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Abstract 

Neonicotinoids (NEOs) are a class of insecticides that have high insecticidal activity and 1 

are extensively used worldwide. However, increasing evidence suggests their long-term 2 

residues in the environment and toxic effects on nontarget organisms. NEO residues are 3 

frequently detected in water and consequently have created increasing levels of pollution and 4 

pose significant risks to humans. Many studies have focused on NEO concentrations in water; 5 

however, few studies have focused on global systematic reviews or meta-analyses of NEO 6 

concentrations in water. The purpose of this review is to conduct a meta-analysis on the 7 

concentration of NEOs in global waters based on published detections from several countries 8 

to extend knowledge on the application of NEOs. In the present study, 43 published papers 9 

from 10 countries were indexed for a meta-analysis of the global NEO distribution in water. 10 

Most of these studies focus on the intensive agricultural area, such as eastern Asia and North 11 

America. The order of mean concentrations is identified as imidacloprid (119.542  15.656 ng 12 

L-1) > nitenpyram (88.076  27.144 ng L-1) > thiamethoxam (59.752  9.068 ng L-1) > 13 

dinotefuran (31.086  9.275 ng L-1) > imidaclothiz (24.542  2.906 ng L-1) > acetamiprid 14 

(23.360  4.015 ng L-1) > thiacloprid (11.493  5.095 ng L-1). Moreover, the relationships 15 

between NEO concentrations and some environmental factors is analyzed. NEO 16 

concentrations increase with temperature, oxidation-reduction potential and the percentage of 17 

cultivated crops but decrease with stream discharge, pH, dissolved oxygen, and precipitation. 18 

NEO concentrations show no significant relations to turbidity and conductivity.  19 

 

Keywords: Neonicotinoids; insecticide; organic pollutant; insecticide contamination; water; 

meta-analysis 
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1. Introduction 

Neonicotinoids (NEOs) are a class of insecticides that act selectively on nicotinic 20 

acetylcholine receptors (nAChRs) to block the action of acetylcholine in the central nervous 21 

systems of insects (Matsuda et al. 2001; Tomizawa and Casida 2003). Compared to traditional 22 

pesticides, they show stronger selectivity for insects on nAChRs than vertebrates and are thus 23 

considered to have reduced toxicity and to exhibit lower resistance in mammals (Jeschke et al. 24 

2013). Since NEOs were first produced in the 1990s beginning with imidacloprid (IMI), other 25 

NEOs, including acetamiprid (ACE), clothianidin (CLO), thiamethoxam (TXM), thiacloprid 26 

(THI), nitenpyram (NIT), and dinotefuran (DIN), have been successively developed for the 27 

market (Godfray et al. 2015). In addition, imidaclothiz (IMZ) is a new NEO with more 28 

systemic activity developed by Nantong Jiangshan Agrochemical and Chemical Co. Ltd., 29 

China and it was registered in 2006 by the Chinese Ministry of Agriculture (Shao et al. 2013). 30 

NEOs have become best-selling insecticides with annual sales of 1.9 billion dollars, 31 

accounting for 25% of the global insecticide market since 2010 (Jeschke et al. 2011). In 2012, 32 

TXM, CLO, and IMI accounted for almost 85% of total NEO sales and were mainly used for 33 

crop protection (Bass et al. 2015). In particular, IMI has gradually become one of the most 34 

widely applied insecticides and is used for over 140 agricultural crops in approximately 120 35 

countries (Drobne et al. 2008). Approximately 20,000 tons of active substance IMI is 36 

produced annually, and China contributes approximately 70% of IMI production (Drobne et 37 

al. 2008; Simon-Delso et al. 2015; Wang et al. 2018). Because of the highly efficient insect 38 

pest control and favorable safety profiles of NEOs, they have been used in agriculture, animal 39 

husbandry, and residential environments worldwide (Simon-Delso et al. 2015; Morrissey et 40 

al. 2015). 41 

Along with their global use, NEOs have had negative effects on wildlife. Many 42 

organisms, including nontarget species and terrestrial pollinators such as bumble bee (Bombus 43 

terrestris), honey bee (Apis mellifera), and butterfly (Polyommatus icarus), are extremely 44 

sensitive to NEOs (Whitehorn et al. 2012; Rundlöf et al. 2015; Basley and Goulson 2018). 45 

