19.[4627.491959] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
20.[4627.491961] wtap80211d: info: wtap_ops_conf_tx: queue = 2, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
21.[4627.491964] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
22.[4627.491967] wtap80211d: info: wtap_ops_conf_tx: queue = 3, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
23.[4627.491970] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:01):
24.[4627.491972] wtap80211d: info: wtap_ops_bss_info_changed: QoS: enabled => disabled
25.[4627.491975] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:01):
26.[4627.491977] wtap80211d: info: wtap_ops_bss_info_changed: ERP CTS Prot: 0 => 0
27.[4627.491979] wtap80211d: info: wtap_ops_bss_info_changed: ERP Preamble: 0 => 0
28.[4627.491982] wtap80211d: info: wtap_ops_bss_info_changed: ERP Slot: 0 => 0
29.[4627.491984] wtap80211d: info: wtap_ops_bss_info_changed: HT info: 0xb => 0xb
30.[4627.491986] wtap80211d: info: wtap_ops_bss_info_changed: Basic rate: 0 => 1
31.[4627.491988] wtap80211d: info: wtap_ops_bss_info_changed: Beacon interval: 0 -> 102400
32.[4627.491991] wtap80211d: info: wtap_ops_bss_info_changed: BSSID: 00:00:00:00:00:00 => 56:60:7e:70:76:12)
33.[4627.492037] wtap80211d: info: wtap_ops_bss_info_changed: Beacon info:
34.[4627.492040] wtap80211d: info: wtap_ops_bss_info_changed: Beaconing: disabled => enabled
35.[4627.492046] wtap80211d: info: wtap_ops_bss_info_changed: IBSS: joind, (new IBSS created)
36.[4627.492049] wtap80211d: info: wtap_ops_bss_info_changed: SSID: 00:00:00:00:00:00 => 74:65:73:74:00:00

(unvisible)
37.[4627.492087] IPv6: ADDRCONF(NETDEV_CHANGE): wlan1: link becomes ready

Fig. A WiNE-Tap-captured Wireless LAN parameters of Emulation Node #1

Figure 2.6: Logs captured from the emulation host machine #1 during emulating the

IEEE 802.11 link establishment

54

2.4. Operation validation and performance evaluation

For these results, Figure 2.6 and Figure 2.7 show that the IEEE 802.11 link establish-

ment is emulated in the virtual network on WiNE-Tap.

2.4.3 RTTs and throughput comparisons between the real and

emulated network

Figure 2.8 shows the cumulative distribution function (CDF) of round trip times mea-

sured in the emulated network and the real network when the two network nodes generate

UDP data traffic with 1.5 Mbps. The ideal emulated RTTs depicted as the red dashed

curve in Figure 2.8 is the emulated results minus the mode for the emulated results, 0.61

ms, which is the transmission delay between the two emulation host machines in the Eth-

ernet network. The results indicate the emulated RTTs minus the transmission overhead

in the Ethernet network is almost the same as the real environment.

Figure 2.9 shows the results of UDP throughput measured in the emulated network

and the real environment when the two network nodes generate UDP data traffic each

other at the fixed data rate between 1.0 to 3.5 Mbps by the 0.5 Mbps interval. The

emulated throughputs when the fixed bit rate is between 1.0 to 2 Mbps is the same as

the real environments, but the throughputs when the fixed data rate is 2.5 Mbps or more

degrades and is zero when the data rate is fixed at the 3.5 Mbps. When the data rate

is 2.5 Mbps and 3.0 Mbps, 36 % and 60 % of UDP segments transmitted from the two

network nodes are dropped by the network simulator, respectively. In addition, when

the data rate is 3.5 Mbps, all the UDP segments from the two network nodes become

unreachable.

2.4.4 Investigation of the performance degradation in the net-

work simulator

The network simulator caused the performance degradation shown in the previous sec-

tion with high possibility. There is another possibility that the wireless network emulation

framework caused the performance degradation. However, it is confirmed in [94] that the

wireless network emulation framework emulates the UDP data traffic with a data rate of

more than 50 Mbps and has sufficient performance to emulate the IEEE 802.11 ad-hoc

55

Chapter 2 Wireless LAN emulation with wireless network tap devices

1.[4627.589859] wtap80211d: info: wtap_ops_config: HWconfig changed (HWaddr = 0c:ff:fa:00:00:00)
2.[4627.589861] wtap80211d: info: wtap_ops_config: freq = 0, idle = 1, ps = 0, smps = automatic
3.[4627.589863] wtap80211d: info: wtap_ops_config: ps_dtim_period = 0, ps_timeout = 0
4.[4627.589865] wtap80211d: info: wtap_ops_config: radar detection disabled
5.[4627.589868] wtap80211d: info: wtap_ops_config: minimum TX power changed 0 => 0 [dBm]
6.[4627.589875] wtap80211d: info: wtap_ops_config: HWconfig changed (HWaddr = 0c:ff:fa:00:00:00)
7.[4627.589878] wtap80211d: info: wtap_ops_config: freq = 0, idle = 0, ps = 0, smps = automatic
8.[4627.589880] wtap80211d: info: wtap_ops_config: ps_dtim_period = 0, ps_timeout = 0
9.[4627.589883] wtap80211d: info: wtap_ops_config: radar detection disabled
10.[4627.589885] wtap80211d: info: wtap_ops_config: minimum TX power changed 0 => 0 [dBm]
11.[4627.589894] wtap80211d: info: wtap_ops_add_chanctx: channel context added (HWaddr = 0c:ff:fa:00:00:00, ctx_id

= 0x6151e63): 5180[MHz/width], freq1: 5180[MHz], freq2: 0[MHz] max_power = 20[dBm]
12.[4627.589897] wtap80211d: info: wtap_ops_assign_vif_chanctx: assigned vif (addr = 0c:ff:fa:00:00:00, id =

0xa70d2bdb) to channel context (freq = 5180[MHz], max_power = 20[dBm] ctx_id = 0x6151e63)
13.[4627.589899] wtap80211d: info: wtap_ops_assign_vif_chanctx: vif->chanctx_conf is null
14.[4627.589902] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:00):
15.[4627.589904] wtap80211d: info: wtap_ops_bss_info_changed: NIC status: active -> active
16.[4627.589909] wtap80211d: info: wtap_ops_change_chanctx: channel context changed (HWaddr = 0c:ff:fa:00:00:00,

ctx_id = 0x6151e63): 5180[MHz/width], freq1: 5180[MHz], freq2: 0[MHz], max_power = 20[dBm]
17.[4627.589912] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
18.[4627.589915] wtap80211d: info: wtap_ops_conf_tx: queue = 0, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
19.[4627.589918] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
20.[4627.589921] wtap80211d: info: wtap_ops_conf_tx: queue = 1, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
21.[4627.589924] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
22.[4627.589926] wtap80211d: info: wtap_ops_conf_tx: queue = 2, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
23.[4627.589930] wtap80211d: info: wtap_ops_conf_tx: TX queue parameters changed:
24.[4627.589932] wtap80211d: info: wtap_ops_conf_tx: queue = 3, txop = 0, cw_min = 15, cw_max = 1023, aifs = 2)
25.[4627.589935] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:00):
26.[4627.589938] wtap80211d: info: wtap_ops_bss_info_changed: QoS: disabled => disabled
27.[4627.589941] wtap80211d: info: wtap_ops_bss_info_changed: BSS info changed (HWaddr: 0c:ff:fa:00:00:00):
28.[4627.589943] wtap80211d: info: wtap_ops_bss_info_changed: ERP CTS Prot: 0 => 0
29.[4627.589945] wtap80211d: info: wtap_ops_bss_info_changed: ERP Preamble: 0 => 0
30.[4627.589948] wtap80211d: info: wtap_ops_bss_info_changed: ERP Slot: 0 => 0
31.[4627.589950] wtap80211d: info: wtap_ops_bss_info_changed: HT info: 0xb => 0xb
32.[4627.589952] wtap80211d: info: wtap_ops_bss_info_changed: Basic rate: 0 => 1
33.[4627.589954] wtap80211d: info: wtap_ops_bss_info_changed: Beacon interval: 0 -> 102400
34.[4627.589957] wtap80211d: info: wtap_ops_bss_info_changed: BSSID: 36:51:fa:c5:ff:88 => 56:60:7e:70:76:12)
35.[4627.589959] wtap80211d: info: wtap_ops_bss_info_changed: Beacon info:
36.[4627.589961] wtap80211d: info: wtap_ops_bss_info_changed: Beaconing: disabled => enabled
37.[4627.589963] wtap80211d: info: wtap_ops_bss_info_changed: IBSS: joind,
38.[4627.589966] wtap80211d: info: wtap_ops_bss_info_changed: SSID: 74:65:73:74:00:00 => 74:65:73:74:00:00

(unvisible)
39.[4627.589989] wtap80211d: info: wtap_ops_sta_add: sta added (sta_id = 0x5c816e97) (HWaddr = 0c:ff:fa:00:00:00)
40.[4627.691920] wtap80211d: info: wtap_ops_sta_add: sta added (sta_id = 0x4bc801b2) (HWaddr = 0c:ff:fa:00:00:01)

Fig. B WiNE-Tap-captured Wireless LAN parameters of Emulation Node #2

Figure 2.7: Logs captured from the emulation host machine #2 during emulating the

IEEE 802.11 link establishment

56

2.4. Operation validation and performance evaluation
2.95 0 30 1 0 30 1 0 30 1 0 30 1 0 30 1

3 0 30 1 0 30 1 0 30 1 0 30 1 0 30 1

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 0.5 1 1.5 2 2.5 3

Emulation Real field
Ideal emulated RTTs

2

Figure 2.8: Round Trip Time (RTT) comparison between real and emulated environments

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

O!ered load (Mbps)
1 1.5 2 2.5 3.0 3.5

3.50

2.99

2.49
2.00

1.50

1.00

0.00

1.20
1.45

1.98
1.49

0.99

Emulation
Real field

Figure 2.9: UDP throughput comparison between emulation and real environments

57

Chapter 2 Wireless LAN emulation with wireless network tap devices

network discussed in this study.

Clarifying what degrades the UDP throughput in the network simulator, the author

captures all the function calls while the two network nodes generate UDP data traffic

with the data rate of 2.5 Mbps and depicts the hierarchy and the number of the function

calls on the flame graphs[95].

Figure 2.10 is the flame graph of all the function calls captured while the two network

nodes generate UDP data traffic at the data rate of 2.5 Mbps. A flame graph visualizes the

hierarchy of function calls and the CPU usage ratio that each function occupies. The width

and height of the flame graph show the CPU usage ratio and the depth of the call hierarchy,

respectively. The flame graph is created from 986,592 function calls executed in the

network emulation in 30 seconds. The flame graph shows the network simulator occupies

a CPU usage ratio of 41.35%. The wireless network emulation framework occupies the

CPU usage ratio of 27.93%. Other user processes occupy the remainder of the CPU ratio,

30.72%.

Figure 2.10 indicates the user processes related to WiNE-Tap operations, i.e., the net-

work simulator and the wireless network emulation framework, totally occupy the CPU

ratio of 69.28%. The CPU usage ratio of 70% is not low and certainly harms the machine’s

performance. However, it is difficult to think that the high CPU load critically influences

the performance of the network simulator and makes the network simulator drop all UDP

segments.

Figure 2.11 is the magnified flame graph of Figure 2.10, focussing the network simulator

only. Figure 2.11 indicates that the system calls to obtain the current real-time such

as gettimeofday() and clock gettime() occupies almost all of the CPU usage ratio

of the network simulator. The network simulator uses these system calls to check the

timestamp recorded in the header of IEEE 802.11 frames. The network simulator validates

the transmission order of IEEE 802.11 frames from the results of radio propagation and

mobility models and obtains the current real-time to write the time to the logs.

2.4.5 Performance improvement by High Precision Event Timer

The high load to CPU resource caused by the system calls to obtain the current real-

time can be reduced by using the hardware clock that responds quicker than other system

58

2.4. Operation validation and performance evaluation

Flame Graphs -- Scneargie Emulation Subsystem

_ZN7ScenSim18EmulationSubsystem24..

[unknown]
sim

[unknown]

s..

schedule

__vdso_..

x86_64_..

p..
e..

finish_task..

sche..

entry_SYSCALL_64_..

fini..

_ZN31HighResolutionRelativeTimeCl..

arch_cpu_idle

arch_..
defau.. futex_wait

wtap80211d

[l..

futex_w..

[unknown]

__schedule

default_idle

__sc..

[[vdso]]
do_futex

ep..

futex_w.. r..

entry_S..

cpu_startup_entry
start_secondary

[unknown]
start_k..

f..

__vdso_clock_gettime

hrti..

[u.. default_idle_call __vdso_clock_gett..

swapper

rest_init
_..

_raw..

native_safe_halt sys_futex
cpu_sta.._ZN7ScenSim32EmulationSubsystemIm..

pthread_cond_time..

h..

do_futex
defau..

nati.. futex_wait_queue_me

__vdso_gettimeofday

__clock_g..
tic..

[[vdso]]
main

sys_futex

x86_64_.. __clock_gettime
s..__vdso_cl..

__libc_start_main

pthread.. [[vdso]]

Figure 2.10: Flame graph of all the function calls during generating UDP data traffic with

2.5 Mbps
R 2/02/10 1!35

Page 1 of 1file:///Users/kato/vmshare/flamegraph.svg

Flame Graphs -- Scneargie Emulation SubsystemReset Zoom

_ZN7ScenSim18EmulationSubsystem24GetRealTimeFromStartSecsEv

[unknown]
sim

__vdso_clock_gettime

prepa..
exit_..

schedule

finish_task_switch

_ZN31HighResolutionRelativeTimeClock17TimeFromStartSecsEv

e..

[libc-2.2..

futex_wait

__schedule

[[vdso]]
do_futex

epoll_init

futex_wait_queue_me retint..

entry_SYSCALL_64_fastp..

[unknown]

sc..

[unknown]
en..

_raw..

_ZN7ScenSim32EmulationSubsystemImplementation24GetRealTimeFromStartSecsEv

hrtim..

__vdso_gettimeofday

__clock_gettime
main

sys_futex

s..

__..

[l..

__vdso_clock_gettime
__libc_start_main

pthread_cond_timedwai.. [[vdso]]

fin..

all

Figure 2.11: Flame graph of the function calls by the network simulator during generating

UDP data traffic with 2.5 Mbps

59

Chapter 2 Wireless LAN emulation with wireless network tap devices

clocks. x86-based machines have two kinds of hardware clocks. The one is ACPI PMT

(Advanced Configuration and Power Interface Power Management Timer)[96] and HPET

(High Precision Event Timer)[97]. Linux systems refer to ACPI PMT to obtain the current

time due to the default kernel configuration, and the system clock in the Linux system

is based on the ACPI PMT. The emulation results discussed in the previous section are

measured with ACPI PMT.

ACPI PMT is less accurate and responds slower than HPET. The clock frequency of

ACPI PMT is fixed at 3.58 MHz, but the clock frequency of HPET is at least 10 MHz or

more. Therefore, HPET can improve the responsibility of the time clock system calls such

as gettimeofday() and clock gettime() and the performance of network emulation. For

this reason, the author compares the emulation results measured with different hardware

clocks.

