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Power-law distributions are observed to describe many physical phenomena with remaJkable 
accuracy. In some cases, the distribution gives no indication of a cutoff in the tail. wh ich poses 
interesting theoretical problems. because its average is then infinite. It is al so known that the 
averages of samples of such data do not approach a normal distribut ion, even if the sample size 
increases. The e problems have previously been studied in the context of random walks. He re, we 
presen t anothe r example in which the sample average inc reases with the sample size. In the 
Gutenberg- Richte r law for earthquakes, we show that the cumulative energy released by 
earthquakes grows faster than linea rl y w ith time. He re, inc reasing the time span of observation 
corresponds to increasing the sample size. While the mean of re leased energy is not well de fined, 
its distribution obeys a non-trivial scaling law. (i) 2022 Published 1111der an excl11si,•e license by American 
Associmio11 of Physics Teachers. 
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I. INTRODUCTION 

Very diverse physica l, biological , and social phenomena 
display distributions that obey a power law with remarkable 
accuracy and over several orders of magnitude. 1 In some 
cases, the power law holds true without any sign of a cutoff, 
which would indicate that the distribution has no fini te mean. 
From a purely theoretical perspective, theorems and limit dis
tributions for such cases are known in mathematics.2-

5 From 
a practical or physical s tandpoint. however, measurable impli
cations caused by the peculiar propert ies of power law distri
butions have attracted little attention until recently.6 The 
mathemat ics of probability distributions with infinite means 
was investigated by Paul Levy in the I 930s.2·

4 Several deca
des later, Levy·s results were applied in physics to explain 
phenomena related to random walks, e.g. , anomalous diffu
sion in disordered conductors.1-

10
·
15 In recent years. this sub

ject has become popular and found applications to numerous 
physica l systems from laser cooling to aging. 11- 14 

The absence of a well -defined ave rage requires that the 
probability of a vari able x behaves as P(x) ex l /(x1+•) with 
rJ. > 0 in the limit o f x-+ oo. In laser cooling of atomic 
gases, for instance, the lifetime of a toms in a given momen
tum state follows this type of distribut ion.14 A dive rgent li fe
time signifies that the system is experimentally unable to 
reach a steady state despi te the experimental time scale be ing 
significantly larger than the microscopic one. 

Anothe r example is the law of large numbers. For the sum 
S,v of N independen t and identicall y distributed random vari
ables, it is often taken for granted that the average S,v / N 
approaches a finite value p as N inc reases. This is the (weak) 
law o f large numbers, which underl ies the inference in phys
ics experiments that the true value of the observable is p. If 
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the variable has a finite variance, <J2 , then the sum SN 
approaches the nonnal distribution with mean Np and vari 
ance N<J2 . This is the central limit theorem. 

However, it is possible to imagine anomalous cases fo r 
which the limit p does not exist or is ill-defined. To deal 
with these phenomena, the usual method, which underl ies 
the mean field theory, of conside ring the ave rage value of a 
physical observable separately from its fluctuations is of no 
help. Levy deri ved the probability distribution fo r such cases 
in tem1s of the Fourie r transfom1 of the probability density 
funct ion.2 Phenomena such as random jumps of a state vari
able, e .g., position or displacement in a random walk, a re 
natural applications of Levy's results. Atomic momentum in 
subrecoi l laser cooling is also a good example. 14 However. 
practica l applications can also be foun9 e lsewhere in enti rely 
different contexts. 

In the e ighteenth century. Nicolas Bernoulli posed a para
doxical problem now known as the St. Pete rsburg paradox. 16 

It is based on a theoretical lo ttery game that leads to a ran
dom variable with infini te average. This game entails flip
ping a coin. If heads comes up in the first toss. the player 
w ins one coin. If tails comes up, the player is allowed 10 flip 
the coin again, until heads comes up. The prize 2N is deter
m ined by the number N of tails the playe r has drawn before 
obtaining a heads. The paradox is that the mean winning 
( 1 x ½ + 22 x ¼ + 23 x ½ + -• •) is infinite, so that we cannot 
detem1ine a fai r ante to enter the game. and the banker 
shou ld have infinite resources to cover the expected loss. 
Feller took up thi s problem in a c lassic book on probabi lity 
theory,4 where he showed that , when the game is repeated 11 

rimes, the accumulated winning converges to II log211 as 11 

increases.5 This superlinear behavior implies that the distri
bution does not have a finite mean, since a finite mean would 
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require the accumulated sum to vary linearly with 11. Thus, 
the absence of a well-defined mean does not imply the 
absence of any rule. Instead, for a large number of games. 
the probability distribution of the overall winning should dis
play the universal caling property expected from Levy's 
mathematical results.2 This point hints at possible physical 
systems that exhibit a distribution without a finite mean. In 
this paper, we present a particular example of such a system: 
the power law distribution of earthquakes. 