Honey bees, as pollinators, play essential roles in ecological systems and crop productivity, so 46 
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their health, productivity and behavior are of greater environmental concern (Henry et al. 47 

2012). An increasing number of studies have revealed that NEOs tend to easily enter 48 

ecosystems through runoff and drainage systems in agricultural areas and pose increasing 49 

ecological threats to organisms (Anderson et al. 2018; Schaafsma et al. 2019). NEOs have the 50 

potential to cause a sudden decline in the adult honeybee population, also known as colony 51 

collapse disorder (Henry et al. 2012). Many studies have reported on the acute toxicity of 52 

NEOs to aquatic invertebrates, birds, and mammals from in vitro and in vivo laboratory 53 

toxicity experiments (Morrissey et al. 2015; Han et al. 2018; Addy-Orduna et al. 2019). The 54 

potential toxic effects of NEOs mainly include reproductive toxicology, neurotoxicity, 55 

hepatotoxicity, immunotoxicity, and genetic toxicity (Han et al. 2018). 56 

Variable levels of NEOs and their metabolites occur in surface environmental media 57 

such as soils (Jones et al. 2014; Bonmatin et al. 2019), drinking water (Sultana, et al. 2018), 58 

crops (Kamel et al. 2010; Chahil et al. 2015; Karthikeyan et al. 2019), pollen (Tosi et al. 59 

2018), and even bovine milk (Adelantado et al. 2018). It is important to develop better 60 

knowledge of the distribution of NEO levels in the environment and the associated 61 

environmental effects, which will help guide conservation efforts to NEOs application and 62 

environment protection. Meta-analysis is a quantitative method to summarize the independent 63 

research results. Hence, the objective of this review is to summarize the global concentration 64 

distribution of NEOs (ACE, CLO, DIN, IMI, IMZ, NIT, THI, and TXM) in water and reveal 65 

the relationship between NEO concentrations and hydrologic parameters such as stream 66 

discharge, turbidity, pH, temperature, dissolved oxygen (DO), oxidation-reduction potential 67 

(ORP), precipitation, and cultivated crops via meta-analysis. 68 

2. Materials and methods 

2.1 Data assembly 69 

To study NEO levels in water, target publications included in the PubMed database were 70 

screened on February 2, 2021. A total of 57 papers were obtained using the following search 71 

terms: (((neonicotinoid[Title]) OR (neonicotinoids[Title]) OR (neonicotinoid 72 

insecticide[Title]) OR (neonicotinoid insecticides[Title])) AND ((water[Title]) OR 73 
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(lake[Title]) OR (river[Title]) OR (stream[Title]) OR (wetland[Title]))). Among the papers 74 

obtained, 27 were retained in the present study based on the following criteria: (1) papers 75 

written in English were retained; (2) duplicate papers were removed; (3) irrelevant papers 76 

were carefully removed after reading the abstracts; (4) papers excluding NEO concentration 77 

data were removed after reading the full text in detail; and (5) papers were identified as 78 

original research rather than review articles. An additional 16 papers were obtained from the 79 

references of the retained papers, so a total of 43 papers were used in this study. These selected 80 

papers were published from 2012 to 2021 with the impact factor range from 1.755 to 11.236. 81 

Although they might be not comprehensive, the papers that we screened were published in 82 

specialized journals with considerable impact. The following information was extracted: 83 

sampling time, country, sampling location, physical and chemical properties of the studied 84 

water (stream discharge, turbidity, pH, temperature, DO, ORP, and conductivity), 85 

precipitation, percentage of cultivated crops, types of NEOs, concentrations of NEOs 86 

(maximum, median, minimum, and mean), and standard deviation of NEO concentrations. 87 

These studies referring to 10 countries (the United States, Australia, Belize, Canada, China, 88 

Japan, the Philippines, Romania, South Africa, and Vietnam) were selected. NEOs were 89 

detected in tap water, seawater, lakes, rivers, reservoirs, estuaries, creeks, wetlands, or open 90 

ditches and runoff in agricultural regions whether it's spring, summer, fall or winter (Table 91 