Figure 2.12 and Figure 2.13 show the UDP throughput measured in the CBR application

and iPerf3 when ACPI PMT is enabled. Since the measurements shown in Figure 2.9

may be influenced by the iPerf3’s implementation, the author implemented the Constant

Bit Rate (CBR) application in Python and compare the measurements obtained with

iPerf3 and the CBR application. In addition, the measurement with iPerf3 and the

CBR application is performed when using multiple machines and a single machine that

executes both the WiNE-Tap and the network simulator or multiple machines. In the

figures, the vertical bars in deep blue and light blue are the throughput measured in the

real environment and the simulated network using Scenargie, respectively. The vertical

bars in red and orange are the result of the emulation environment constructed with a

single machine and multiple machines, respectively.

In Figure 2.13, when the configured data rate is 1 to 2 Mbps, the emulated data rate

measured with iPerf3 is the same as the field and simulated performance. However, the

data rate measured with iPerf3 degrades at 4 to 6 Mbps. Besides, the data rate is less

than the field performance when the preconfigured data rate is 3.0 Mbps.

The CBR’s performance with the multi-hosted emulation follows the field performance.

Although iPerf3 tries to generate the bursty data traffic as much as possible, the CBR

application generates data traffic at the constant data rate. In addition, the computing

load is distributed to multiple machines. For this reason, the CBR’s performance is better

60

2.4. Operation validation and performance evaluation

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)

-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Bitrate
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

1

Figure 2.12: Throughput measured with CBR application and ACPI PMT

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)

-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Bitrate
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

1

Figure 2.13: Throughput measured with iPerf3 and ACPI PMT

61

Chapter 2 Wireless LAN emulation with wireless network tap devices

than other cases.

The performance degradation shown in the iPerf3’s results was caused by two factors:

bursty data traffic and Scenargie’s implementation. In the network emulation, Scenargie

must execute the simulation event such as frame transmission/reception and the move of

network nodes in real-time and should be strict with the time when the events are fired.

Concretely, Scenargie enqueues the IEEE 802.11 frame from wtap80211-daemonand

schedules the frame transmission event in the simulated network. When processing the

frame transmission event, Scenargie calculates the propagation delay based on its radio

propagation model and schedules the frame reception event in the simulated network

based on the propagation delay. In other words, the frame reception event is fired after the

simulated propagation delay gains from the frame transmission event. When processing

the frame reception event, Scenargie validates that the current real-time does not pass

the scheduled time that gains the propagation delay from the frame transmission time.

However, Scenargie can drop the frame at the frame reception event when the current

time and the time at which the frame reception event is fired is longer than the event

synchronization interval, 1 second.

Since Scenargie calls the time clock, such as gettimeofday() and clock gettime(), to

check the time lags for every frame reception event, the frequent system calls apply the

high computing load to the host machines. Especially when the emulation environment

is constructed with a single machine, the significant high computing load is due to both

the wireless network emulation framework and the network simulator concentrating the

machine.

Figure 2.14 and Figure 2.15 are the CBR performance and iPerf3 performance when

HPET is enabled. The performance results with HPET are better than ACPI PMT.

Significantly, the CBR performance with HPET is close to the field performance. With

HPET, the performance of the single-hosted network emulation degrades the performance

of the multi-hosted one.

Figure 2.16 and Figure 2.17 show the CDF of RTTs measured in the real field and

the single-hosted/multi-hosted network emulation environments. Figure 2.16 and Figure

2.16 are the results with ACPI PMT and HPET, respectively. The RTTs measured in the

multi-hosted network emulation environment are almost the same as the field performance.

62

2.4. Operation validation and performance evaluation

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)
-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Bitrate
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

1

Figure 2.14: Throughput measured with CBR application and HPET

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)

-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Bitrate
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

1

Figure 2.15: Throughput measured with iPerf3 and HPET

63

Chapter 2 Wireless LAN emulation with wireless network tap devices

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)

-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Throughput
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

1

Figure 2.16: Round trip time measured with ACPI PMT

However, the RTTs measured performance with ACPI PMT is worse than the RTTs

measured with HPET in the single-hosted network emulation environment. Since the

performance comparison in Figure 2.12 to Figure 2.15 shows that HPET generates much

more data traffic than ACPI, Scenargie processes many events in the single-/multi-hosted

network emulation environment with HPET than APCI PMT. Therefore, RTTs measured

in the single-hosted network emulation environment with HPET are longer than ACPI

PMT.

Figure 2.18 shows the throughputs and RSSIs measured using the CBR application

with the data rate of 4 Mbps when the two nodes are stationary with a 1-meter interval,

and the one moves away from the other from the beginning of emulation. Figure 2.18

indicates that WiNE-Tap emulates throughputs that dynamically change following the

change of RSSIs.

2.4.6 Discussion

Emulating the field performance as accurately as possible with the WiNE-Tap archi-

tecture can be improved by reducing the overhead of the time clock system calls such

as gettimeofday() and clock gettime(). Especially, replacing gettimeofday() with

clock gettime() improves the WiNE-Tap performance because the former consumes

64

2.4. Operation validation and performance evaluation

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)

-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Throughput
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET
C

DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

1

Figure 2.17: Round trip time measured with HPET

iPerf3 in UDP mode (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

Emulation
Real
Simulation

CBR (with ACPI PMT) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73

Emulation
Real field
Simulation

CBR (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on multiple hosts

M
ea

su
re

d
bi

tra
te

 (M
bp

s)
0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00

Emulation
Real field
Simulation

iPerf3 in UDP mode (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.000.000.00

1.20
1.88

0.99

Emulation
Real
Simulation

CBR (with ACPI PMT) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.231.581.861.94

0.850.54

Emulation
Real field
Simulation

iPerf3 in UDP mode (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00
1.46

1.97
1.441.441.78

0.99

Emulation
Real field
Simulation

CBR (with HPET) on a single host

M
ea

su
re

d
bi

tra
te

 (M
bp

s)

0
1
2
3
4
5
6
7

Configured bitrate (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

1.651.761.861.94

1.020.75

Emulation
Real field
Simulation

Round trip times with ACPI PMT

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (Multi-hosts)
Emulation (Single-host)
Real field

Round trip times with HPET

C
DF

0

0.2

0.4

0.6

0.8

1

1.2

Round trip time [ms]
0 2 4 6 8 10 12 14 16 18 20

Emulation (multi-hosts)
Emulation (single-host)
Real field

Bitrates measured using iPerf3 with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

 O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

0.00

1.851.84
1.30

1.99

1.00

0.000.000.00

1.20
1.88

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with ACPI PMT

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.63
3.00

2.27
1.86

1.47
0.76

3.39
2.63

2.11
1.721.38

0.73
1.231.581.861.94

0.850.54

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using iPerf3 with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

6.03

5.03

4.02

3.02

2.01

1.01

5.274.99

4.00

2.99

2.00

1.00

2.962.943.18
2.64

1.99

1.00
1.46

1.97
1.441.441.78

0.99

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

Bitrate measured using CBR with HPET

Th
ro

ug
hp

ut
 (M

bp
s)

0
1
2
3
4
5
6
7

O!ered load (Mbps)
1 2 3 4 5 6

5.89

4.71

3.57
3.02

2.35

1.18

3.64
2.96

2.27
1.85

1.48
0.76

3.69
2.97

2.29
1.90

1.53
0.77

1.651.761.861.94

1.020.75

Emulation (single-host)
Emulation (multi-host)
Real field
Simulation

RS
SI

 (d
Bm

)

-80

-70

-60

-50

-40

Th
ro

ug
hp

ut
 (M

bp
s)

0

1

2

3

4

Distance between nodes [m]
50 100 200 250 300 350 400

Throughput
RSSI

0.00

0.97

1.992.11

2.78
3.213.24

1

Figure 2.18: Change of throughput and received signal strength in the emulated network

65

Chapter 2 Wireless LAN emulation with wireless network tap devices

more system resources than the latter. In addition, the monotonic clock, which responses

to the monotonic time since an unspecified time, can improve the real-time property of the

network simulator because it consumes small system resources. However, the monotonic

clock requires the simulation and emulation host machines to synchronize their system

clock and the basic time of the beginning of the monotonic time. If the monotonic clock

without such time synchronization is used in the multi-hosted network emulation environ-

ment using WiNE-Tap, it becomes difficult to validate the correctness of the emulation

results due to the error of timestamps between the machines.

The multi-hosted network emulation environment such as WiNE-Tap requires adjust-

ing the propagation delay inserted during link emulation, considering the transmission

delay over Ethernet. As shown in Figure 2.8, the RTTs in the emulated network contains

the transmission delay over the Ethernet and are slightly longer than the field perfor-

mance. The link emulation in the single-hosted network emulation environment does

not require eliminating the transmission delay over Ethernet because data packets are

captured locally, but the transmission delay over Ethernet is not ignorable for the multi-

hosted network emulation environment. The network simulator should adjust and insert

the simulated propagation delay based on the Ethernet overhead to eliminate the trans-

mission delay over Ethernet. However, implementing the adjustment function on inserting

delays is challenging because it requires modifying the existing radio propagation models

that are confirmed to be correct.

Since the emulation results discussed in this study are measured using low-performance

desktop PCs and restrict the network simulator’s real-time property, the high-performance

machines certainly enhance the performance of WiNE-Tap. It benefits the scalability

of WiNE-Tap. As discussed above, the limited system resources restrict the network

simulator’s real-time property. In addition, other network simulators that consume fewer

system calls to obtain the current time can help the performance improvement.

2.5 Conclusions

This chapter presented the novel wireless LAN emulator with wireless network tap de-

vices (WiNE-Tap). WiNE-Tap enables the Linux IEEE 802.11 protocol stacks to operate

66

2.5. Conclusions

in the virtual network and work interactively with radio propagation and mobility simula-

tion behavior by a network simulator. The performance evaluation shows that WiNE-Tap

has the performance meeting the requirement of vehicular network system development.

67

Chapter 3 Link Setup Time and

bulk data transmission

investigation in V2V

This chapter describes the first empirical investigation of initial link setup time and

bulk data transmission in IEEE 802.11-based inter-vehicular communications. The study

shows the link setup time reduction and the improvement of bulk data transmission

size by Fast Initial Link Setup (FILS) in inter-vehicular communications based on real

field measurements with comparison of Wi-Fi Protected Access version 2 Protected EAP

protocol (WPA2-PEAP). This chapter is written based on the author’s paper [14].

3.1 Introduction

This chapter introduces a vehicular network system designed to be used as a commu-

nication system under disaster conditions, as a concrete example of vehicular network

systems that require inter-vehicular authentication and bulk data transmission. The ve-

hicular network system is expected to contribute disaster response and is one of the vehic-

ular network systems most expected to be realized. This section shows the problems on

developing the vehicular network systems, following the problems of the current Japanese

disaster communication systems and the introduction of vehicular disaster communication

system introduction, and explains the motivation for conducting the first empirical in-

69

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

vestigation of inter-vehicular link setup time reduction and the increase of inter-vehicular

bulk transmission data size by FILS.

3.1.1 Problems of the current disaster communication systems

in Japan

Like the saying, ‘’One picture is worth a thousand words,” visual information such

as photos and videos gives people more straightforward, intuitive information and helps

them conduct rescue activity and evacuation as quickly as possible. On the other hand, as

of 2021, the major means of communication under disaster conditions in Japan is based

on voice messaging by the disaster prevention radio communication systems[98]. The

disaster prevention radio communication systems are categorized into the broadcasting

system and the locomotory system. The broadcasting system consists of heterogeneous

broadcasting networks such as radio communication networks operated by municipalities,

FM radio networks, and cable TV networks and disseminate voice messages such as early

earthquake/tsunami alerts to residents through public address wireless loudspeakers or

radio receivers, which are dispersively installed in a city and utilize 60 MHz-band radio.

The locomotory system consists of base stations built on municipal buildings and mobile

communication devices such as transceivers and car-mounted radio equipment. The loco-

motory system utilizes 260 MHz bands and provides voice/digital communication services.

However, disaster prevention radio communication systems have several problems.

• Disaster prevention radio communication systems do not provide residents with a

means of communication with disaster management agencies. Although the loco-

motory system provides users with bidirectional communication, it is not open to

residents. For this reason, the residents cannot inform their dangers and rescue

requests via disaster prevention radio communication systems.

• The voice messages cannot inform visual information such as photos and videos.

Since the voice messages have less information than visual information and are

recorded in Japanese, the residents and foreign people cannot possibly understand

the impending dangers.

70

3.1. Introduction

• The voice messages hardly reach the residents who have auditory disturbance or are

far away from the speakers or under heavy rains.

• The maximum bitrate is 4.8 kbps with 4-level frequency shift keying (FSK), which

is insufficient to transfer visual information such as photos and videos.

It is difficult to inform people of what people see in disaster-stricken areas by their

voices because voice messages include no visual information and contain more or less

vague information. The talker should inform listeners of what he/she sees correctly if

he/she meets the disasters, but the talkers have their impressions and express what they

see with different words based on their impressions. For example, Figure 3.1 is a photo

capturing a landslip in Heavy rain of July, 2018. The photo makes it easy to understand

how the landslip damages that place intuitively. However, it is difficult to explain what

the picture captures concretely with words. In fact, the Global Facility for Disaster

Reduction and Recovery (GFDRR) recommends in their report[98] that they encourage

the utilization of visual information in disaster conditions. Moreover, the GFDRR report

comments that visual information is helpful to remove the comprehension and language

barrier. Foreign people may not understand voice messages. Therefore, it is crucial to

share visual information in disaster conditions.

A means of communication reliable and robust to the damage from natural disasters

is the key to sharing visual information under disaster conditions because the demand

for communication between the disaster control headquarters and disaster-stricken areas

are highest in the dozens of hours after a disaster strikes the areas but the standing

communication infrastructures, such as cellular and optical fiber networks, are vulnerable

to blackout and installed equipment failure[98]. The window period with no means of

communication in disaster conditions could harm the health and lives of humans[99]

Accordingly, the demand for disaster communication is highest in the hyperacute phase

hours when the standing communication infrastructures are damaged[98]. It is essential

to implement a reliable, robust disaster communication system. The hyperacute phase

means the duration of several days after a natural disaster occurs and in which rescue

activities are the most active.

Public and private organizations have developed other disaster communication systems

to realize a disaster communication system robust to natural disasters. These disaster

71

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

Figure 3.1: Photo capturing the damage of landslips in Heavy rain of July, Heisei 30

from Disaster Photo Database of Institute for Fire Safety and Disaster Preparedness

(http://www.saigaichousa-db-isad.jp/)

72

3.1. Introduction

communication systems partly cover the disadvantages of disaster prevention radio com-

munication systems. Here are the introductions of the disaster communication systems

to focus on the unsolved problems of the current disaster communication systems.

• NerveNet is a wireless mesh network system consisting of multiple wireless stations

dispersively installed in a town[100]. The wireless stations form an IEEE 802.11n-

based wireless mesh network. The wireless stations have enough batteries to work

72 hours in the immediate aftermath of a natural disaster. If the wireless stations

are pre-installed in disaster management agencies and shelters before a natural dis-

aster, they can provide inter-site communication. In contrast, although the wireless

stations can be moved by a carrier, they do not provide inter-site communication

service in areas without them.

