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Abstract Classical particle motions in an inverse harmonic
potential show the exponential sensitivity to initial condi-
tions, where the Lyapunov exponent λL is uniquely fixed by
the shape of the potential. Hence, if we naively apply the
bound on the Lyapunov exponent λL ≤ 2πT/h̄ to this sys-
tem, it predicts the existence of the bound on temperature (the
lowest temperature) T ≥ h̄λL/2π and the system cannot be
taken to be zero temperature when h̄ �= 0. This seems a puz-
zle because particle motions in an inverse harmonic potential
should be realized without introducing any temperature but
this inequality does not allow it. In this article, we study this
problem in N non-relativistic free fermions in an inverse har-
monic potential (c = 1 matrix model). We find that thermal
radiation is induced when we consider the system in a semi-
classical regime even though the system is not thermal at the
classical level. This is analogous to the thermal radiation of
black holes, which are classically non-thermal but behave
as thermal baths quantum mechanically. We also show that
the temperature of the radiation in our model saturates the
inequality, and thus, the system saturates the bound on the
Lyapunov exponent, although the system is free and inte-
grable. Besides, this radiation is related to acoustic Hawking
radiation of the fermi fluid.

1 Introduction

Understanding quantum gravity is the one of the most impor-
tant problem in theoretical physics. Through the develop-
ments in the gauge/gravity correspondence [1–3], many peo-
ple expect that large-N gauge theories may illuminate natures
of quantum gravity. However only special classes of large-N
gauge theories which possess certain properties may describe
the gravity, and understanding what are essential properties
in gauge theories to have their gravity duals is a crucial ques-
tion.

a e-mail: morita.takeshi@shizuoka.ac.jp (corresponding author)

Recently the idea of the maximal Lyapunov exponent was
proposed, and it might capture the one of the essence of the
gauge/gravity correspondence [4]. The authors of [4] con-
jectured that thermal many-body quantum systems have an
upper bound on the Lyapunov exponent:

λL ≤ 2πT

h̄
, (1.1)

where T is temperature of the systems and λL is the Lya-
punov exponent. (We take kB = 1 in this article.) Partic-
ularly, if a field theory at a finite temperature has the dual
black hole geometry, the gravity calculation predicts that
the field theory should saturate this bound λL = 2πT/h̄
[5,6]. (This would be related to the conjecture that the black
hole may provide the fastest scrambler in nature [7].) This
is called maximal Lyapunov exponent, and the properties of
this bound is actively being studied. One remarkable example
is the SYK model [8,9]. We can show that this model sat-
urates the bound from the field theory calculation, and now
people are exploring what the dual gravity of this model is
[10–29].

The purpose of this article is to have a deeper under-
standing of the bound (1.1). Many previous works on the
bound (1.1) studied finite temperature systems. However, in
the conventional studies of chaos in dynamical systems, peo-
ple mainly considered deterministic dynamics, for example,
driven pendulum motions, and thus the systems are at zero
temperature. Obviously, the inequality (1.1) at zero tempera-
ture seems problematic, because the right hand side becomes
zero and the inequality requires the Lyapunov exponent to be
zero, while the Lyapunov exponent can be non-zero in chaotic
systems even at zero temperature. One answer for this puzzle
is saying that the bound (1.1) should be restricted to quantum
many body systems at finite temperature only. Indeed, this is
the setup in which the bound (1.1) was proved in [4], and we
cannot apply the proof to such conventional chaotic systems
at zero temperature. Nevertheless, it may be interesting to
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ask the question of whether the bound (1.1) plays any role in
the conventional cases.

In this article, we study this problem in one-dimensional
point particle motion in an inverse harmonic potential

mẍ(t) = −V ′(x), V (x) = −α

2
x2. (1.2)

Classical solution of this equation is given by

x(t) = c1e
√

α/mt + c2e
−√

α/mt , (1.3)

where c1 and c2 are constants determined by initial condi-
tions. Thus this solution shows the exponential sensitivity to
initial conditions with Lyapunov exponent,1

λL =
√

α

m
. (1.5)

Of course the motion (1.3) is too simple and not even chaotic.
However, through this simple model, we may gain some
insights into the bound (1.1) in actual chaotic systems.

Now let us consider the inequality (1.1) in our model.
Since our model has the finite Lyapunov exponent (1.5) at
the classical level, it may be better to rewrite the bound (1.1)
as [30].2

T ≥ h̄

2π
λL = h̄

2π

√
α

m
. (1.6)

This relation predicts the existence of the lower bound on
temperature in this system,

TL := h̄

2π
λL = h̄

2π

√
α

m
. (1.7)

In the strict classical limit h̄ → 0, this bound does not play
any role, since the right hand side becomes 0. Obviously, the
classical solution (1.3) is nothing to do with thermodynamics
and it is consistent with the inequality (1.6) with T = 0.