S1). Plot Digitizer software was used to extract values from graphs. 92 

2.2 Data analysis 93 

The sampling locations were displaced on a world map based on longitude and latitude 94 

parameters by RStudio (Fig. 1). With no information on longitude and latitude, the sampling 95 

site name was used to extract longitude and latitude information from Google Maps. The 96 

mean concentration of each NEO was used, and the concentrations of NEOs were unified to 97 

ng L-1 for further analysis. Data analyses and the meta-analysis figures were developed using 98 

the JMP statistical program (version 16.0). JMP is a statistical visualization tool, it can 99 

integrate the graphics into the report. The “Distribution of Y” platform was used for testing 100 

the mean concentrations of different NEOs. The number of observations and concentration 101 
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range for different NEOs (ACE, CLO, DIN, IMI, IMZ, NIT, THI, and TXM) were 102 

summarized. The “Fit Y by X” platform was used for testing the significant differences 103 

between the mean concentrations of NEOs and environmental factors (e.g., stream discharge, 104 

turbidity, pH, temperature, DO, ORP, conductivity, precipitation, and the percentage of 105 

cultivated crops).  106 

 

3. Results and discussion 

3.1 Database availability 107 

The main regions exhibiting NEO use in agriculture are 29.4% of total global use in 108 

Latin America, followed by 23% in Asia, North 22% in America, and 11% in Europe (Bass et 109 

al. 2015; Simon-Delso et al. 2015). Most of our selected studies focus on eastern Asia and 110 

North America, which include countries heavily focused on agricultural production (Fig. 1). 111 

However, no study about Latin America was obtained in the present study. The mean 112 

concentrations of eight widely used NEOs (ACE, CLO, DIN, IMI, IMZ, NIT, THI, and TXM) 113 

were collected, and the information on each form of NEO detected is shown in Fig. 2. IMI is 114 

the most frequently reported (39/43, 91%), followed by CLO (36/43, 84%), TXM (32/43, 115 

74%), ACE (31/43, 72%), THI (27/43, 63%), DIN (16/43, 37%), NIT (11/43, 26%), and IMZ 116 

(4/43, 9%). IMI, the first NEO developed, is the most frequently reported, possibly due to its 117 

broad application and usage (Kollmeyer et al. 1999). IMZ was the latest to enter the market, 118 

thus there only a few studies include IMZ detection. Continuous detection of IMZ in the 119 

environment is necessary, because it has great potential in China's market. 120 

3.2 NEO concentrations in water 121 

Table 1 shows the concentrations and numbers of observations for different NEOs. CLO 122 

was the most frequently detected in 1056 out of 1645 water samples, followed by IMI (879), 123 

TXM (863), ACE (428), THI (295), DIN (122), IMZ (37), and NIT (29). CLO has the highest 124 

mean concentrations at 222.320  46.692 ng L-1. The mean concentrations of other NEOs are 125 

ordered as follows: IMI (119.542  15.656 ng L-1) > NIT (88.076  27.144 ng L-1) > TXM 126 
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(59.752  9.068 ng L-1) > DIN (31.086  9.275 ng L-1) > IMZ (24.542  2.906 ng L-1) > ACE 127 

(23.360  4.015 ng L-1) > THI (11.493  5.095 ng L-1). Moreover, concentrations were found 128 

to range from 0.001 to 45100 ng L-1 for CLO, from 0.004 to 9140 ng L-1 for IMI, from 0.002 129 

to 4315 ng L-1 for TXM, from 0.002 to 3820 ng L-1 for ACE, from 0.003 to 1370 ng L-1 for 130 

THI, from 0.11 to 1022.2 ng L-1 for DIN, from 2 to 672.9 ng L-1 for NIT, and from 0.002 to 131 

81.92 ng L-1 for IMZ (Table 1). 132 

Fig. 3 displays the distributions of the mean concentrations of each NEO type. The 133 

concentrations of CLO and IMI were found to be concentrated at 0~1500 ng L-1 and 0~500 ng 134 

L-1, respectively. The concentrations of ACE, DIN, IMZ, NIT, THI, and TXM were mainly 135 

measured at below 250 ng L-1. NEOs can be used in pest control to protect crops and are 136 

mainly applied for seed treatment, chemigation, and soil treatment (Simon-Delso et al. 2015). 137 