• Relay-by-Smartphone is a Bluetooth-based device-to-device communication sys-

tem consisting of smartphones used by evacuating residents[101]. Relay-by-Smartphone

is designed to deliver evacuation routes to shelters and other disaster prevention in-

formation to residents during evacuation and does not require building pre-installed

communication infrastructures like NerveNet. Like forming a bucket brigade, smart-

phones of evacuating residents exchange disaster prevention information by device-

to-device communication when they pass by each other. In contrast, its connectivity

depends on the density of smartphones in areas and is presumably lost after evacu-

ation completes. The architecture of Relay-by-Smartphone does not guarantee that

all residents receive the evacuation routes evenly.

• Q-ANPI is a safety confirmation system provided by Quasi-Zenith Satellite System

(QZSS)[102]. QZSS is a Japanese satellite system and provides centimeter-accuracy

positioning and satellite communication service. Q-ANPI gathers the status infor-

mation of shelters, such as the number of evacuees and requisite materials, and

informs disaster management agencies like municipalities of the status information

over QZSS satellite communication. Residents can also refer to the status infor-

mation via the Q-ANPI website[103]. QZSS can be hardly damaged by natural

disasters such as earthquakes and tsunami, but it does not provide point-to-point

communication services and requires special receivers to use the service directly.

73

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

These disaster communication systems are designed for specific use cases. NerveNet

provides inter-site communication among disaster management agencies and shelters.

Relay-by-Smartphone disseminates alerts and route information necessary for evacuation

to residents. Q-ANPI provides the general condition of disaster management for local

governments. While improving disaster management requires cooperation with govern-

ments and residents, the current disaster communication systems insufficiently consider

disaster management that is collaborate with residents. In particular, the existing disas-

ter communication systems depends on standing communication infrastructures such as

fixed stations, cellular network, and satellite communication systems. These communica-

tion infrastructures require the pre-installation of network equipment at specific locations

and lack the flexibility of constructing a network in any place. In contrast, the vehicular

network can be constructed anytime, anywhere in disaster conditions, and is compatible

with the needs for disaster response.

3.1.2 Disaster communication system based on VDTNs with

heterogeneous wireless systems

Figure 3.2 shows the overview of the disaster communication system based on VDTNs

with heterogeneous wireless communications (heterogeneous VDTNs). The disaster com-

munication system with heterogeneous VDTNs is used among disaster control headquar-

ters, shelters, and emergency vehicles equipped with onboard units. The disaster control

headquarters, shelters, and emergency vehicles each have direct narrow-band wireless

communication links such as LoRa and Digital Convenience Radio (DCR). DCR is stan-

dardized in ARIB STD T-98[104] and uses the 150, 351, or 467 MHz bands. The DCR

bitrate depends on the modulation; for example, it is 4.8 kbps when using π/4 shift fre-

quency shift keying (FSK) frequency-division multiple access (FDMA) communications.

The narrow-band wireless communication has several kilometers of communication range

and is used for transmitting small data such as text messages. For example, it broadcasts

emergency messages such as tsunami/earthquake warnings and location notifications.

The emergency vehicles work as data carriers in the disaster communication system.

They carry a large amount of data that cannot be transferred over the narrow-band

wireless communication links, such as photos and videos. The emergency vehicles have

74

3.1. Introduction

• Provides rescue teams with a means of communications
to isolated people
even when fiber/cellular networks are down.

Transmit texts such
as Tsunami alerts
over narrow-band
radio.

Disaster
control

DTN ferries
• Carry damage reports/rescue

requests with images, videos,
etc.

• Connect isolated area/radio quiet
zones to the disaster control HQ.

IEEE 802.11n with Infrastructure mode

Isolated area/Radio quiet zone

Shelter

Figure 3.2: Overview of the disaster communication system based on VDTNs with het-

erogeneous wireless communication: The figures depicts a situation where disaster man-

agement agencies such as fire departments use the system to establish communication

links between the control center and remote places in the radio quiet zone.

onboard units and communicate over IEEE 802.11n protected by the enterprise authen-

tication mechanisms such as WPA-PEAP.

In vehicular networks, vehicles generally form an ad-hoc network and communicate

without link establishment procedures like the infrastructure mode. However, the disas-

ter communication system allows the onboard units of the emergency vehicles to work in

the infrastructure mode. They provide access point service and work as stations simul-

taneously and communicate with each other using the IEEE 802.11 link establishment

procedure in the infrastructure mode. There are two reasons to use the infrastructure

mode instead of the ad-hoc mode for inter-vehicular communication in the disaster com-

munication system.

The onboard units can connect to personal mobile communication devices over IEEE

802.11n, such as smartphones and tablet PCs used by the members of the disaster man-

agement agencies. The members take photos and videos in disaster-stricken areas and

report the damage of the disaster-stricken areas with the photos and videos. However,

75

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

they can lose a means of communication to the disaster management headquarters in

the disaster-stricken areas due to the failure of standing communication infrastructures

such as cellular networks. In that case, they store the photos and videos to the storage of

onboard units over Wi-Fi and request the emergency vehicles to carry data to the disaster

management agencies.

The emergency vehicles must be protected by the enterprise authentication system

managed by the disaster control headquarters to prevent the system from circulating

misinformation. In the disaster communication system, the disaster management agencies

exchange private and personal information necessary for rescue and medical activities,

such as medical records and photos capturing disasters.

3.2 Problems and requirements on developing the

VDTN-based disaster communication system

Security is one of the most important factor on developing the vehicular network system

to protect the system from the malicious attacks and improve its reliability. Particularly,

fast, secure link establishment is recommended to improve connectivity between highly

mobile devices during inter-vehicular communications in vehicular delay/disruption tol-

erant networks (VDTN) used in the critical situation such as disaster-stricken areas[30].

Short link setup times reduce link establishment overhead and extend data transmission

time. Secure links protect the vehicular network systems from tapping by unauthenticated

users and misinformation circulation by malicious persons.

Individual authentication is necessary to protect against unauthorized tapping and pre-

vent the spread of misinformation in disaster networks because they often carry sensitive

information such as personal medical records. For example, the Wi-Fi Protected Ac-

cess 2 Extensible Authentication Protocol (WPA2-EAP), which is also known as WPA2-

Enterprise, is typically used for individual authentication on IEEE 802.11 systems, and it

is also available in IEEE 802.11-based inter-vehicular communications. However, WPA2-

EAP communications require a few seconds for link establishment because they must

build Transport Layer Security (TLS) tunnels and exchange authentication information

such as certificates and passwords. These long link establishment times reduce the time

76

3.3. Related work

available for application data transferred between passing vehicles and thus the amount

of data that can be transferred.

To minimize this problem, the newly proposed system uses the IEEE 802.11ai protocol,

which is also known as the Fast Initial Link Setup (FILS), to reduce link establishment

time and increase the transfer size of application data in the VDTN-based disaster net-

works. In operation, FILS enables access points and station nodes to authenticate each

other within about 100 ms by using cached authentication information. The link setup

time is defined as a period between when a station sends an IEEE 802.11 probe request to

an access point and when the station obtains its own IP address from a DHCP server. On

the other hand, inter-vehicular communication environment has unidentified factors that

can affect the field performance of FILS, such as vehicles’ mobility and radio propagation,

and measuring the FILS performance in real vehicular environment is crucially important

to identify the FILS practical performance.

To clarify the effect of link setup time reduction by FILS in intermittent inter-vehicular

communications, this chapter describes laboratory and field experiments performed by

the author to measure the FILS performance and reports the results of field experiments

in this chapter. The field measurement results show that FILS reduces link setup time

in intermittent inter-vehicular communications using 2.4 GHz IEEE 802.11n, which ef-

fectively increases the size of application data transmitted between passing vehicles by

10 MB compared with WPA2-PEAP. The IEEE 802.11ai was issued in 2017, and a few

papers [105, 106, 107] have reported the FILS performance with mathematical models

or network simulation. The next section will review related work on FILS performance

evaluation in Section IV-E. However, to the best of my knowledge, no report to date has

verified link setup time reduction via FILS in actual use, especially in vehicular networks.

Therefore, the chapter represents the first report of a performance evaluation of FILS in

a real-world vehicular DTN.

3.3 Related work

This section describes work related to individual authentication methods for IEEE

802.11 and vehicular networks and highlights the problems that may arise if the exist-

77

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

ing individual authentication methods are applied to IEEE 802.11-based inter-vehicular

communications.

3.3.1 Individual authentication on IEEE 802.11

As stated above, the primary IEEE 802.11 individual authentication protocols are stan-

dardized in IEEE 802.11i/IEEE 802.1X[108, 109], which are also known as WPA2-EAP.

These individual authentication protocols enable access points and stations to identify

each other via certificates or username and passphrase pairs. EAP[110] has a variety of

authentication/certification methods, such as EAP-TLS[111] and protected EAP (EAP-

PEAP)[112]. EAP-TLS provides access points and stations with a method to identify

each other via their certificates, but its certificate management process is complicated be-

cause it must distribute certificates to all stations. In contrast, EAP-PEAP allows access

points to identify stations with their usernames and passphrases.

Unfortunately, even though EAP-PEAP simplifies certificate management, it requires

an EAP exchange between an access point and station when setting up a secure link, as

shown in Figure 3.3. In this process, the access point and the station need to exchange at

least 22 frames between the beginning of the link setup and the completion of the station’s

IP address assignment. Additionally, the process can take a long time in situations where

the frame loss rate is high, such as inter-vehicular communications, which reduces the

time available to exchange data frames after the link setup, and thus the amount of data

transmitted.

Xu et al. showed that the WPA2-EAP authentication delays increase as the number

of vehicles rises in [113], which indicates that the WPA2-PEAP and client IP address

assignment delays increase when the vehicle density is high and that throughput between

the vehicles declines due to those delays.

Separately, other researchers have proposed methods to reduce the WPA2-EAP’s la-

tency between mobile devices with high mobility by pre-authentication or key caching. For

example, Mishra et al.[114] proposed a proactive key distribution scheme using a neighbor

graph, which shows the access points a station might possibly access after handoff. Their

scheme allows a station to conduct authentication with access points to which the station

may connect in the near future via the access point associated with the station. In an-

78

3.3. Related work

802.11
Auth./Assoc.

EAPOL Proposal &
Outer Auth.

TLS Tunnel Setup

EAP MSCHAPv2
Auth.

EAP Success

4-way Handshake

Supplicant
(STA)

Authenticator
(AP)

RADIUS
server

DHCP Req/Resp

DHCP
server

EAP-PEAP (MSCHAPv2)
Supplicant

(STA)
Authenticator

(AP)
RADIUS
server

Auth & Client
Certification

Association

DHCP server

EAP-RP (FILS)

Figure 3.3: WPA2-PEAP frame sequences

other example, Hur et al. proposed a pre-authentication method for IEEE 802.11-based

vehicular networks[115] that enhances Mishara’s scheme and allows a station and an ac-

cess point to cache a pairwise master key, which can reduce the authentication latency to

a level lower than Mishara’s method.

However, these schemes are inadequate for IEEE 802.11- based inter-vehicular commu-

nications because they assume that the access points are stationary and the station and

access points are reachable. Those assumptions do not hold in IEEE 802.11-based inter-

vehicular communications in disaster communication systems because emergency vehicles

serving as DTN node ferries cannot rely on having sustain- able links when communica-

tion infrastructures fail. Further- more, emergency vehicles cannot link to other network

nodes when they are in a radio blind zone.

79

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

3.3.2 Individual authentication on vehicular networks

Individual authentication protocols for inter-vehicular communications are standard-

ized in IEEE 1609.2[116] and ETSI TS 103 097[117], which also define certificate-based

authentication methods for vehicular networks. Certificate-based authentication methods

help reduce authentication latency between vehicles because those vehicles only need to

ex- change a few frames to complete the authentication process. This is simpler than

username-passphrase-based authentication methods such as WPA2-PEAP.

Individual authentication protocols also require vehicles to have multiple certificates

and acquire different certificates for every authentication because it is difficult to update

vehicle certificates when there are no stable links between the vehicles and trust anchors.

Therefore, the standards require the trust anchors (i.e., certificate authorities) to be

responsible for vehicle certificate management, and thus bear the burden of managing

numerous certificates. As a result, numerous researchers have looked for ways to facilitate

certificate management on vehicular networks.

For example, Sun et al.[118] proposed a certificate update method using roadside units

(RSUs), but that method depends on communication infrastructures, which makes it un-

suitable for disaster communication systems because it is highly probable that RSUs will

be unavailable in emergency situations. Separately, Feiri et al.[119] proposed a vehicle-

based certificate distribution method that forces vehicles in close proximity to each other

to proactively exchange certificates. However, Feiri’s method would not work in low-

vehicle-density areas where vehicles rarely encounter each other because the need to en-

counter other vehicles to keep certificates updated would degrade disaster communication

systems. This is particularly true in systems where emergency vehicles can be sent to

remote areas, such as mountainous regions, where they would have no chance to commu-

nicate with other emergency vehicles for extended periods.

Bohm et al.[120] proposed an IEEE 802.11p MAC enhancement that enables a roadside

unit to share the authentication information of a car that has already been authenticated

by another roadside unit. Since roadside units that have received the authentication

information can authenticate the car with the information, they omit the authentication

procedure with the car. Therefore, the MAC enhancement can reduce authentication

overhead between roadside units and cars. However, the MAC enhancement does not

80

3.4. Fast Initial Link Setup

support conventional security protocols such as WPA2-EAP and IEEE 1609.2 and only

works with IEEE 802.11p.

Since, as indicated by the examples above, certificate-based authentication methods

require stable links between emergency vehicles and trust anchors, as well as compli-

cated certificate management procedures, they do not provide a realistic way to manage

disaster communication systems. Therefore, the disaster communication system adopts

the WPA2-PEAP username-passphrase-based authentication. Mano et al. reported the

overhead of initial authentication on IEEE 802.11 harms seamless handover between high-

mobility devices based on field experiment results in [121]. Since the abovementioned au-

thentication and IP address assignment latency will presumably occupy communication

time between moving vehicles, This study proposes using FILS for IEEE 802.11-based

inter-vehicular communications to reduce individual authentication and IP address as-

signment delays.

3.4 Fast Initial Link Setup

This section describes the Fast Initial Link Setup (FILS) mechanisms standardized

in IEEE 802.11ai, which enables the establishment of a secure connection within about

100,ms using the following four mechanisms:

• Channel scanning enhancement

• Active scanning optimization

• IP address assignment during the IEEE 802.11 associations

• Authentication information caching

3.4.1 Channel scanning enhancement

While authenticators broadcast a beacon frame every 100,ms, FILS also allows them

to broadcast FILS discovery frames. Furthermore, while IEEE 802.11ai states that a

FILS discovery frame must always have a Basic Service Set Identifier (BSSID) users

81

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

have the option of including other information elements. Thus, supplicants can detect

authenticators faster than usual.

3.4.2 Active scanning optimization

A supplicant in the active scanning mode actively broadcasts probe request frames to

search for authenticators. If the probe request frame does not have an expiration time, the

authenticators will need to respond to every probe request, which causes extra traffic on

the channel and degrades Layer 2 (data link layer) throughput. In contrast, FILS allows

a probe request frame to include an expiration time for request replies, which means FILS

can reduce the unnecessary channel scanning traffic.

3.4.3 IP address assignment during the IEEE 802.11 association

FILS provides an IP address assignment field as an information element of an authen-

tication response frame. The assignment function enables a Dynamic Host Configuration

Protocol (DHCP) server to assign an IP address to the supplicant within the Layer 2 au-

thentication procedure. Figure 3.4 shows the frame sequence of the EAP re-authentication

protocol (EAP-RP), which allows the authenticators and supplicants to process the initial

link setup and IP address assignment within a few exchanged frames. This allows FILS

to reduce frame exchanges in the initial link setup and shortens the setup time.