1 In classical mechanics, the Lyapunov exponent is defined by

δq(t) ∼ δq(0) exp(λL t). (1.4)

Here q(t) is the value of an observable at time t and δq(t) is the devi-
ation of q(t) through the change of the initial condition by δq(0). In
the recent studies of the chaos bound [4,30–33], the Lyapunov expo-
nents defined through the out-of-time-ordered correlator (OTOC) [34]
are mainly investigated. The connection between the Lyapunov expo-
nent defined by OTOC and the classical Lyapunov exponent (1.4) are
discussed in [4,35]. We assume that these two exponents agree up to
O(h̄) corrections in the semi-classical regime.
2 Here we have assumed a semi-classical approximation, and the quan-
tum correction to the Lyapunov exponent (1.5) is small and can be
ignored. We will discuss the validity of this approximation at the end
of Sect. 2.

However, the relation (1.6) becomes non-trivial in a semi-
classical regime, in which the right hand side becomes non-
zero. We will argue that indeed the lowest temperature TL
plays an important role in our model. To see it clearly, we con-
sider N non-relativistic free fermions in the inverse harmonic
potential (1.2). This model is related to a one-dimensional
matrix quantum mechanics called c = 1 matrix model which
describes a two dimensional gravity through the non-critical
string theory (see, e.g. the review of [36–38]).

We consider the configuration of the fermions which
describes the bosonic non-critical string theory (Fig. 1). (In
the following arguments, the correspondence to the string
theory is not important.) Although this configuration is sta-
ble in the strict classical limit, it is unstable via the quantum
tunneling of the fermions. We will show that this instability
induces a thermal flux with the temperature TL (1.7) in the
asymptotic region x → −∞which flows from around x = 0.
This radiation is an analogous of the Hawking radiation [39–
41] in the sense that the system is not thermal classically
whereas the thermal spectrum arises quantum mechanically.
Therefore the inverse harmonic potential can be regarded as
a black body with the temperature TL for the observer in the
asymptotic region, and the temperature bound (1.6) may be
saturated.

We will also argue that this radiation is related to acoustic
Hawking radiation in a supersonic fluid [42]. (A related study
in the context of condensed matter physics has been done in
[43] and developed in [44,45].) The collective motion of the
N fermions are described as a fermi fluid, and it classically
obeys the hydrodynamic equations [46–48]. Hence, if the
fluid velocity exceeds the speed of sound, acoustic Hawking
radiation may be emitted. We will argue how the supersonic
region can be realized in the c = 1 matrix model, and show
that the acoustic event horizon arises only at the tip of the
inverse harmonic potential x = 0 if the flow is stationary.
Thus the radiation may arise from x = 0 when we turn on the
quantum corrections. We will show that the temperature of
this acoustic Hawking radiation is always given by the lowest
temperature TL , and argue the connection to the instability
of the bosonic non-critical string theory.

In such a way, the bound on the Lyapunov exponent (1.1),
which is equivalent to the temperature bound (1.6), plays an
interesting role even in our simple inverse harmonic poten-
tial model (1.2), which is not chaotic and not thermal at the
classical level, through the Hawking radiation. Hence we
expect that the bound (1.1) may be relevant in the conven-
tional chaotic systems, which are deterministic and not ther-
mal.3

3 After the author submitted this manuscript on arxiv, he developed the
idea of this manuscript and wrote another paper [49] in which the role
of the inequality (1.1) in the conventional chaotic systems was revealed.
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Fig. 1 The sketch of the fermions in the inverse harmonic potential which corresponds to the bosonic non-critical string theory. −μ is the fermi
energy. (RIGHT) The configuration of the fermions in the phase space. The region occupied by the fermions is called “droplet”

Note that related works on the particle creations in the
c = 1 matrix model have been done in the context of the non-
critical string theory [50,51]. They include time dependent
background and tachyon condensation [52–55], and high
energy scattering and black hole physics [56–60].

The organization of this article is as follows. In Sect. 2, we
argue the appearance of the thermal radiation with the tem-
perature TL (1.7) in the c = 1 matrix model in the configura-
tion of the fermions corresponding to the bosonic non-critical
string theory. In Sect. 3, we show the connection between this
radiation and acoustic Hawking radiation. A brief review on
the derivation of the acoustic Hawking radiation is included.
Section 4 is discussions and future problems.