NEOs may enter through various media into aquatic systems from agricultural fields through 138 

processes such as spray drift, atmospheric deposition, soil erosion, and runoff. Some 139 

governments and organizations have established water quality guidelines for protecting 140 

aquatic ecosystems. For example, the United States Environmental Protection Agency 141 

(USEPA) has estimated that chronic benchmarks of 970, 2100, 10, 740, 95300, and 50 ng L-1 142 

for THI, ACE, IMI, TXM, DIN, and CLO, respectively (USEPA, 2016). In this review, some 143 

potentially threatening concentrations of certain NEOs are especially found in agricultural 144 

regions. THI monitored at the outlet of the Yarramundi Lagoon in a turf farm was found the 145 

highest concentration of 1370 ng L-1 (Sánchez-Bayo et al. 2014). The highest IMI 146 

concentration found in Solomon Creek in the Californian agricultural region was recorded as 147 

9140 ng L-1 (Anderson et al. 2018). Although the province of Ontario of Canada bans the 148 

cosmetic use of some pesticides on lawns and gardens, NEOs are used for seed treatment on 149 

row crops such as corn, soybeans, cereal grains, and canola, which has led to widespread use 150 

in Ontario (Octario 2016). CLO, TXM, and ACE levels in drain water around maize fields in 151 

Canada have reached 45100 and 7200, 4315, and 1527.6 ng L-1, respectively (Schaafsma et al. 152 

2019).  153 
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 In recent years, the European Union has banned some NEOs because of their 154 

improvement in the decline of bees and other pollinators (Naumann et al. 2022). However, 155 

NEOs are still widely used in developing countries with poorly controlled. China has the 156 

highest production of NEOs, which are frequently detected in rivers flowing through urban 157 

environments. In addition to those found in agricultural regions, the highest concentrations of 158 

DIN, NIT, and IMZ have been detected in the Yangtze River in China, reaching levels of 159 

1022.3, 672.9, and 81.92 ng L-1, respectively (Chen et al. 2019). The Yangtze River is the 160 

longest river in China, playing a considerable role in agricultural and industrial activities 161 

(Mahai et al. 2019). NEOs in the Yangtze River have become a source of NEOs in seawater 162 

(Chen et al. 2019). Although NEO concentrations decrease rapidly by dilution, NEOs are 163 

detected near shorelines (Pan et al. 2020). IMZ is a novel NEO that has been gradually 164 

applied to vegetables, fruits, and crops on a large scale in China because of its excellent 165 

insecticidal activity (Tao et al. 2021). Due to IMZ’s increasing use, more attention should be 166 

dedicated to its adverse effects (e.g., DNA damage in earthworms; Zhang et al. 2017). 167 

Moreover, different NEO concentrations have been detected in different crop planting periods. 168 

Concentrations of IMI and TXM increase markedly in the rice planting month. DIN was 169 

detected at a concentration of 220 ng L-1 during rice earwig emergence (Yamamoto et al. 170 

2012). A large proportion of pesticides enter environmental media via runoff, leaching, and 171 

drifting. These pesticides are absorbed by nontarget plants or organisms and present a 172 

potential threat to food safety (Li et al. 2018; Tao et al. 2021). Thus, scientists around the 173 

world have gradually recognized NEO risks and increased efforts to monitor NEOs in the 174 

environment (Morrissey et al. 2015). 175 

3.3 Effect of physicochemical properties on NEO concentration 176 

Fig. 4 and Table 2 present the relationship between NEO concentrations and nine 177 

physical and chemical properties. Different properties show different responses to NEO 178 

concentrations in water. NEO concentrations increase with temperature, ORP, and the 179 

percentage of cultivated crops (Line regression, Temperature: adjusted R2 = 0.0811, p  180 

0.0001; ORP: adjusted R2 = 0.0931, p < 0.01; Cultivated crop: adjusted R2 = 0.0307, p < 181 



 

9 
 

0.001) (Fig. 4d, f, i). When summer arrives, pest damage increases with increasing 182 

temperature, and insecticide use is increased to decrease crop losses. Rainfall is a key factor 183 

in increasing NEO residues in water. NEOs can enter water via surface and underground 184 

runoff, creating higher insecticide concentrations in water. For instance, in the province of 185 