In IEEE 802.11ah networks, some papers [122, 123, 124] have proposed fast authen-

tication procedures. These 802.11ah authentication methods mainly focus on improving

the IEEE 802.11 association procedure. On the other hand, FILS not only shortens au-

thentication procedures but also completes IP address assignment in the authentication

procedure by FILS HLP Container Element.

3.4.4 Authentication information caching

FILS enables an access point and a station to cache authentication information, such

as certificates, when they establish a secure link for the first time. The access point

and the station use the cached authentication information to establish secure links from

82

3.4. Fast Initial Link Setup

802.11
Auth./Assoc.

EAPOL Proposal &
Outer Auth.

TLS Tunnel Setup

EAP MSCHAPv2
Auth.

EAP Success

4-way handshake

Supplicant
(STA)

Authenticator
(AP)

RADIUS
server

DHCP Req/Resp

DHCP
server

EAP-PEAP (MSCHAPv2)
Supplicant

(STA)
Authenticator

(AP)
RADIUS
server

Auth & Client
Certification

Association

DHCP server

EAP-RP (FILS)

Figure 3.4: FILS frame sequences

the second time onward. This allows FILS to complete a link set up with fewer frame

exchanges than a conventional EAP exchange.

3.4.5 Effectiveness

Various papers have reported the FILS performance. For example, Mano et al. per-

formed a field experiment in a situation where 40 pedestrians with mobile devices came

into a stream with the speed of 4.5 km/h and passed in the front of an access point

in[105]. The mobile devices and the access point authenticated each other with FILS

or WPA2-PEAP. The authors confirmed that the mobile devices using FILS established

IEEE 802.11 links before the pedestrians passed the access point, while the mobile devices

using WPA2-PEAP did not complete IEEE 802.11 link establishment even after passing

in the front of the access point.

Ong theoretically analyzed the FILS authentication methodology outlined in IEEE

P802.11 Group AI (TGai) in [106]. The author formulated the FILS active scanning en-

hancement and compared the performance of the FILS active scanning enhancement with

IEEE 802.11 DCF (Distributed Coordination Function) or EDCA (Enhanced Distributed

Channel Access). The author revealed that the FILS active scanning enhancement can

make the responsiveness to beacon frames 20% and 250% faster than IEEE 802.11 EDCA

and DCF, respectively. However, since this chapter refers to TGai technical papers, the

FILS performance is not sufficiently analyzed with consideration of EAP-RP and IP ad-

dress assignment in IEEE 802.11 association specified in the published IEEE 802.11ai

83

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

standard.

Kushida et al.[107] simulated the effectiveness of FILS link setup time reduction in

IEEE 802.11ad wireless networks. Their simulation results revealed that FILS reduced

link setup times to ten times less than WPA2-PEAP and also reduced the number of

authentication failures in an IEEE 802.11ad networks. However, all simulation nodes are

stationary in their simulation scenario, and the FILS effectiveness considering the mobility

of network nodes is not discussed in the study.

Although these papers showed that FILS is effective in decreasing authentication over-

head, as far as I know, no paper reported has the effectiveness of link setup time reduction

by FILS in vehicular networks. For this reason, this chapter presents the results of labo-

ratory and field experiments to determine the FILS effectiveness in vehicular networks.

3.5 Experimental setup

This section describes the setup of the laboratory and field experiments conducted to

evaluate the effectiveness of FILS link setup time reduction in inter-vehicular communi-

cations. The laboratory experiment was conducted to verify whether the FILS implemen-

tation can achieve the performance outlined in IEEE 802.11ai. The field experiment was

conducted to verify whether FILS can work in an actual inter-vehicular communications

system.

3.5.1 Details of the FILS implementation used in this study

The FILS implementation functions in ARM-based on-board units equipped with the

Linux operating system (OS) because there are already a number of FILS implementations

for that system. However, the FILS implementation had some differences related to IP

address assignment compared to the original FILS functions due to limitations of the

device driver of the IEEE 802.11 chips. Figure 3.5 shows the frame sequence of the FILS

implementation. The differences between the original FILS frame sequence and the FILS

implementation are shown below:

• Authentication (RADIUS) servers work on all the access points: Vehicles

84

3.5. Experimental setup

Supplicant
(STA)

Authenticator
(AP)

RADIUS
server

Auth & Client
Certification

Association

Original FILS

DHCP server

The IP address to the supplicant is
assigned in IEEE 802.11 association.

Our FILS implementation
Supplicant

(STA)
Authenticator

(RADIUS/DHCP server)

Auth & Client
Certification
Association

DHCP
Req/Ack

DHCP Discover/Offer messages
are exchanged during the
association.

Figure 3.5: Frame sequence of the FILS implementation used in this study

serving as DTN ferries work as authentication servers. This configuration was se-

lected to ensure compatibility with the architecture of the disaster communication

system.

• FILS IP address assignment is not supported: In the FILS implementation, a

DHCP server assigns the client’s IP address using the conventional DHCP process.

In other words, the DHCP server and client must exchange DHCP discover/offer

messages and request/ack messages, even though the original FILS does not require

these message exchanges.

• DHCP discover/offer messages are exchanged during the IEEE 802.11 as-

sociation: The FILS implementation supports the FILS HLP Container described

in Section IV, which allows higher-layer protocols such as DHCP to send a packet

during the IEEE 802.11 association. A DHCP server and client that support sending

discover/offer messages via the FILS HLP Container are implemented. Therefore,

the FILS implementation only needs to exchange request/ack messages after com-

pleting the Layer 2 link setup.

• Lightweight DHCP clients work on OBUs: The DHCP client also supports

exchanging discover/offer messages via the FILS HLP Container. More specifically,

85

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

GW6300 (inside
the metal case)

Power supply

Figure 3.6: Onboard unit overview

the client sends a request message immediately after receiving an offer message via

the FILS HLP Container. In contrast, a normal DHCP client will not send a request

immediately because it waits for other offer messages from multiple DHCP servers.

Figure 3.6 shows the laboratory and field experiments with OBUs to measure the

practical performance of the FILS implementation discussed in this chapter. Table 3.1

shows the OBU specifications. Each OBU was equipped with two Qualcomm AR9300

Wi-Fi cards and four Wi-Fi antennas that communicate over the IEEE 802.11n proto-

col at 2.4 GHz. Additionally, each OBU with the FILS function was equipped with

a customized hostapd[90] authenticator daemon program and wireless protected access

wpa supplicant[91]. The EAP-RP function is added to the original hostapd 2.7 and

wpa supplicant 2.7 codes.

86

3.5. Experimental setup

Table 3.1: Onboard unit specifications

Component Specification

Base board Gateworks GW6300

Linux distribution/kernel Ubuntu 16.04.05 LTS/Linux 4.14.4

CPU Octeon TX Dual Core ARM CPU @ 800 MHz

Memory DDR3 1 GB

Storage SSD 250 GB

Wi-Fi chip/driver Qualcomm Atheros 9300 (2 chips on board) / ath9k

An embedded Structured Query Language (SQL) database is implemented in the cus-

tomized hostapd to cache authentication information of stations that had previously con-

nected to the hostapd and forced the OBUs to cache the authentication information in

advance. The OBUs executes hostapd 2.6 and wpa supplicant 2.6 without modification

to measure EAP-PEAP performance levels. As described in the previous section, in both

experiments, a DHCP server and client that support FILS are used.

Additionally, a RADIUS server is implemented in the authenticator, which reduced the

delay between the two components to almost zero. A user application is implemented

to send a file between the supplicant and the authenticator via Transmission Control

Protocol (TCP). The user application sends a 100 MB file for each measurement. The

kernel was allowed to reuse TCP sessions that the kernel had started and were in the

TIME-WAIT state. TCP fast open[125] and Tail Loss Probe (TLP)[126] are enabled to

reduce the TCP session establishment overhead. The use of TLP makes it possible to

detect and recover from tail losses faster than TCP retransmission timeout. The other

TCP parameters were the same as the default values.

3.5.2 Laboratory experiment configuration

I connected the OBUs with coaxial cables through variable attenuators, as shown in

Figure 3.7, and manually set their signal reception strength to either −65 dBm or −95

dBm, such that the OBUs were connected at −65 dBm and disconnected at −95 dBm.

87

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

Attenuators
On-board unit

(OBU)

The other OBU is placed at a place 8m away from the
table to avoid the effect of compromising emanations.

Figure 3.7: Laboratory experiment setup

I also configured the data rate on Layers 2 and 1 (i.e., on both the data link layer and

the physical layer) to be automatically determined. At the start of the experiment, I

launched hostapd and wpa supplicant and used the attenuators to set the receiving signal

strength of the OBUs to −95 dBm. Next, I adjusted the receiving signal strength to −65

dBm and waited for 30 seconds while they attempted to transfer a 100 MB file. Finally, I

restored the receiving signal strength to −95 dBm and recorded the link setup time and

the number of bytes transmitted between the OBUs.

To measure link setup times, I monitored network interfaces installed at the OBUs by ip

command[127] which is the Linux network interface utility and iw command[128] which

is Linux WLAN configuration utility, and recorded timestamps when the IEEE 802.11

probe request is transmitted and when an IP address is assigned to a DHCP client.

The field experiment was conducted in Konan City, Kochi Prefecture, Japan. Figure

3.9 shows a map of the area and the driving route. The solid red line indicates the car

trajectories while the orange dot near the center of the picture shows where I parked the

car that served as the authenticator.

Two cars were used for the field experiment. The cars are referred to hereafter as

88

3.5. Experimental setup

GPS Receiver

Wi-Fi Antennas

Figure 3.8: Antenna position

Car #1 and Car #2. In this experiment, Car #1 served as the authenticator, while Car

#2 served as the supplicant. The OBUs and Wi-Fi antennas are installed on both cars.

Figure 3.8 shows the antenna placements. The antennas of each Wi-Fi card were placed

on the vehicle roofs at diagonal angles. The data rates on Layers 2 and 1 were the same

as used in the laboratory experiment. The height of the cars was 1.5 m.

I moved the cars according to two scenarios, hereafter referred to as Scenario #1 and

#2. In Scenario #1, I parked Car #1 at the point marked in orange in Figure 3.9 and

drove Car #2 in both directions at 40 km/h on the route indicated by the red line in

Figure 3.9. In Scenario #2, I drove the two cars in opposite directions at 40 km/h on

the driving route so that they passed each other at the yellow point. Car #2 completed

five round trips during Scenario #1, while both cars completed ten round trips during

Scenario #2.

In both the laboratory and field experiments, I conducted measurements to determine

if FILS shortens the link setup time and improves the amount of transmitted data. The

link setup time is defined as beginning when the supplicant starts to send an association

request frame to the authenticator and ending when the supplicant obtains an IP address.

89

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

This map is based on the Digital Map 200000 published by Geospatial Information Authority of Japan.

100 m

Parking position
(in Scenario #1)

Start/End point #1

Start/End point #2

Approximate
cross position

(in Scenario #2)

Point where an exception occurred

Figure 3.9: Field experiment area

3.6 Experiment results and discussion

This section describes the laboratory and field experimental results, which suggest the

existence of a bottleneck during the initial link setup for IEEE 802.11-based inter-vehicular

communications.

3.6.1 Results measured in the laboratory environment

Figure 3.10 shows a histogram comparison of the FILS and EAP-PEAP link setup times

measured in the laboratory experiment. Each bin width is 0.05 s. The thin bars in deep

blue and the thick bars in light blue are the FILS and EAP-PEAP results, respectively.

As shown in the figures, the FILS link setup time averaged 127 ms, and the maximum

and minimum setup time was 147 ms and 109 ms, respectively.

In contrast, the EAP-PEAP link setup times averaged 1.21 s with maximum and mini-

mum setup time values of 2.81 s and 1.08 s, respectively. Since modified DHCP server and

client are used, the IP address assignment with the FILS implementation was performed

by DHCP after the Layer 2 link was established, as shown in Figure 3.4. Thus, the FILS

90

3.6. Experiment results and discussion

32

Initial link setup times when the cars are passing by

0
5

10
15
20
25
30

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

FILS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Index

Initial link setup times when the cars are passing by

0
5

10
15
20
25
30

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

FILS

0.0 0.5 1.0 1.5 2.0

Figure 3.10: Initial link setup times measured in the laboratory experiment

35

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Amount of transmitted bytes (MB)
0 10 20 30 40 50 60 70 80 90 100

EAP-PEAP

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Amount of transmitted bytes (MB)
0 10 20 30 40 50 60 70 80 90 100

FILS

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Amount of transmitted bytes (MB)

EAP-PEAP

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Amount of transmitted bytes (MB)

FILS

100500 25 75

Figure 3.11: Transmitted bytes measured in the laboratory experiment

link setup times were about 30 ms longer than the link setup time of the IEEE 802.11ai

standard. Figure 3.11 shows a histogram of the transmitted bytes between the OBUs

in the laboratory experiment. Here, I can see that the number of bytes transmitted by

FILS tends to exceed those transmitted by EAP-PEAP and that FILS increased the data

traffic by about 14 MB. This result indicates that FILS reduced the link setup time and

extended the communication time available to transfer data packets per connection.

From these results, I confirmed that the FILS implementation could shorten the link

setup time based on the standard and increase the amount of transmitted data per con-

nection.

91

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

33

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

FILS

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

5

10

15

20

25

Initial link setup time (s)
0.00 0.25 0.50 0.75 1.00 1.25 1.50

FILS EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

FILS

0.0 0.5 1.0 1.5 2.0

Figure 3.12: Initial link setup times measured in the field experiment (Scenario 1)

34

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

FILS

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

5

10

15

20

25

Initial link setup time (s)
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

FILS EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

FILS

0.0 0.5 1.0 1.5 2.0
Timeout

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

EAP-PEAP

Initial link setup times when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0
5

10
15
20
25
30

Initial link setup time (s)

FILS

0.0 0.5 1.0 1.5 2.0

Figure 3.13: Initial link setup times measured in the field experiment (Scenario 2)

3.6.2 Results measured in the real field environment

Figure 3.12 and Figure 3.13 show histograms of the link setup times measured in the

field experiments. In Scenario #1, the maximum, average, and minimum setup time of

FILS were 197 ms, 173 ms, and 154 ms, respectively, while the maximum and average

setup times of EAP-PEAP were 1.43 s and 1.10 s, respectively.

The minimum setup time of EAP-PEAP, except for an exceptional case, was 1.07 s.

In the exceptional case, the link setup time was much shorter (137 ms) than the 1.07 s

minimum because the Layer 2 link disconnected momentarily and then re-established by

hostapd and wpa supplicant without completing an EAP exchange. This occurred when

92

3.6. Experiment results and discussion

36

Amount of TX data when AP fixed

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)
0 10 20 30 40 50 60 70 80 90 100

EAP-PEAP

Amount of TX data when AP fixed

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)
0 10 20 30 40 50 60 70 80 90 100

FILS

Amount of TX data when AP fixed

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)
0 10 20 30 40 50 60 70 80 90 100

FILS
EAP-PEAP

Amount of TX data when AP fixed

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)

EAP-PEAP

Amount of TX data when AP fixed

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)

FILS

100500 25 75

Figure 3.14: Transmitted bytes measured in the field experiment (Scenario 1)

the moving car passed at the point indicated by the white dot in Figure 3.9. At this

point, the cars were visible to each other because the trees between the point and the

parked car were lower than in the other areas. In Scenario #2, the maximum, average,

and minimum setup times of FILS were 186 ms, 151 ms, and 110 ms, respectively, while

the maximum, average, and minimum setup times of EAP-PEAP were 1.22 s, 1.13 s, and

1.09 s, respectively.