II. POWER-LAW DISTRIBUTION 
OF EARTHQUAKE ENERGIES 

The Gutenberg- Richter law of earthquake size distribution 
is of fundamental impo11ance not only in seismology but 
more genera lly in physics of self-similar phenomena. 17- 19 

The famous Gutenberg- Richter relation states that log P(M) 
= a - bM with b := I for the cumulative number P(M) of 
earthquakes with a magnitude larger than M.2° Combined 
with the equation connecting the earthquake's magnitude M 
and its energy £, 17 log£ = I.SM+ const. , we have P(E) 
ex e-l1G• with f1GR = b/ 1.5. Then, if/{£) is the probability of 
an earthquake having an energy £, P(E) = J;' J(E)dE or 
J(E) = - dP/dE, and we have/(£ ) ex e- 1-/JG• . Although 
slightly different from the original formulation, this power
law relation is commonly called the Gutenberg-Richter law 
t0day. It wa actually originally formulated by Wadati as 
J(E) e-w with w(= I + f3GR) == 5/ 3.21 The exponent f1GR 
has been found to be universal with a value close to 2/3 
(Fig. I ).1 The power-law distribution suggests that it origi
nates from a critical branching process or from self-organized 
criticality.18·22 Tn addition, we study the power-law distribu
tion of the earthquakes' energy£ instead of their magnitude 
scaleM. 

While the simple law provides remarkably good one
parameter fits of available data,23 it poses theoretical prob
lems caused by the divergence of the moments (£") 
(11 = 1,2,3, ... ) . including the mean value (£ ).1 To avoid 
this difficulty, addit ional parameters are introduced to cut off 
the heavy tail of the distribution for large £.24·25 In fact, the
oretically, the power law cannot be true without limit 
because the planet is finite. Observationally, however, no 
significant deviation from the power law has been measured, 
so that any energy cut-off would occur at an energy larger 
than that of the greatest known earthquake.25-28 While prac
tical studies for verifying the valid ity of the power law 
should remain important, it is not only equally important but 
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Fig. I. TI1c dis1ribu1ion o f eanhquakes· energy £ (N rn). Data are taken from 
the global ccntroid-moment-1ensor catalog (2006-2017. depth< 70 km) 
(Refs. 29. 30. and -1 I). In this log-log histogram. the number of occurrence 
is proponional 10 £-fl,,,. , which is indicaied by a solid line. 
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of physical significance 10 investigate the theoretical conse
quences of having an infinite mean for this power-law distri
bution, which holds insofar as the Gutenberg-Richter law is 
obeyed. It should be remembered, however, that deviations 
from this law may be found in the future. 

ill. PROBABILITY DISTRIBUTION OF THE 
ACCUMULATED E 1ERGY 

The earthquake energy £ is treated as a random variable 
in time obeying the power-law probability distribution 

J (E) =~ ::. ' /3 
( )

l +fic.R 

a E 
( I) 

for £>a and zero otherwise. A lower cut-off a is required 
for the normalization of probability (J,~ f (E)dE = I). The 
parameters a and f3GR are assumed constant. We are inter
ested in the ,-dependence of the average 

(2) 

where Ek (k = I, 2, ... , 1) is a random variable. Mathematically, 
t~e _ave~age (£)~ should approach a Levy distributi?n in ~he 
limn of 1 -, oo.- In practice. however, the manner m which 
the convergence is achieved can only be investigated 
numerically. 

For the purpose of illustration. fi rst we present numerical 
results for (£), evaluated from 1 = I 00 random numbers (Ek 
for k = I, 2, ... , I 00) that obey the distribution in Eq. ( I). 
Figure 2 shows the distribution of (£ ), obtained from 
I 00 000 numerical simulations. Since the probability distri
bution of (£), does not have a finite mean, the median pro
vides a better indicator of the central tendency.31 The mh 
quanile E,,14 is defined as the energy separating the 11/ 4 data 
of lowest energy from the highest (4- 11)/4 (n = I, 2, 3). 
The median is the second quartile: £2/4 = £ 112 (Fig. 2). 