Guangdong located in the subtropical zone of South China, the climate is warm and humid for 186 

most of the year. Thus, large quantities of pesticides are used for pest control, and Guangdong 187 

Province has the highest pesticide application dosage (Li et al. 2014). Only one paper presents 188 

the value of ORP, and the representativeness of the relation needs to be further confirmed (Yi 189 

et al. 2019). Concentrations of NEOs generally increase as the percentage of cultivated crops 190 

increases. High NEO concentrations are detected in surface water around areas of agricultural 191 

activity when the planting season arrives. According to a study conducted in the USA, streams 192 

show higher NEO concentrations in the planting season than in other seasons (Hladik and 193 

Kolpin 2016). Another study from Canada shows that one side of the Two Mile Creek 194 

watershed includes over 50% orchards, and an IMI concentration of 816 ng L-1 was detected 195 

in this creek (Struger et al. 2017). A positive relationship between cultivated crops and NEO 196 

concentrations have been observed in other studies (Hladik et al. 2014; Iancu et al. 2019). 197 

NEO concentrations decrease with stream discharge, pH, DO, and precipitation (Line 198 

regression, Stream discharge: adjusted R2=0.0433, p > 0.05; pH: adjusted R2 = 0.0225, p < 199 

0.01; DO: adjusted R2 = 0.0794, p < 0.01; Precipitation: adjusted R2 = 0.0223, p  0.0001) 200 

(Fig. 4a, c, e, g). The negative relation between NEO concentrations and stream discharge or 201 

precipitation may be caused by the dilution of NEOs when strong precipitation occurs 202 

(Struger et al. 2017). Higher DO value of water might affect the degradation of NEOs (Yi et 203 

al. 2019). The pH value is an important factor that affects NEO solubility in water. NEOs 204 

have longer term residuals under acidic, or neutral conditions than under less alkaline 205 

conditions (Yi et al. 2019). It was reported that NEOs hardly degrade at pH 4.0 ~ 7.0, while 206 

NEOs hydrolyze readily with a high pH value (pH = 10). (Todey et al. 2018). In this review, 207 

pH values of water samples were ranged from 6.31 to 8.67, suggesting that NEOs might be 208 

presented in waters for a long time. 209 
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The NEO concentrations show no significant correlations with turbidity, and 210 

conductivity (p  0.05) (turbidity: adjusted R2 = -0.00781, p = 0.879; conductivity: adjusted 211 

R2 = 0.00456, p = 0.184) (Fig. 4b, h). NEOs are more likely to dissolve than combine with 212 

particulate, or colloidal matter (Sánchez-Bayo and Hyne 2014). However, these relationships 213 

need further confirmation. 214 

 

4. Conclusions and avenues for future research 

In the present work, we summarize a total of 43 publications on NEOs detected in tap 215 

water, seawater, lakes, rivers, reservoirs, estuaries, creeks, wetlands, open ditches, and runoff 216 

in agricultural regions worldwide. Most studies have focused on eastern Asia and North 217 

America, which are major areas of agricultural production. The order of reporting frequency 218 

is IMI > CLO > TXM > ACE> THI > DIN > NIT > IMZ. Underdeveloped areas such as 219 

Africa should be considered due to an increasing use of NEOs in these areas. In addition, the 220 

order of mean concentrations is IMI > NIT > TXM > DIN > IMZ > ACE > THI. The highest 221 

IMI concentration (9140 ng L-1) was detected in Solomon Creek in the Californian 222 

agricultural region of the USA, while THI (1370 ng L-1) was monitored at the outlet of the 223 

Yarramundi Lagoon in Australia. The highest concentrations of CLO (45100 ng L-1, 7200 ng 224 