Figure 3.14 and Figure 3.15 show histograms of the transmitted bytes in the two sce-

narios. These results indicate that FILS increased the data traffic by around 33 MB in

Scenario #1 and around 10,MB in Scenario #2. In both cases, the numbers of bytes

transmitted via FILS tended to exceed those transmitted by EAP-PEAP because FILS

reduced the link setup times and lengthened the time available to transfer data packets

per connection.

In Scenario #1, there was one exception in which the transmitted bytes of EAP-PEAP

exceeded those transmitted by FILS. This occurred when a TCP session between the cars

was maintained after the link on Layer 2 had prematurely disconnected, which means

the TCP session time did not expire. Normally, the user application restarts counting

transmitted bytes when a TCP session is disconnected. However, in this case, the user

application did not restart counting transmitted bytes because the cars established com-

munication when Car #2 passed by the point depicted by the white dot in Figure 3.9

before passing the point depicted by the yellow dot in Figure 3.9.

Although the cars were close to each other when reaching the white point in each round

93

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

37

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)
0 10 20 30 40 50 60 70 80 90 100

EAP-PEAP

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)
0 10 20 30 40 50 60 70 80 90 100

FILS

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)
0 10 20 30 40 50 60 70 80 90 100

FILS
EAP-PEAP

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)

EAP-PEAP

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

2

4

6

8

10

Total amount of transmitted data (MB)

FILS

100500 25 75
Timeout

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

3

6

9

12

15

Total amount of transmitted data (MB)

EAP-PEAP

Transmitted bytes when the cars are passing by

N
um

be
r o

f
m

ea
su

re
m

en
ts

0

3

6

9

12

15

Total amount of transmitted data (MB)

FILS

100500 25 75

Figure 3.15: Transmitted bytes measured in the field experiment (Scenario 2)

trip, the only time the cars established a link and transferred data while passing was in

the case of the exception. The Layer 2 link disconnected while Car #2 traveled between

the white and yellow points, but the TCP session remained active. Because of this, the

transmitted bytes were summed up before and after the Layer 2 disconnection.

In another interesting finding, FILS always established a link during Scenarios #1 and

#2, while WPA2-PEAP failed to establish a link 11 times in Scenario #2. The failures

of the WPA2-PEAP case occurred because the station on one car closed the IEEE 802.11

communication link with the access point on another car before sending data via TCP.

In this case, the station barely received IEEE 802.11 data frames from the access point

in 30 seconds after they established the communication link. I consider frame losses and

the resulting failure of TCP session establishment to be the main causes of this error. In

the field experiment, frame losses could occur frequently because the cars moved at the

speed of 40km/h. The frame losses that stem from high mobility of cars could prevent the

access point and the station from establishing a TCP session. On the other hand, FILS

can set up a link with just a few of frame exchanges and prevent vehicles from missing

communication opportunities due to link establishment overhead.

94

3.6. Experiment results and discussion

38

Link setup time (FILS)

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Measurement index
1 3 5 7 9 11 13 15 17

Link setup time in Layer 2
Overhead of DHCP

Link setup time (FILS)

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Link setup in Layer 2
Overhead of DHCP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Index

Figure 3.16: Details of FILS link setup times in the laboratory experiment

40

Link setup time (FILS)

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Measurement index
1 3 5 7 9

Link setup time in Layer 2
Overhead of DHCP

Figure 3.17: Details of FILS link setup times in the field experiment (Scenario 1)

3.6.3 Bottleneck in initial link setups

Figure 3.16 Figure 3.17, and Figure 3.18 are stacked bar graphs showing initial link

setup times measured in the in-laboratory environment, Scenario #1, and Scenario #2,

respectively, while Figure 3.19 Figure 3.20, and Figure 3.21 are stacked bar graphs showing

the PEAP initial link setup times, respectively. Note that these figures do not include

the results when the vehicles did not establish an IEEE 802.11 authentication.

From these results, I can see that FILS reduced the overhead of the client’s IP address

assignment by DHCP. In contrast, EAP-PEAP took approximately one second to assign

the client’s IP address, which indicates that the exchange of DHCP messages causes an

excessive overhead.

95

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

41

Link setup time (FILS)

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Measurement index
1 3 5 7 9 11 15 17 19

Link setup time in Layer 2
Overhead of DHCP

Figure 3.18: Details of FILS link setup times in the field experiment (Scenario 2)

39

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Measurement index
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Link setup time in Layer 2 Overhead of DHCP

Figure 3.19: Details of WPA2-PEAP link setup times in the laboratory experiment

42

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Measurement index
1 3 5 7 9 11

Link setup time in Layer 2 Overhead of DHCP

Figure 3.20: Details of WPA2-PEAP link setup times in the field experiment (Scenario

1)

96

3.6. Experiment results and discussion

43

Li
nk

 s
et

up
 ti

m
e

(s
)

0

0.3

0.6

0.9

1.2

1.5

Measurement index
1 3 5 7 9 11 13 15

Link setup time in Layer 2 Overhead of DHCP

Figure 3.21: Details of WPA2-PEAP link setup times in the field experiment (Scenario

2)

There are two potential reasons for the DHCP overhead: DHCP offer message waiting

time and parsing DHCP lease files. A DHCP client waits for several seconds before

responding to a DHCP offer message because it can receive these messages from multiple

DHCP servers. In addition, for a major DHCP server with full DHCP implementation,

such as an ISC DHCP server, records assign IP addresses in a lease file and check this

file prior to each assignment to validate the IP address lease time and to avoid conflicts

between assigned IP addresses. Consequently, there is a delay due to having to parse this

lease file.

However, in the experiments, the delay from parsing the lease file can be ignored because

I remove the lease file and reset the DHCP server prior to each measurement. Thus,

unlike in the conventional case, the FILS implementation discussed in this study allows

the DHCP server to send an offer message during the IEEE 802.11 association using the

FILS HLP Container, upon receipt of which, the client immediately sends immediately a

request message back via the FILS HLP Container. As a result, the DHCP overhead of

the proposed FILS implementation is shorter than that of EAP-PEAP. In Figure 3.20, I

see an exceptional case, whose index is three, in which the EAP-PEAP link setup time

is shorter than in other cases. This exceptional case is due to the same reason that

the cars completed the link setup time over the low trees area. In still another case, a

situation occurred in which EAP-PEAP took a longer time to set up a link than the other

97

Chapter 3 Link Setup Time and bulk data transmission investigation in V2V

situations, but the cause of that exception was traced to frame losses, which exceeded

those of other cases.

These results show that EAP-PEAP could complete the Layer 2 link as quickly as FILS,

but the results do not include the overhead of certificate verification to the authentication

server. Therefore, the EAP-PEAP link setup could take longer in situations where the

authentication server is accessible over other networks such as cellular networks. Further-

more, these results do not include the overhead that occurs when a DHCP server checks

lease files, which could harm the initial link setup when numerous vehicles attempt to

connect with each other.

However, the results described above confirm that FILS reduced link setup times and

increased the size of transmitted data between two passing cars communicating over

IEEE 802.11n with WPA2-EAP. Additionally, FILS was found to be capable of quickly

establishing secure links in IEEE 802.11-based VDTNs with the same level of security

as WPA2-EAP as well as preventing vehicles from missing communication opportunities

when they pass each other.

I consider two reasons for the communication errors when using WPA2-PEAP: frame

loss and the failure of TCP session establishment. Since the cars passed by each other at

high speed, and frame loss easily occurred, the data transfer applications could not estab-

lish a TCP session. In addition, the frame loss could prevent the cars from transferring

the file after the TCP session was established. For this reason, the station did not receive

data frames and closed a communication link on Layer 2 intentionally. The communica-

tion errors I observed in the field experiment indicate that data transmission over TCP

can fail when a connection on Layer 2 and lower is unstable even if the connection on

Layer 2 is established successfully. UDP can be an alternative protocol of TCP, but UDP

does not have a retransmission mechanism. Therefore, a cross-layer mechanism that can

monitor the connection state of each network layer (e.g., TCP and user applications) and

notify the upper layers like TCP and user applications of the connection states is required

to avoid frame losses and transfer large amounts of data between vehicles.

98

3.7. Conclusions

3.7 Conclusions

This chapter presented the first empirical investigation showing that FILS (IEEE,802.11ai)

reduces link setup times and increases the size of transferred application data in 2.4 GHz

IEEE 802.11n-based inter-vehicular communications. More specifically, when cars passed

each other at a relative speed of 80 km/h, the results showed that FILS reduced the initial

link setup to around 150 ms between the passing cars, and that it transferred around 40

MB, which is 10 MB more than WPA2-PEAP. This study also confirmed that FILS pre-

vented vehicles from missing communication opportunities due to the link establishment

overhead.

99

Chapter 4 Conclusions

This dissertation has focussed on developing vehicular network systems with consider-

ation of the deployment to the real world and developed a wireless LAN emulator with

wireless network tap devices (namely WiNE-Tap) and investigated the practical perfor-

mance of initial link setup and bulk data transmission in intermittent inter-vehicular

communication based on field experiments. This chapter concludes the studies, discuss

the utilization of the contributions of this dissertation for developing vehicular network

systems, and at last show the prospects of vehicular network technologies.

4.1 Summary of this dissertation

Vehicular networking is a significant technology for realizing the intelligent transporta-

tion system (ITS) and is expected to enhance road services by sharing location informa-

tion, sensor information, photos and videos among vehicles. Vehicular networking also

can improve communication systems under natural disaster conditions; for example, emer-

gency vehicles equipped with onboard units keeps connectivity between disaster-stricken

areas without any communication links by carrying data physically.

Since the vehicular network systems are expected to improve road safety and disas-

ter communication must operate without malfunctions to avoid harming road safety and

disturbing disaster response, the developers and researchers of the vehicular network sys-

tems must be responsible for meeting requirements: reliable implementation, which the

101

Chapter 4 Conclusions

implementation of the vehicular network systems work reliably, and security to protect

the vehicular network systems from malicious users. However, insufficient development

environments for vehicular networks and not enough empirical investigations about the

inter-vehicular bulk data transmission make it difficult to develop the vehicular network

systems and validate their operation, and prevent the vehicular networks deployment to

the real world. Thus, this dissertation proposed the wireless network emulator with wire-

less network tap devices (WiNE-Tap) that can be used for the operation validation system

for IEEE 802.11 network applications and protocol stacks with actual implementation and

presented the first empirical investigation of link setup time and bulk data transmission

performance in inter-vehicular communication with comparison of FILS and WPA-PEAP.

■ Wireless LAN emulator with wireless network tap devices

Wireless network emulation is useful to validate the operation of the vehicular net-

work systems. Wireless network emulation partly abstracts the behavior of the network

systems such as radio propagation and network nodes’ mobility and enables the applica-

tions of the wireless network systems to operate in a virtual network in which a network

simulator imitates the behavior of the vehicular network environment such as vehicles’

mobility and radio propagation. Therefore, it allows users to reproduce the behavior of

the network applications as they perform in the real network environment. Although

developing the vehicular network systems requires validating the operation of both net-

work applications and protocol stacks, the existing wireless network emulators focus on

link emulation only. These network emulators capture data packet flow through virtual

network devices such as TUN/TAP devices and apply bandwidth restriction and trans-

mission delay insertion to the captured data packet flow based on radio propagation and

mobility models. Meanwhile, they do not allow the network protocol stacks such as IEEE

802.11 protocols to operate in the virtual network. For this reason, it makes it difficult to

develop vehicular network systems, which require developers and researchers to check the

protocol implementation for meeting the requirements for the vehicular network systems.

The wireless LAN emulator with wireless network tap devices (WiNE-Tap) allows the

IEEE 802.11 protocol implementation for Linux systems such as cfg80211 and mac80211

and network applications to operate in a virtual network, which the network simulator

102

4.1. Summary of this dissertation

simulates the behavior of radio propagation and network nodes’ mobility. WiNE-Tap

provides the wireless network emulation framework to connect the IEEE 802.11 protocol

implementation for Linux systems and a user application such as a network simulator

and enables them to exchange IEEE 802.11 frames and IEEE 802.11 device configuration

parameters such as transmission power and received signal strengths. In addition, WiNE-

Tap is designed independently from a specific network simulator and realizes a wireless

LAN emulation environment with a network simulator that users want to use. The existing

wireless network emulators are designed for a specific network simulator. Therefore,

WiNE-Tap allows the IEEE 802.11 protocol implementation and the network simulator

to conduct link emulation using real IEEE 802.11 frames and reproduce the behavior of

the IEEE 802.11 protocol implementation when the channel conditions such as received

signal strengths dynamically change. The performance evaluation shows the IEEE 802.11

protocol implementation for Linux systems and network applications operate in a virtual

network simulated by a network simulator, Scenargie, and can be used as the operation

validation system for vehicular network systems.

This dissertaiton showed the performance evaluation of WiNE-Tap when two wireless

nodes connect over an wireless link of IEEE 802.11a, which is the base of IEEE 802.11p

standard designed for V2X communications. The performance evaluation results revealed

the WiNE-Tap implementation described in the dissertation emulate throughputs with

up to 6 Mbps between the two nodes. The performance is at least sufficient to emulate

the behavior of vehicular network systems in which a vehicle broadcasts a basic safety

message with up to a few of hundreds bytes payload every 100ms.

■ Initial link setup time reduction and bulk data transmission improvement

performance by FILS for vehicular networks

The conventional security mechanism for vehicular networks such as IEEE 1609.2 and

IEEE 802.11i/IEEE 802.11 provides enterprise authentication based on certificates. How-

ever, it can degrade the performance in transferring applications data in intermittent

inter-vehicular communication because they require message exchanges to share encryp-

tion keys safely and take a few seconds to establish a secure communication link between

the vehicles. For this reason, it is necessary to reduce the overhead of the initial link

103

Chapter 4 Conclusions

setup between the vehicles. Fast Initial Link Setup (FILS) is a security protocol for

IEEE 802.11 and reduces the authentication overhead because of cached authentication

information and allows an access point and a station of IEEE 802.11 networks to estab-

lish a secure link as secure as WPA2 Enterprise authentication within 100 ms. Therefore,

this paper proposed applying FILS for vehicular networks’ authentication mechanism and

reducing the authentication overhead in intermittent inter-vehicular communication.

The performance evaluation shown in this paper reveals that FILS allows the vehicles

passing by with high speed to establish a secure IEEE 802.11 communication link within

130 ms and benefits to mitigate the authentication overhead in intermittent inter-vehicular

communication. In addition, the link setup time reduction by FILS increases the amount

of data transferred between the vehicles than WPA2-PEAP. The performance evaluation

of WPA2-PEAP shows that WPA2-PEAP degrades the authentication overhead between

the passing vehicles and prevents the vehicles from completing the link establishment

because of frame losses.