In our case, the sample size I corre ponds to the time span 
of observation of earthquake . As the number of time win
dows I increases, £ 114 , £ 112, and £314 rapidly become propor
tional to ,<1- flG.)/ /fc;• (Fig. 3). Such a power-law asymptotical 
behavior implies self-si mi larity. 18

•
21 As a matter of fact,(£), 
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Fig. 2. TI1e distribution, i.e.. histogram, of the I-average (£), = (£ 1 

+ · · · + £,)/1 for 1 = 100. Each of the summand£, varies randomly accord
ing to Eq. ( I). (The lower cutoff i~ taken 10 be a = I .) TI1e 11th quanile is 
indicated by an arrow labeled with Cn/J (11 = I. 2. 3). The average (£), 
shows a long tail as ils component £, does. However. the fom1er distribution 
does not depend on the specific de1ails of the lauer distribu1ion. Note that 
the exponent PGR governing the tail of the £, distribution is o f primary 
importance. 
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Fig. 3. Quartiles E1f4, E,12 and Eit• of the (£ ), distribution are plot1cd 
against 1 (/JcR = 2/3 and a= I ) . The almost linear depende nce in 1he 
log-log plol indicates thal 1he quartiles vary according 10 a power law of lhc 
number of samples I. This behavior is contrasted with the usual behavior of 
dis1ribu1ions converging 10wards a constant value (mean). A das hed line 
shows 1he theoretical limit E,12 ""4.071<•-P...,,)//t, as 1 - +~-

scaled by 1(1-/Ja•l//io• converges to a universal distribution 
(Fig. 4). By contrast, in the case of a distribution with a finite 
mean, the typical value £ 112 and the width £ 3/4 - £ 114 of the 
distribution converge, as r increases, to expected valueµ and 
zero, respectively, so that the average£, converges toµ with 
certainty. The certainty and constancy a re both not achieved 
in the present case. In another case, certainty holds true 
while constancy is violated .3 1 As mentioned before, the limit 
distribution of (£ ), is Levy·s distribution. In the present 
case, the scaled average {£) if 1(1-Pa. )lfio• obeys the distribu
tion S(x; fJGR , I , y, 0), so that the med ian of (£), varies as 
4 .0701(1-/JG•l//lo• with fJGR = 2/3 in the 1 -> +oo (see the 
Appendix fo r the meaning o f the Levy distribution variable). 
This theore1ical resuli is plotted with a dashed line in Fig. 3. 

To compare the above results with empirical data, shallow 
earthquakes (i.e., of depth <70 km) in the global CMT 
(Global Centroid-Moment-Tensor Project) catalog covering 
1he period 1977- 2017 were analyzed.-9

·
30

A
1 The total num

ber of events is 40 390. Dividing the period of 4 1 years 
( 14 984 days) into consecuti ve r days, we evaluated the 
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Fig. 4. Dis1ribu1ions, i.e., histogmms, o f the scaled variable (£},l1<H 1t.l/#,.,_ 
for I= I 00, I 000, and IO 000 (/JGR = 2/3 and a= I ). Each of these distribu
tions is numerically obtained from 100000 simulations. For comparison, the 
solid curve corresponds to a Levy distribution (sec the text). 

average (£ ), in Eq. (2) by regarding£. as the energy released 
in day k. Figure 5 is the 1-dependence of the median of this 
average. As can be seen, the median and therefore (£)1• 

increases as I grows larger. Although it may seem counter
intuitive, Fig. 5 shows that the rate of energy re lease depends 
on the width of 1he considered time window. 1l1is is an imme
diate consequence of the fact tha1 the re is no upper cut-off fo r 
the power-law distribution. When 1he average is ill-defined. 
owing to the long Ja il of the power-law distribution, it should 
strongly depend on the presence or absence of outliers on the 
tail, i.e., ex1remely large events of extremely rare occurrence. 
It, thus. varies with the width of the observation window. 
because wider time frames are more like ly to contain outliers. 

IV. DISCUSSION 

It is often stated that the power-law distribution of earth
quakes indicates the absence of a characteristic scale. An 
upper bound scale is introduced only if 1he finite size of the 
system, the Ean h 's crust, is taken into considerat ion. 
However, the expression of the median of the probabi lity dis
tribution provides a characteristic scale that is almost inde
pendent of the upper bound sca le. The median of the 
probabil ity d istribution in Eq. ( I ) is £ 112 = 2 1/Po•a := 2.8a. 
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Fig. 5. n,e median £112 of the 1-day average (£ ), of eanhquake energy is ploned against 1 ( Refs. 29. 30. and 41 ). A steady increase in the median £ 112 , and 
therefore of (£),. shows the absence of an upper cutoff in the power-law tail of the earthquake size dis1ribu1ion. TI1e left panel is a normal plot. TI,e right panel 
is a log-log plot of the same data, where a dashed line shows £ 112 ex / 1-//ra)/ffc,. _ It should be remarked that the lowe r culOff is provided by practical incom
pleteness of the data catalogue (Refs. 29, 30, 32, and ~ I). 
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Similarly as for the upper limit, the attempts to find the lower 
limit a have not yielded reliable results. Indeed, the lower 
limit can be extremely small: molecular dynamics simula
tions33 and laboratory experiments34 suggest that the self
similarity extends to the molecular scale. The present results 
should open a new way for investigating elusive boundary 
scales at both ends. 