L-1), TXM (4315 ng L-1) and ACE (1527.6 ng L-1) were found in drain water around maize 225 

fields in Canada, and DIN (1022.3 ng L-1), NIT (672.9 ng L-1), and IMZ (81.92 ng L-1) were 226 

detected in the Yangtze River in China. Moreover, the relationships between mean 227 

concentrations of NEOs and environmental factors (e.g., stream discharge, turbidity, pH, 228 

temperature, DO, ORP, conductivity, precipitation, and the percentage of cultivated crops) 229 

show that NEO concentrations increase with temperature, oxidation-reduction potential, and 230 

the percentage of cultivated crops but decrease with stream discharge, pH, DO and 231 

precipitation. NEO concentrations have no significant relationship to turbidity, and 232 

conductivity. To prevent NEO pollution, NEO levels in the environment should be constantly 233 

monitored and evaluated. 234 

 235 
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Abbreviations 236 

NEOs, Neonicotinoids; ACE, acetamiprid; CLO, clothianidin; DIN, dinotefuran; IMI, 237 

imidacloprid; IMZ, imidaclothiz; NIT, nitenpyram; THI, thiacloprid; TXM, thiamethoxam; 238 

DO, dissolved oxygen, ORP, oxidation-reduction potential; ND, not detected; NA, not 239 

analyzed; MDL, method detection limit.  240 
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Fig. 1 Location of field studies that investigated the concentration of NEOs in water worldwide. 



 

Fig. 2 The number of papers conducted on each NEOs concentration detection in waters. 
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Fig. 3 Distribution of mean concentrations of each NEO (a: ACE; b: CLO; c: DIN; d: IMI; e: IMZ.; f: NIT; g: THI; h: TXM). The top and bottom 
of the diamond (graph on the right) are a 95% confidence interval for the mean. The bottom and top of the box show the 25th and 75th quantiles, 
and median is the horizontal line inside the box. 
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Fig. 4 NEO concentration responses to the effects of stream discharge (a), turbidity (b), pH (c), temperature (d), DO (e), ORP (f), precipitation (g), 
conductivity (h), and the percentage of cultivated crops (i). p < 0.05: statistically significant change; p < 0.001: highly statistically significant. 
 



Table 1. Summary of the dataset indicating the number of observations for different NEO types (ACE, CLO, DIN, IMI, DIN, IMZ, NIT, THI, 
TXM), and statistics (Mean ± standard error (SE), lower 95% confidence interval (LCI), upper 95% confidence interval (UCI)) and the ranges of 
concentrations of each NEO type. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Description of the models that explain the relationships between mean concentrations of NEOs and stream discharge, turbidity, pH, 
temperature, dissolved oxygen, ORP, precipitation, conductivity, and the percentage of cultivated crops.  
 

Model R2 Adjusted R2 F value p n 

Mean Concentration = 10.545 - 0.000368*Stream discharge 0.0510 0.0433 F1,125=6.658 0.011 126 

Mean Concentration = 141.816 - 0.0639*Turbidity 0.000187 -0.00781 F1,126=0.0234 0.879 127 

Mean Concentration = 607.822 – 73.932*pH 0.0248 0.0225 F1,429=10.872 0.0011 430 

Mean Concentration = -53.602 + 3.708*Temperature 0.0839 0.0811 F1,339=30.954 <0.0001 340 

Mean Concentration = 124.006 – 12.910*DO 0.0906 0.0794 F1,82=8.0743 0.0057 83 

Mean Concentration = 77.593 + 0.817*ORP 0.104 0.0931 F1,82=9.421 0.0029 83 
Mean Concentration = 10.796 - 0.0497*Precipitation 0.0236 0.0223 F1,734=17.736 <0.0001 735 
Mean Concentration = 52.817 - 0.024*Conductivity 0.0104 0.00456 F1,170=1.778 0.184 171 

Mean Concentration = 7.237 + 0.314*Cultivated crops (%) 0.0336 0.0307 F1,331=11.480 0.0008 332 
 

Type n Mean (ng L-1) SE Range (ng L-1) LCI UCI 

ACE 428 23.360 4.015 [0.0025, 1527.6] 15.469 31.252 
CLO 1056 222.320 46.692 [0.001, 45100] 130.700 313.939 
DIN 122 31.086 9.275 [0.11, 1022.2] 12.725 49.448 
IMI 879 119.542 15.656 [0.004, 9140] 88.813 150.270 
IMZ 37 24.542 2.906 [0.002, 81.92] 18.648 30.436 
NIT 29 88.076 27.144 [2, 672.9] 32.475 143.678 
THI 295 11.493 5.095 [0.003, 1370] 1.466 21.520 

TXM 863 59.752 9.068 [0.002, 3820] 41.960 77.543 