4.2 Future direction

There are several ways to improve the performance of WiNE-Tap. Since the network

simulator used for the performance evaluation frequently referred to the real-time system

clock to strictly emulate the IEEE 802.11 frame transmission and reception, the system

clock should respond quickly to reduce the delay to wait for the system clock reference, or

the network simulator should reduce the number of references to the clock. The network

simulator discards IEEE 802.11 frames from wtap80211 when the frame transmission and

reception events are not ignited at the scheduled times due to the processing overhead of

the other simulation events or the delays to wait for the system clock response. To avoid

discarding the frames, using the real-time kernel and another computer with higher per-

formance than the computers used in this paper will be able to increase the performance.

The real-time kernel works with shorter CPU ticks than the general-purpose kernel.

For example, the Linux real-time kernel (namely, the low-latency kernel) CPU tick is

configured to 1000 Hz, which is 10 times more than the CPU ticks of the Linux general-

purpose kernel. Thus, the real-time kernel can process the system calls 10 times faster

104

4.2. Future direction

than the general-purpose kernel. Therefore, the WiNE-Tap performance can be improved

by using the real-time kernel. The high-performance computer also possibly improve

the responsiveness of the system clock and enhance the processing ability of the simula-

tion/emulation host machines.

The performance evaluation of WiNE-Tap with other network simulators such as ns-3

and OMNeT++ should be performed because they have different implementations from

the network simulator used in this paper. For example, ns-3 provides the direct code

execution (DCE)[46], an extension module for network emulation. Since its original re-

lease, DCE has been periodically updated and enables link emulation with high bitrates

about tens of megabytes per seconds[46]. However, it should be confirmed how strictly the

emulation results of WiNE-Tap with a different network simulator are reproduced. The

strictness of the emulation results and the maximum throughput that can be emulated on

WiNE-Tap has the trade-off relationship because the number of simulation events such

as radio propagation increases as the network simulator reproduces the behavior of the

network system more strictly.

The paper showed the architecture and an example implementation of WiNE-Tap. The

performance evaluation results of WiNE-Tap shown in this paper validated the operation

and performance of an implementation of WiNE-Tap with generally used network appli-

cations not only used for vehicular networks. Performance evaluation with real vehicular

network applications will be required to validate and improve WiNE-Tap functionality

for vehicluar network emulation.

On the link setup time and bulk data transmission investigation, although the lab-

oratory and field experiments revealed that the FILS initial link setup time reduction

effectively reduces the authentication overhead in inter-vehicular communication, the au-

thentication overhead can be reduced more by using another FILS implementation that

fully follows the original standards.

FILS implementation used in the investigation does not support some functions of the

original FILS standards due to the device driver. For example, the FILS implementation

does not support active scanning. In the field experiment, the vehicles passed by on a

straight road and had a line of sight. Therefore, one vehicle had enough time to detect

beacon frames from the other vehicle before they passed by. However, if the vehicles had

105

Chapter 4 Conclusions

passed by on a curve and had not had a line of sight before passing by, they could not

detect the beacon frames and possibly delay beginning the authentication. Active scan-

ning allows the vehicles to detect each other more quickly and begin the authentication

procedure, reducing the authentication overhead. In addition, the FILS implementation

requires an access point and a station to exchange frames one more than the original

FILS. The original FILS standard enables the IP address assignment by DHCP in IEEE

802.11 association/authentication frame exchanges. For this reason, the practical perfor-

mance of FILS in vehicular networks can be improved by using the FILS implementation

following the original one. Whereas this paper presented the FILS performance when

one vehicle authenticates the other vehicle while the vehicles were passing by each other,

the effectiveness of FILS link setup time reduction when multiple vehicles connect to the

access point simultaneously should be performed to clarify how the number of concurrent

connections to an access point in inter-vehicular communications can be increased by

FILS.

4.3 Prospects of vehicular networks

The contributions of this paper will create a stir to the development activity of vehicular

network systems, considering deploying them in the real world. Various researchers and

organizations have indicated the usability of vehicular networks for years[129, 130], but

they have not been deployed or popularized in the real world yet. This study can break

the standstill of developing vehicular network systems.

The vehicular network systems require to break various barriers to be deployed, such

as the innovation of vehicular communication technologies, legislation, and the under-

standings of vehicular networks, etc. In the U.S., the Federal Communication Committee

(FCC) assigned the 75 MHz channel width in 5.9 GHz frequency bands for Dedicated

Short Range Communication (DSRC), i.e., IEEE 802.11p, in 1999[131], and the vehicu-

lar network can be deployed if the communication technologies and implementation are

ready. However, there are a few of research about the development of vehicular network

systems considering deploying in the real world, and there is a gap between the users

and developers of vehicular network systems. The researchers and developers of vehicular

106

4.3. Prospects of vehicular networks

networks see ahead of their work, but unfortunately, their work is still not reduced to

the society with concrete benefits. The gap at least comes from the insufficient concrete

discussion on the development methodology of vehicular network systems.

Vehicular network systems cannot be deployed in the real world without the under-

standings of people because they can closely affect road safety. Conventionally, it is

challenging to validate the operation of vehicular network systems due to the difficulty

of performing field testing and strict technical requirements. For being acceptable from

people, the developers and researchers of vehicular networks should show people suffi-

cient grounds to prove the safety with specific operation validation methods and results

and benefits of the vehicular network systems. However, the many kinds of research in

vehicular networking are evaluated based on network simulation and aim to prove the per-

formance of their proposed methods. They insufficiently have the consideration to deploy

the vehicular network systems in the real world. For encouraging to popularize vehicular

network systems in the real world, it is necessary to conduct the performance evalua-

tion based on simulation and implementation. The contributions of this paper showed

an example of the operation validation method and empirical measurement results for

vehicular network systems with implementation and will contribute to the research and

development community to encourage their activities.

107

Acknowledgement

I would like to thank Prof. Susumu Ishihara, a professor of the college of engineering,

Shizuoka university, for graceful instruction over the whole of the study.

I would like to appreciate the cooperation of the co-authors of the papers related to the

dissertation: Mr. Taka Maeno and Dr. Mineo Takai of Space-Time Engineering, LLC.,

Dr. Yasunori Owada, Dr. Goshi Sato, Dr. Katsuhiro Temma, and Dr. Toshiaki Kuri of

National Institute of Communications and Technology (NICT).

I would like to thank to Prof. Akihiro Sugiura of the college of informatics, Shizuoka

university, for undertaking the chair of the examination committee and giving the thought-

ful comments. In addition, I would like to thank to Prof. Hiroshi Mineno of the college

of informatics, Shizuoka University, and Prof. Satoru Morita of the college of engineer-

ing, Shizuoka university, for undertaking examination committees and giving thoughtful

comments.

I would like to appreciate economical, emotional supports from my family to accomplish

the study and this dissertation.

This work is derived from the studies partly supported by JSPS KAKENHI 19H04092,

15H02689, 17K20027.

This work is also derived from the study supported by Council for Science, Technology

and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP)

2nd,“Enhancement of National Resilience against Natural Disaster”with funding from

the National Research Institute for Earth Science and Disaster Resilience (NIED).

109

References

[1] ETSI EN 302 637-2 v1.4.1 - Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Part 2: Specification of Coopera-

tive Awareness Basic Service. https://www.etsi.org/deliver/etsi en/302600

302699/30263702/01.04.01 60/en 30263702v010401p.pdf. (Accessed at 2021-10-

29).

[2] David Eckhoff, Nikoletta Sofra, and Reinhard German. A performance study of

cooperative awareness in ETSI ITS G5 and IEEE WAVE. In 2013 10th Annual

Conference on Wireless On-demand Network Systems and Services (WONS), pp.

196–200, Banff, AB, Canada, March 2013. IEEE. http://ieeexplore.ieee.org/

document/6578347/.

[3] Hendrik-Jörn Günther, Björn Mennenga, Oliver Trauer, Raphael Riebl, and Lars

Wolf. Realizing collective perception in a vehicle. In 2016 IEEE Vehicular Network-

ing Conference (VNC), pp. 1–8, December 2016.

[4] David Eckhoff, Nikoletta Sofra, and Reinhard German. A performance study of

cooperative awareness in ETSI ITS G5 and IEEE WAVE. In 2013 10th Annual

Conference on Wireless On-demand Network Systems and Services (WONS), pp.

196–200, March 2013.

[5] Alessandro Bazzi, Barbara M. Masini, Alberto Zanella, and Ilaria Thibault. On

the Performance of IEEE 802.11p and LTE-V2V for the Cooperative Awareness of

Connected Vehicles. IEEE Transactions on Vehicular Technology, Vol. 66, No. 11,

pp. 10419–10432, November 2017.

111

https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
http://ieeexplore.ieee.org/document/6578347/
http://ieeexplore.ieee.org/document/6578347/

Chapter 4 Conclusions

[6] Hendrik-Jörn Günther, Björn Mennenga, Oliver Trauer, Raphael Riebl, and Lars

Wolf. Realizing collective perception in a vehicle. In 2016 IEEE Vehicular Network-

ing Conference (VNC), pp. 1–8, December 2016.

[7] D. de Bruin, J. Kroon, R. van Klaveren, and M. Nelisse. Design and test of a

cooperative adaptive cruise control system. In IEEE Intelligent Vehicles Symposium,

2004, pp. 392–396, June 2004.

[8] Arturo Davila and Mario Nombela. Platooning - Safe and Eco-Friendly Mobility.

In SAE 2012 World Congress & Exhibition, pp. 2012–01–0488, April 2012. https:

//www.sae.org/content/2012-01-0488/.

[9] Steven E. Shladover. PATH at 20—History and Major Milestones. IEEE Transac-

tions on Intelligent Transportation Systems, Vol. 8, No. 4, pp. 584–592, December

2007.

[10] Francesco Malandrino, Claudio Casetti, Carla-Fabiana Chiasserini, and Marco

Fiore. Content downloading in vehicular networks: What really matters. In 2011

Proceedings IEEE INFOCOM, pp. 426–430, April 2011.

[11] DSSS [Driving Safety Support Systems] — Functions and Services of UTMS —

UTMS Society of Japan. https://www.utms.or.jp/english/system/dsss.html.

[12] Toyota Safety Technology ITS Connect (in Japanese). https://toyota.jp/

technology/safety/itsconnect/. (Accessed at 2021-10-29).

[13] Uichin Lee, Biao Zhou, Mario Gerla, Eugenio Magistretti, Paolo Bellavista, and

Antonio Corradi. Mobeyes: Smart mobs for urban monitoring with a vehicular

sensor network. IEEE Wireless Communications, Vol. 13, No. 5, pp. 52–57, October

2006.

[14] Arata Kato, Taka Maeno, Yasunori Owada, Goshi Sato, Katsuhiro Temma, Toshiaki

Kuri, Mineo Takai, and Susumu Ishihara. Link Setup Time Reduction by FILS

on IEEE 802.11-based Inter-vehicular Communications. IEEE Access, Vol. 9, pp.

159796–159808, 2021. https://ieeexplore.ieee.org/document/9618946/.

112

https://www.sae.org/content/2012-01-0488/
https://www.sae.org/content/2012-01-0488/
https://www.utms.or.jp/english/system/dsss.html
https://toyota.jp/technology/safety/itsconnect/
https://toyota.jp/technology/safety/itsconnect/
https://ieeexplore.ieee.org/document/9618946/

4.3. Prospects of vehicular networks

[15] IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as Amended by

IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE

Std 802.11n-2009, and IEEE Std 802.11w-2009): IEEE Standard for Information

Technology– Local and Metropolitan. IEEE, Place of publication not identified, 2010.

http://ieeexplore.ieee.org/servlet/opac?punumber=5514473.

[16] ETSI 3rd Generation Partnership Project (3GPP). ETSI TS 123 285 V14.3.0

- Universal Mobile Telecommunications System (UMTS); LTE; Architecture

enhancements for V2X services (3GPP TS 23.285 version 14.3.0 Release

14). https://www.etsi.org/deliver/etsi ts/123200 123299/123285/14.03.00

60/ts 123285v140300p.pdf, 2017. (Accessed at 2021-10-29).

[17] IEEE P802.11 - TASK GROUP BD (NGV) - GROUP INFORMATION UPDATE.

https://www.ieee802.org/11/Reports/tgbd update.htm. (Accessed at 2021-10-

29).

[18] ETSI 3rd Generation Partnership Project (3GPP). ETSI TS 138 211 v16.2.0 - 5G;

NR; Physical channels and modulation (3GPP TS 38.211 version 16.2.0 Release

16). https://www.etsi.org/deliver/etsi ts/138200 138299/138211/16.02.00

60/ts 138211v160200p.pdf, 2020.

[19] ETSI 3rd Generation Partnership Project (3GPP). ETSI TS 138 214 v16.2.0 - 5G;

NR; Physical layer procedures for data (3GPP TS 38.214 version 16.2.0 Release

16). https://www.etsi.org/deliver/etsi ts/138200 138299/138214/16.02.00

60/ts 138214v160200p.pdf, 2020.

[20] A Betsy Felicia and L Lakshmanan. Survey on Accident Avoidance and Privacy

Preserving Navigation System in Vehicular Network. Global Journal of Pure and

Applied Mathematics, Vol. 12, No. 1, pp. 943–949, 2016.

[21] Mohammed Saad Talib. Converging VANET with Vehicular Cloud Networks to

reduce the Traffic Congestions: A review. Vol. 12, No. 21, p. 9, 2017.

[22] Paolo Bellavista, Eugenio Magistretti, Uichin Lee, and Mario Gerla. Standard Inte-

gration of Sensing and Opportunistic Diffusion for Urban Monitoring in Vehicular

Sensor Networks: The MobEyes Architecture. July 2007.

113

http://ieeexplore.ieee.org/servlet/opac?punumber=5514473
https://www.etsi.org/deliver/etsi_ts/123200_123299/123285/14.03.00_60/ts_123285v140300p.pdf
https://www.etsi.org/deliver/etsi_ts/123200_123299/123285/14.03.00_60/ts_123285v140300p.pdf
https://www.ieee802.org/11/Reports/tgbd_update.htm
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/16.02.00_60/ts_138211v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138214/16.02.00_60/ts_138214v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138214/16.02.00_60/ts_138214v160200p.pdf

Chapter 4 Conclusions

[23] U.S. Department of Transportation. Connected Vehicle Benefits. https://www.

its.dot.gov/factsheets/pdf/ConnectedVehicleBenefits.pdf.

[24] Ho Ting Cheng, Hangguan Shan, and Weihua Zhuang. Infotainment and road safety

service support in vehicular networking: From a communication perspective. Me-

chanical Systems and Signal Processing, Vol. 25, No. 6, pp. 2020–2038, August 2011.

https://www.sciencedirect.com/science/article/pii/S0888327010004127.

[25] Insick Son, Kabsu Han, Daejin Park, Meng Di Yin, and Jeonghun Cho. A Study

on Implementation of IVI Applications for Connected Vehicle Using HTML5. In

2014 International Conference on IT Convergence and Security (ICITCS), pp. 1–4,

October 2014.

[26] Cabinet Office, Government of Japan. The 5th Science and Technology Basic Plan

(Society 5.0).

[27] U.S. Department of Transportation. Smart City Challenge. https:

//www.transportation.gov/sites/dot.gov/files/docs/Smart%20City%

20Challenge%20Lessons%20Learned.pdf. (Accessed at 2021-10-29).

[28] European Commission. Directorate General for Research and Innovation. Indus-

try 5.0: Towards a Sustainable, Human Centric and Resilient European Industry.

Publications Office, LU, 2021. https://data.europa.eu/doi/10.2777/308407.