More generally, the example of earthquakes' sizes shows 
that we should not a priori assume that a distribution has a 
finite mean (expected) value. This implicit assumption comes 
from our everyday experiences. In most cases, the significance 
of expected value is warranted by the law of large numbers, 
which allows us to ignore the distinction between the measured 
result of a given sample (the average) and the theoretical 
property of a probability distribution (the expected value). 
However, an infinite or undefined expected value, when it 
occurs, does not necessarily cause a practical difficulty. It does 
not necessarily mean that each realization has an infinite or 
indefinite result. In fact, there are abundant interesting statistics 
in which the mean value is not a valid indicator of the typical 
outcome.1·31 In this respect, it should be remembered that the 
power-law distribution, also known as the Pareto distribution 
in economy and sociology, was originally discovered in study
ing the distribution of wealth in a society, i.e., a large portion 
of wealth is held by a small fraction of the population.35 

Power-law distributions occur in a diverse range of natural 
phenomena, including the sizes of earthquakes, moon craters,36 

solar flares, 37 and rainfall depths. 38 The recent surge of interest 
in scale-free networks shed a new light on the power-law dis
tributions in the number of citations of scientific papers,39 the 
number of hits on web pages,40 and other network-related 
phenomena. 

V. CONCLUSION 

While we took earthquakes as an illustrative example, simi
lar applications may be found in many other power-law phe
nomena. For distributions with an undefined mean, the median 
provides a well-defined measure of a typical outcome. 
Accordingly, it is a good practice to monitor whether and how 
median varies as the sample size grows. In so doing, we find 
pedagogical value especially in taking a critical view on a non
trivial assumption that the average of sample data should 
approach to a definite value as sample size increases indefi
nitely. The present study shows that the violation of the law of 
large number does not mean the absence of any rule, while its 
empirical verification may require to collect a large set of data. 
It is generally a formidable task to show unequivocally that the 
underlying distribution obeys a power law, because it requires a 
significant amount of data ranging over several orders of mag
nitude. Still, it is straightforward just to find an indication of the 
absence of a well-defined mean. Thus, it is instructive to remind 
that the long tail of the underlying distribution is predicted from 
the manner in which the median varies. 
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APPENDIX: LEVY DISTRIBUTION 

The Levy distribution, or also known as the stable distri
bution, S(x; ex, P, y, µ) is defined by 

S(x; ex, p, }', µ) = _21 Joe </>(t)e-ixtdx, 
7t -oc 

(Al) 

where · 

</>(t) = exp(iµt -yocltloc(l - iPsgn(t)w(ex,t))), (A2) 

w(ex, t) = tan (nex/2), (A3) 

and w(ex, t) = tan(nex/2) for a =I- I and w(a, t) 
= -2/n loglytl for a= I. The parameters a and P are real 
constants satisfying 0 < a < 2 and -1 ~ P ~ 1, while y > 0 
is a scale parameter. In the case of a= 2 and p = 0, the distri
bution reduces to a Gaussian distribution with variance 2y2 
and meanµ. 

The generalized central limit theorem states that the super
position <E7=1 X;) of independent, identically distributed 
random variables (X;) converges to S(a, P, y, O). According 
to a theorem by Gnedenko and Kolmogorov, 3 for a random 
variable X; obeying a probability distribution, 

f(x) ~ + ' 
{ 

c x-(oc+l) for x---+ oo 

c_ lxl-(ot+t) for x ---+ -oo, 
(A4) 

where c+ and c_ are positive constants, we obtain 

" I:x; 
Y i=l {X) / (1-ix)/::i S{ p , 0) n = ~ = " n ---+ ex, , y, , (A5) 

for O <a< 1, where the expected value {X),, = E7=1 X;/n 
diverges as n---+ oo. The parameters P and}' are given by 

P
- c_ - c_ 
- ' C+ -c_ 

(A6) 

and 

(A7) 

where r(z) = Jo .xz-•e-xdx is the gamma function.3 

In the present case of Eq. (I), we have c+ = PaRaPoR, a 
= PoR = 2/3 and c_ = 0, so that P = 1, y = (n/2/ 
sin (nPoR/2)/r(PoR)) 11/JoRa and (X)n/n(l-/JoR)/PoR r,,J S(PoR, 
1, y, 0), which has a median of 4.074 32a. 
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I was fired by the National Weather Service five minutes after they hired me for going into 
their code base and renaming all the tornado warnings to "tornado spoiler alerts." 
(Source: https://xkcd.com/2219/) 
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