[29] Chinese Communist Party. Made in China 2025 (English version translated by IoT-

ONE). http://www.cittadellascienza.it/cina/wp-content/uploads/2017/02/

IoT-ONE-Made-in-China-2025.pdf. (Accessed at 2021-10-29).

[30] APT Recommendation on Specification of Information and Communication System

Using Vehicle During Disaster, 2018.

[31] Connected Vehicle technology is coming to the streets of New York City!. — NYC

Connected Vehicle Project. https://www.cvp.nyc/. (Accessed at 2021-10-29).

[32] THEA Connected Vehicle Pilot. https://theacvpilot.com/. (Accessed at 2021-

10-29).

114

https://www.its.dot.gov/factsheets/pdf/ConnectedVehicleBenefits.pdf
https://www.its.dot.gov/factsheets/pdf/ConnectedVehicleBenefits.pdf
https://www.sciencedirect.com/science/article/pii/S0888327010004127
https://www.transportation.gov/sites/dot.gov/files/docs/Smart%20City%20Challenge%20Lessons%20Learned.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/Smart%20City%20Challenge%20Lessons%20Learned.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/Smart%20City%20Challenge%20Lessons%20Learned.pdf
https://data.europa.eu/doi/10.2777/308407
http://www.cittadellascienza.it/cina/wp-content/uploads/2017/02/IoT-ONE-Made-in-China-2025.pdf
http://www.cittadellascienza.it/cina/wp-content/uploads/2017/02/IoT-ONE-Made-in-China-2025.pdf
https://www.cvp.nyc/
https://theacvpilot.com/

4.3. Prospects of vehicular networks

[33] Wyoming DOT Connected Vehicle Pilot. https://wydotcvp.wyoroad.info/. (Ac-

cessed at 2021-10-29).

[34] V2X Core Technical Committee. On-Board System Requirements for V2V Safety

Communications. Technical report, SAE International. https://www.sae.org/

content/j2945/1 202004.

[35] Arata Kato, Mineo Takai, and Susumu Ishihara. WiNE-Tap: Wireless LAN emu-

lator with wireless network TAP devices. Ad Hoc Networks, p. 102690, September

2021. https://linkinghub.elsevier.com/retrieve/pii/S1570870521001943.

[36] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-

Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wag-

ner, and Evamarie Wiessner. Microscopic Traffic Simulation using SUMO. In 2018

21st International Conference on Intelligent Transportation Systems (ITSC), pp.

2575–2582, November 2018.

[37] Miguel Baguena, Carlos T. Calafate, Juan-Carlos Cano, and Pietro Manzoni. To-

wards realistic vehicular network simulation models. In 2012 IFIP Wireless Days,

pp. 1–3, Dublin, Ireland, November 2012. IEEE. http://ieeexplore.ieee.org/

document/6402805/.

[38] Le Wang, Renato Iida, and Alexander M. Wyglinski. Vehicular Network Simulation

Environment via Discrete Event System Modeling. IEEE Access, Vol. 7, pp. 87246–

87264, 2019.

[39] Mani Amoozadeh, Bryan Ching, Chen-Nee Chuah, Dipak Ghosal, and H. Michael

Zhang. VENTOS: Vehicular Network Open Simulator with Hardware-in-the-

Loop Support. Procedia Computer Science, Vol. 151, pp. 61–68, 2019. https:

//linkinghub.elsevier.com/retrieve/pii/S1877050919304739.

[40] Christoph Sommer, Reinhard German, and Falko Dressler. Bidirectionally Coupled

Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Transac-

tions on Mobile Computing, Vol. 10, No. 1, pp. 3–15, January 2011.

[41] nsnam. Ns-3. https://www.nsnam.org/. (Accessed at 2021-10-29).

115

https://wydotcvp.wyoroad.info/
https://www.sae.org/content/j2945/1_202004
https://www.sae.org/content/j2945/1_202004
https://linkinghub.elsevier.com/retrieve/pii/S1570870521001943
http://ieeexplore.ieee.org/document/6402805/
http://ieeexplore.ieee.org/document/6402805/
https://linkinghub.elsevier.com/retrieve/pii/S1877050919304739
https://linkinghub.elsevier.com/retrieve/pii/S1877050919304739
https://www.nsnam.org/

Chapter 4 Conclusions

[42] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid

prototyping for software-defined networks. pp. 1–6. ACM Press, 2010. http://

portal.acm.org/citation.cfm?doid=1868447.1868466.

[43] Mineo Takai, Jay Martin, Shigeru Kaneda, and Taka Maeno. Scenargie as a Network

Simulator and Beyond. Journal of Information Processing, Vol. 27, No. 0, pp. 2–9,

2019. https://www.jstage.jst.go.jp/article/ipsjjip/27/0/27 2/ article.

[44] EXata® Network Emulator Software. https://www.scalable-networks.com/

products/exata-network-emulator-software/. (Accessed at 2021-10-29).

[45] Universal TUN/TAP device driver — The Linux Kernel documentation. https:

//www.kernel.org/doc/html/v5.12/networking/tuntap.html. (Accessed at 2021-

10-29).

[46] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu Lacage, Daniel Camara,

Thierry Turletti, and Walid Dabbous. Direct code execution: Revisiting library OS

architecture for reproducible network experiments. pp. 217–228. ACM Press, 2013.

http://dl.acm.org/citation.cfm?doid=2535372.2535374.

[47] Intrig-unicamp/mininet-wifi. https://github.com/intrig-unicamp/

mininet-wifi, November 2021.

[48] Tc(8) - Linux manual page. https://man7.org/linux/man-pages/man8/tc.8.

html. (Accessed at 2021-10-29).

[49] Cozybit/wmediumd. https://github.com/cozybit/wmediumd, September 2019.

(Accessed at 2021-10-29).

[50] Empowering App Development for Developers — Docker. https://www.docker.

com/. (Accessed at 2021-10-29).

[51] QEMU. https://www.qemu.org/. (Accessed at 2021-10-29).

[52] Stephen Hemminger. Network Emulation with NetEm, 2005.

116

http://portal.acm.org/citation.cfm?doid=1868447.1868466
http://portal.acm.org/citation.cfm?doid=1868447.1868466
https://www.jstage.jst.go.jp/article/ipsjjip/27/0/27_2/_article
https://www.scalable-networks.com/products/exata-network-emulator-software/
https://www.scalable-networks.com/products/exata-network-emulator-software/
https://www.kernel.org/doc/html/v5.12/networking/tuntap.html
https://www.kernel.org/doc/html/v5.12/networking/tuntap.html
http://dl.acm.org/citation.cfm?doid=2535372.2535374
https://github.com/intrig-unicamp/mininet-wifi
https://github.com/intrig-unicamp/mininet-wifi
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/cozybit/wmediumd
https://www.docker.com/
https://www.docker.com/
https://www.qemu.org/

4.3. Prospects of vehicular networks

[53] Marta Carbone and Luigi Rizzo. Dummynet revisited. ACM SIGCOMM Computer

Communication Review, Vol. 40, No. 2, pp. 1–12, April 2010. http://portal.acm.

org/citation.cfm?doid=1764873.1764876.

[54] Johan Garcia, Emmanuel Conchon, Tanguy Pérennou, and Anna Brunstrom.

KauNet: Improving Reproducibility for Wireless and Mobile Research. In Mo-

biEval 2007, pp. p.21–26, Puerto Rico, United States, June 2007. https://hal.

archives-ouvertes.fr/hal-00388795.

[55] Tanguy Pérennou, Emmanuel Conchon, Laurent Dairaine, and Michel Diaz. Two-

Stage Wireless Network Emulation. In Thierry Gayraud, Michel Mazzella, Fernando

Boavida, Edmundo Monteiro, and João Orvalho, editors, Broadband Satellite Co-

munication Systems and the Challenges of Mobility, Vol. 169, pp. 181–190. Springer-

Verlag, New York, 2005. http://link.springer.com/10.1007/0-387-24043-8 18.

[56] Veth(4) - Linux manual page. https://man7.org/linux/man-pages/man4/veth.4.

html. (Accessed at 2021-10-29).

[57] Pablo Neira-Ayuso, Rafael M. Gasca, and Laurent Lefevre. Communicating between

the kernel and user-space in Linux using Netlink sockets. Software: Practice and

Experience, pp. n/a–n/a, 2010. http://doi.wiley.com/10.1002/spe.981.

[58] P. Zheng and L.M. Ni. EMPOWER: A network emulator for wireline and wire-

less networks. Vol. 3, pp. 1933–1942. IEEE, 2003. http://ieeexplore.ieee.org/

document/1209215/.

[59] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. EstiNet openflow net-

work simulator and emulator. IEEE Communications Magazine, Vol. 51, No. 9, pp.

110–117, September 2013. http://ieeexplore.ieee.org/document/6588659/.

[60] Takaaki Kawai, Shigeru Kaneda, Mineo Takai, and Hiroshi Mineno. A Virtual

WLAN Device Model for High-Fidelity Wireless Network Emulation. ACM Trans-

actions on Modeling and Computer Simulation, Vol. 27, No. 3, pp. 1–24, August

2017. http://dl.acm.org/citation.cfm?doid=3130329.3067664.

117

http://portal.acm.org/citation.cfm?doid=1764873.1764876
http://portal.acm.org/citation.cfm?doid=1764873.1764876
https://hal.archives-ouvertes.fr/hal-00388795
https://hal.archives-ouvertes.fr/hal-00388795
http://link.springer.com/10.1007/0-387-24043-8_18
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
http://doi.wiley.com/10.1002/spe.981
http://ieeexplore.ieee.org/document/1209215/
http://ieeexplore.ieee.org/document/1209215/
http://ieeexplore.ieee.org/document/6588659/
http://dl.acm.org/citation.cfm?doid=3130329.3067664

Chapter 4 Conclusions

[61] Kunio Akashi, Tomoya Inoue, Shingo Yasuda, Yuuki Takano, and Yoichi Shinoda.

NETorium: High-fidelity scalable wireless network emulator. pp. 25–32. ACM Press,

2016. http://dl.acm.org/citation.cfm?doid=3012695.3012699.

[62] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman

Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,

James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,

Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,

Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat.

Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Network Virtu-

alization. the Proceedings of the 15th USENIX Symposium on Networked Systems

Design and Implementation, pp. 373–387, 2018.

[63] Thomas Staub, Reto Gantenbein, and Torsten Braun. VirtualMesh: An emulation

framework for wireless mesh networks in OMNeT++. ICST, 2009. http://eudl.

eu/doi/10.4108/ICST.SIMUTOOLS2009.5563.

[64] Luca Veltri, Luca Davoli, Riccardo Pecori, Armando Vannucci, and Francesco

Zanichelli. NEMO: A flexible and highly scalable network EMulatOr. SoftwareX,

Vol. 10, p. 100248, July 2019. https://linkinghub.elsevier.com/retrieve/pii/

S2352711019300135.

[65] Cloud Services - Amazon Web Services (AWS). https://aws.amazon.com/. (Ac-

cessed at 2021-10-29).

[66] Cloud Computing Services — Google Cloud. https://cloud.google.com/. (Ac-

cessed at 2021-10-29).

[67] Cloud Computing Services — Microsoft Azure. https://azure.microsoft.com/

en-us/. (Accessed at 2021-10-29).

[68] Networking:bridge [Wiki]. https://wiki.linuxfoundation.org/networking/

bridge. (Accessed at 2021-10-29).

[69] Open vSwitch. https://www.openvswitch.org/. (Accessed at 2021-10-29).

118

http://dl.acm.org/citation.cfm?doid=3012695.3012699
http://eudl.eu/doi/10.4108/ICST.SIMUTOOLS2009.5563
http://eudl.eu/doi/10.4108/ICST.SIMUTOOLS2009.5563
https://linkinghub.elsevier.com/retrieve/pii/S2352711019300135
https://linkinghub.elsevier.com/retrieve/pii/S2352711019300135
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://wiki.linuxfoundation.org/networking/bridge
https://wiki.linuxfoundation.org/networking/bridge
https://www.openvswitch.org/

4.3. Prospects of vehicular networks

[70] Marco Antonio To, Marcos Cano, and Preng Biba. DOCKEMU – A Network

Emulation Tool. pp. 593–598. IEEE, March 2015. http://ieeexplore.ieee.org/

document/7096242/.

[71] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick

McKeown. Reproducible network experiments using container-based emulation.

p. 253. ACM Press, 2012. http://dl.acm.org/citation.cfm?doid=2413176.

2413206.

[72] Jiaqi Yan and Dong Jin. A lightweight container-based virtual time system

for software-defined network emulation. Journal of Simulation, Vol. 11, No. 3,

pp. 253–266, August 2017. https://www.tandfonline.com/doi/full/10.1057/

s41273-016-0043-8.

[73] Home · adjacentlink/emane Wiki. https://github.com/adjacentlink/emane. (Ac-

cessed at 2021-10-29).

[74] Andreas Grau, Steffen Maier, Klaus Herrmann, and Kurt Rothermel. Time Jails:

A Hybrid Approach to Scalable Network Emulation. In 2008 22nd Workshop on

Principles of Advanced and Distributed Simulation, pp. 7–14, Roma, Italy, June

2008. IEEE. http://ieeexplore.ieee.org/document/4545320/.

[75] Why Xen Project? https://xenproject.org/users/why-xen/.

[76] Rodney Martinez Alonso, David Plets, Yosvany Hervis Santana, Dariel Pereira

Ruisanchez, Glauco Guillen Nieto, Luc Martens, and Wout Joseph. Emula-

tion of a Dynamic Broadcasting Network with Adaptive Radiated Power in a

Real Scenario. In 2018 IEEE International Symposium on Broadband Multime-

dia Systems and Broadcasting (BMSB), pp. 1–5, Valencia, Spain, June 2018. IEEE.

https://ieeexplore.ieee.org/document/8436653/.

[77] Justin Yackoski, Babak Azimi-Sadjadi, Ali Namazi, Jason H. Li, Yalin Sagduyu,

and Renato Levy. RFnestTM: Radio frequency network emulator simulator tool. In

2011 - MILCOM 2011 Military Communications Conference, pp. 1882–1887, Balti-

more, MD, USA, November 2011. IEEE. http://ieeexplore.ieee.org/document/

6127587/.

119

http://ieeexplore.ieee.org/document/7096242/
http://ieeexplore.ieee.org/document/7096242/
http://dl.acm.org/citation.cfm?doid=2413176.2413206
http://dl.acm.org/citation.cfm?doid=2413176.2413206
https://www.tandfonline.com/doi/full/10.1057/s41273-016-0043-8
https://www.tandfonline.com/doi/full/10.1057/s41273-016-0043-8
https://github.com/adjacentlink/emane
http://ieeexplore.ieee.org/document/4545320/
https://xenproject.org/users/why-xen/
https://ieeexplore.ieee.org/document/8436653/
http://ieeexplore.ieee.org/document/6127587/
http://ieeexplore.ieee.org/document/6127587/

Chapter 4 Conclusions

[78] Hiroshi Mano and Shunsuke Saruwatari. Implementation and Evaluation of a Wire-

less System Emulator. Journal of Information Processing, Vol. 55, No. 3, pp. 1–14,

2014.

[79] Golsa Ghiaasi, Mehdi Ashury, Dimitrios Vlastaras, Markus Hofer, Zhinan Xu, and

Thomas Zemen. Real-time vehicular channel emulator for future conformance

tests of wireless ITS modems. In 2016 10th European Conference on Anten-

nas and Propagation (EuCAP), pp. 1–5, Davos, Switzerland, April 2016. IEEE.

http://ieeexplore.ieee.org/document/7481226/.

[80] Klaus Wehrle, Elias Weingärtner, and Hendrik vom Lehn. Device Driver-enabled

Wireless Network Emulation. ACM, 2011. http://eudl.eu/doi/10.4108/icst.

simutools.2011.245543.

[81] Gilles Silvano, Ivanovich Silva, Leonardo Oliveira, Marcos Pinheiro, and Bruno

Ferreira. LVWNet: An hybrid simulation architecture for wireless sensor networks.

Design Automation for Embedded Systems, Vol. 21, No. 3, pp. 139–155, December

2017. https://doi.org/10.1007/s10617-017-9191-y.

[82] What is Kubernetes? https://kubernetes.io/docs/concepts/overview/

what-is-kubernetes/. (Accessed at 2021-10-29).

[83] Ansible Documentation — Ansible Documentation. https://docs.ansible.com/

ansible/latest/index.html. (Accessed at 2021-10-29).

[84] Platform Overview - Chef Progress. https://docs.chef.io/platform overview/.

(Accessed at 2021-10-29).

[85] Vagrant Introduction. https://www.vagrantup.com/intro. (Accessed at 2021-10-

29).

[86] En:developers:documentation:cfg80211 [Linux Wireless]. https://wireless.wiki.

kernel.org/en/developers/documentation/cfg80211. (Accessed at 2021-10-29).

[87] En:developers:documentation:mac80211 [Linux Wireless]. https://wireless.

wiki.kernel.org/en/developers/documentation/mac80211. (Accessed at 2021-

10-29).

120

http://ieeexplore.ieee.org/document/7481226/
http://eudl.eu/doi/10.4108/icst.simutools.2011.245543
http://eudl.eu/doi/10.4108/icst.simutools.2011.245543
https://doi.org/10.1007/s10617-017-9191-y
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.chef.io/platform_overview/
https://www.vagrantup.com/intro
https://wireless.wiki.kernel.org/en/developers/documentation/cfg80211
https://wireless.wiki.kernel.org/en/developers/documentation/cfg80211
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211

4.3. Prospects of vehicular networks

[88] Michael Neufeld, Jeff Fifield, Christian Doerr, Anmol Sheth, and Dirk Grunwald.

SoftMAC – Flexible Wireless Research Platform.

[89] ETSI. ETSI TS 102 687 v1.1.1 (2011-07) Intelligent Transport System (ITS); Decen-

tralized Congestion Control Mechanisms for Intelligent Transport Systems operating

in the 5 Ghz range; Access layer part, 2011.

[90] Hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authenti-

cator. https://w1.fi/hostapd/. (Accessed at 2021-10-29).

[91] Linux WPA Supplicant (IEEE 802.1X, WPA, WPA2, RSN, IEEE 802.11i). https:

//w1.fi/wpa supplicant/. (Accessed at 2021-10-29).

[92] Unix(7) - Linux manual page, Unix - sockets for interprocess communication. https:

//man7.org/linux/man-pages/man7/unix.7.html. (Accessed at 2021-10-29).

[93] Mac80211 subsystem (basics) — The Linux Kernel documentation. https://www.

kernel.org/doc/html/v4.9/80211/mac80211.html. (Accessed at 2021-10-29).

[94] Arata Kato, Mineo Takai, and Susumu Ishihara. Development of a Wireless LAN

Emulation Framework based on Wireless Network Tap Device. Journal of Informa-

tion Processing, Vol. 60, No. 1, pp. 27–37, 2019.

[95] Brendan Gregg. Flame Graphs visualize profiled code. https://github.com/

brendangregg/FlameGraph, November 2021.

[96] ACPI Specification version 6.3, 2019.

[97] Intel Corporation. IA-PC HPET Specification. https://www.intel.com/

content/dam/www/public/us/en/documents/technical-specifications/

software-developers-hpet-spec-1-0a.pdf.

[98] World Bank. Information and Communication Technology for Disaster Risk Man-

agement in Japan. World Bank, Washington, DC, November 2019. http://hdl.

handle.net/10986/32797.

121

https://w1.fi/hostapd/
https://w1.fi/wpa_supplicant/
https://w1.fi/wpa_supplicant/
https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man7/unix.7.html
https://www.kernel.org/doc/html/v4.9/80211/mac80211.html
https://www.kernel.org/doc/html/v4.9/80211/mac80211.html
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
http://hdl.handle.net/10986/32797
http://hdl.handle.net/10986/32797

Chapter 4 Conclusions

[99] Benjamin Wisner, John Adams, and World Health Organization, editors. Envi-

ronmental Health in Emergencies and Disasters: A Practical Guide. World Health

Organization, Geneva, 2002.

[100] Masugi Inoue, Masaaki Ohnishi, Chao Peng, Ruidong Li, and Yasunori Owada. Ner-

veNet: A Regional Platform Network for Context-Aware Services with Sensors and

Actuators. IEICE Transactions on Communications, Vol. E94-B, No. 3, pp. 618–

629, 2011. http://joi.jlc.jst.go.jp/JST.JSTAGE/transcom/E94.B.618?from=

CrossRef.

[101] Hiroki Nishiyama, Masaya Ito, and Nei Kato. Relay-by-smartphone: Realizing mul-

tihop device-to-device communications. IEEE Communications Magazine, Vol. 52,

No. 4, pp. 56–65, April 2014.

[102] Cabinet Office, Government of Japan. Quasi-Zenith Satellite System (QZSS).

https://www.q-anpi.qzss.go.jp/qzss/. (Accessed at 2021-10-29).

[103] Cabinet Office, Government of Japan. QZSS Safety Confirmation Service (Q-ANPI).

https://qzss.go.jp/overview/services/sv09 q-anpi.html. (Accessed at 2021-

10-29).

[104] Association of Radio Induestries and Businesses. ARIB Standards (ARIB STD-

T98) Digital Convenience Radio Equipment for Simplified Service. https://www.

arib.or.jp/english/std tr/telecommunications/desc/std-t98.html, 2008.

[105] Hiroshi Mano, Hitoshi Morioka, and Tetsutaro Uehara. Experimental trial of Wire-

less LAN FILS (Fast Initial Link Setup). In DICOMO2013, pp. 1634–1639. IPSJ,

2013.

[106] Eng Hwee Ong. Performance analysis of fast initial link setup for IEEE 802.11ai

WLANs. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mo-

bile Radio Communications - (PIMRC), pp. 1279–1284, Sydney, Australia, Septem-

ber 2012. IEEE. http://ieeexplore.ieee.org/document/6362543/.

[107] Hiroki Kushida, Hiroshi Mano, Mineo Takai, Zhi Liu, and Susumu Ishihara. On

the effectiveness of fils in IEEE 802.11ad wireless networks. In 2017 23rd Asia-

122

http://joi.jlc.jst.go.jp/JST.JSTAGE/transcom/E94.B.618?from=CrossRef
http://joi.jlc.jst.go.jp/JST.JSTAGE/transcom/E94.B.618?from=CrossRef
https://www.q-anpi.qzss.go.jp/qzss/
https://qzss.go.jp/overview/services/sv09_q-anpi.html
https://www.arib.or.jp/english/std_tr/telecommunications/desc/std-t98.html
https://www.arib.or.jp/english/std_tr/telecommunications/desc/std-t98.html
http://ieeexplore.ieee.org/document/6362543/

4.3. Prospects of vehicular networks

Pacific Conference on Communications (APCC), pp. 1–6, Perth, WA, December

2017. IEEE. http://ieeexplore.ieee.org/document/8304047/.

[108] IEEE Computer Society. IEEE 802.11i-2004 - IEEE Standard for information

technology-Telecommunications and information exchange between systems-Local

and metropolitan area networks-Specific requirements-Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amend-

ment 6: Medium Access Control (MAC) Security Enhancements.

[109] IEEE Computer Society. IEEE 802.1X-2020 - IEEE Standard for Local and

Metropolitan Area Networks–Port-Based Network Access Control.

[110] John Vollbrecht, James D. Carlson, Larry Blunk, Bernard D. Aboba, and Henrik

Levkowetz. Extensible Authentication Protocol (EAP). Request for Comments

RFC 3748, Internet Engineering Task Force, June 2004. https://datatracker.

ietf.org/doc/rfc3748.

[111] Daniel Simon, Ryan Hurst, and Bernard D. Aboba. The EAP-TLS Authentication

Protocol. Request for Comments RFC 5216, Internet Engineering Task Force, March

2008. https://datatracker.ietf.org/doc/rfc5216.

[112] Ashwin Palekar, Simon Josefsson, Daniel Simon, and Glen Zorn. Protected EAP

Protocol (PEAP) Version 2. Internet Draft draft-josefsson-pppext-eap-tls-eap-10,

Internet Engineering Task Force, October 2004. https://datatracker.ietf.org/

doc/draft-josefsson-pppext-eap-tls-eap-10.

[113] Wenchao Xu, Hassan Aboubakr Omar, Weihua Zhuang, and Xuemin Sherman Shen.

Delay Analysis of In-Vehicle Internet Access Via On-Road WiFi Access Points.

IEEE Access, Vol. 5, pp. 2736–2746, 2017.

[114] A. Mishra, Min Ho Shin, N.L. Petroni, T.C. Clancy, and W.A. Arbaugh. Proac-

tive key distribution using neighbor graphs. IEEE Wireless Communications,

Vol. 11, No. 1, pp. 26–36, February 2004. http://ieeexplore.ieee.org/document/

1269714/.

123

http://ieeexplore.ieee.org/document/8304047/
https://datatracker.ietf.org/doc/rfc3748
https://datatracker.ietf.org/doc/rfc3748
https://datatracker.ietf.org/doc/rfc5216
https://datatracker.ietf.org/doc/draft-josefsson-pppext-eap-tls-eap-10
https://datatracker.ietf.org/doc/draft-josefsson-pppext-eap-tls-eap-10
http://ieeexplore.ieee.org/document/1269714/
http://ieeexplore.ieee.org/document/1269714/

Chapter 4 Conclusions

[115] Junbeom Hur, Chanil Park, and Hyunsoo Yoon. An Efficient Pre-authentication

Scheme for IEEE 802.11-Based Vehicular Networks. In Atsuko Miyaji, Hiroaki

Kikuchi, and Kai Rannenberg, editors, Advances in Information and Computer

Security, Vol. 4752, pp. 121–136. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007. http://link.springer.com/10.1007/978-3-540-75651-4 9.

[116] IEEE Vehicular Technology Society. IEEE Standard for Wireless Access in Vehic-

ular Environments–Security Services for Applications and Management Messages

- Amendment 1. Technical report, IEEE, 2017. https://ieeexplore.ieee.org/

document/8065169/.

[117] ETSI TS 103 097 v1.3.1 - Intelligent Transport Systems (ITS); Security; Security

header and certificate formats, 2017.

[118] Robil Daher and Alexey Vinel, editors. Roadside Networks for Vehic-

ular Communications: Architectures, Applications, and Test Fields. IGI

Global, 2013. http://services.igi-global.com/resolvedoi/resolve.aspx?doi=

10.4018/978-1-4666-2223-4.

[119] Michael Feiri, Rolf Pielage, Jonathan Petit, Nicola Zannone, and Frank Kargl. Pre-

Distribution of Certificates for Pseudonymous Broadcast Authentication in VANET.

In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5, Glas-

gow, United Kingdom, May 2015. IEEE. http://ieeexplore.ieee.org/document/

7146029/.

[120] Annette Böhm and Magnus Jonsson. Handover in IEEE 802.11p-based Delay-

Sensitive Vehicle-to-Infrastructure Communication. Research Report IDE - 0924,

2007.

[121] Hiroki Nakano, Hitoshi Morioka, and Hiroshi Mano. IEEE 802.11-09/1000r3 - IEEE

802.11 for High Speed Mobility, 2009.

[122] Dmitry Bankov, Evgeny Khorov, Andrey Lyakhov, Ekaterina Stepanova, Le Tian,

and Jeroen Famaey. What Is the Fastest Way to Connect Stations to a Wi-Fi

HaLow Network? Sensors, Vol. 18, No. 9, p. 2744, September 2018. https:

//www.mdpi.com/1424-8220/18/9/2744.

124

http://link.springer.com/10.1007/978-3-540-75651-4_9
https://ieeexplore.ieee.org/document/8065169/
https://ieeexplore.ieee.org/document/8065169/
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2223-4
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2223-4
http://ieeexplore.ieee.org/document/7146029/
http://ieeexplore.ieee.org/document/7146029/
https://www.mdpi.com/1424-8220/18/9/2744
https://www.mdpi.com/1424-8220/18/9/2744

4.3. Prospects of vehicular networks

[123] Wei Yin, Peizhao Hu, Wenbo Wang, Jiahui Wen, and Hongjian Zhou. FASUS: A

fast association mechanism for 802.11ah networks. Computer Networks, Vol. 175,

p. 107287, July 2020. https://www.sciencedirect.com/science/article/pii/

S1389128619312083.

[124] Lyuye Zhang and Maode Ma. FKR: An efficient authentication scheme for IEEE

802.11ah networks. Computers & Security, Vol. 88, p. 101633, January 2020. https:

//www.sciencedirect.com/science/article/pii/S0167404818313373.

[125] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. TCP

Fast Open. Request for Comments RFC 7413, Internet Engineering Task Force,

December 2014. https://datatracker.ietf.org/doc/rfc7413.

[126] Nandita Dukkipati, Neal Cardwell, Yuchung Cheng, and Matt Mathis.

Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses.

Internet Draft draft-dukkipati-tcpm-tcp-loss-probe-01, Internet Engineer-

ing Task Force, February 2013. https://datatracker.ietf.org/doc/

draft-dukkipati-tcpm-tcp-loss-probe-01.

[127] Ip(8) - Linux manual page. https://man7.org/linux/man-pages/man8/ip.8.html.

(Accessed at 2021-10-29).

[128] En:users:documentation:iw [Linux Wireless]. https://wireless.wiki.kernel.

org/en/users/documentation/iw. (Accessed at 2021-10-29).

[129] Christoph Sommer and Falko Dressler. Vehicular Networking. Cambridge University

Press, December 2014.

[130] Kenneth Laberteaux and Hannes Hartenstein. VANET: Vehicular Applications and

Inter-Networking Technologies. John Wiley & Sons, November 2009.

[131] FCC Allocates Spectrum 5.9 GHz Range for Intelligent Transportation Sys-

tems Uses. https://transition.fcc.gov/Bureaus/Engineering Technology/

News Releases/1999/nret9006.html. (Accessed at 2021-10-29).

125

https://www.sciencedirect.com/science/article/pii/S1389128619312083
https://www.sciencedirect.com/science/article/pii/S1389128619312083
https://www.sciencedirect.com/science/article/pii/S0167404818313373
https://www.sciencedirect.com/science/article/pii/S0167404818313373
https://datatracker.ietf.org/doc/rfc7413
https://datatracker.ietf.org/doc/draft-dukkipati-tcpm-tcp-loss-probe-01
https://datatracker.ietf.org/doc/draft-dukkipati-tcpm-tcp-loss-probe-01
https://man7.org/linux/man-pages/man8/ip.8.html
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://transition.fcc.gov/Bureaus/Engineering_Technology/News_Releases/1999/nret9006.html
https://transition.fcc.gov/Bureaus/Engineering_Technology/News_Releases/1999/nret9006.html