2 The c = 1 matrix model and the temperature bound

We consider the c = 1 matrix model which is equivalent
to N non-relativistic free fermions. The fermions classically
obey the equation of motion (1.2), and the Hamiltonian for
the single fermion is given by

Ĥ = − h̄2

2m

∂2

∂x2 − α

2
x2. (2.1)

This Hamiltonian is unbounded from below, and usually we
introduce suitable boundaries so that the fermions are con-
fined. These boundaries are irrelevant as far as we focus on
phenomena around x = 0. In this section, we introduce infi-
nite potential walls at x = ±L .

We consider the configuration of the fermions which
describes the two dimensional bosonic non-critical string
theory. We put all the fermions on the left of the inverse
harmonic potential, and tune the parameters N , α,m and L
so that N → ∞ and the fermi energy −μ (μ > 0) is close
but below zero. We sketch this configuration in Fig. 1.

At the classical level, this configuration is zero temper-
ature because there is no thermal fluctuations. However, as
we will see soon, once we turn on quantum effects, quantum
fluctuations mimic thermal fluctuations and radiation that has

a thermal spectrum with the temperature TL defined in (1.7)
is induced.

Let us derive this thermal radiation. Obviously the above
configuration cannot be stationary quantum mechanically.
The fermions will leak to the right side of the potential
through the quantum tunneling. Such a tunneling effect is
significant for the fermions close to the fermi surface. For
a single fermion with energy E (E ≤ −μ), the tunneling
probability PT (E) can be calculated as [61],

PT (E) = 1

exp
(
− 2π

h̄

√
m
α
E

)
+ 1

. (2.2)

The derivation is shown in Appendix A. This formula is sug-
gestive. If we regard −E(> 0) as energy, PT (E) is identical
to the Fermi–Dirac distribution with the temperature

T = h̄

2π

√
α

m
, (2.3)

which precisely agrees with the lowest temperature TL (1.7).4

Thus the tunneling of the fermions might cause thermal radi-
ation.

In order to confirm this thermal property, we evaluate the
contributions of the tunneling to physical quantities and ask
whether they are really thermal or not. We will investigate
the local density of an observable O(x̂, p̂). First we will
compute this quantity in the classical limit (h̄ → 0). Then
we will calculate the same quantity including the quantum
effect and, by comparing these two results, we will evaluate
the contributions of the tunneling.

Let us start from the calculation in the classical limit h̄ →
0. In this limit, the fermion with negative energy E is confined
in the left region −L ≤ x ≤ −x0(E), where x0(E) :=√−2E/α is the classical turning point (see Fig. 1). The WKB
wave function for such a fermion is given by

4 This tunneling probability is for a single particle, and the appearance
of the Fermi–Dirac distribution is nothing to do with the fact that we
are considering the fermions.
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φE (x) = C(E)√
p(E, x)

1√
2

×
(
e

i
h̄

∫ x
−L dy p(E,y) − e− i

h̄

∫ x
−L dy p(E,y)

)
, (2.4)

where p(E, x) is the classical momentum for the particle,

p(E, x) =
√

2m
(
E + α

2
x2

)
, (2.5)

and C(E) is the normalization factor satisfying

|C(E)|2 =
(∫ −x0(E)

−L

dx

|p(E, x)|

)−1

, (2.6)

so that φE (x) is normalized to 1. Through the boundary con-
dition φE (−L) = φE (−x0(E)) = 0, energy is quantized
as

∫ −x0(E)

−L
dx |p(E, x)| = π h̄n, (n = 1, 2, . . .), (2.7)

where we have ignored the fragment terms. By using this
WKB wave function, we evaluate the expectation value of
the observable O(x̂, p̂) for the N fermions as

〈O(x̂, p̂)〉N =
N∑
i=1

〈i |O(x̂, p̂)|i〉

=
∫ −μ

EG

dE ρ(E)

×
∫ −x0(E)

−L
dx |φE (x)|2O(x, p(E, x)),

(2.8)

where EG := −αL2/2 is the ground state energy and ρ(E)

is the energy density given by

ρ(E) = ∂n

∂E
= m

π h̄

∫ −x0(E)

−L

dx

|p(E, x)| , (2.9)

through the quantization condition (2.7). Here we have
assumed that N is sufficiently large and the spectrum is con-
tinuous. From (2.8), the density of the observable O(x̂, p̂) at
position x is given by

∫ −μ

E0(x)
dE ρ(E)|φE (x)|2O(x, p(E, x))

= m

π h̄

∫ −μ

E0(x)

dE

|p(E, x)| O(x, p(E, x)). (2.10)

Here E0(x) := −αx2/2 is the minimum energy at given x
(see Fig. 1).

Now we evaluate the quantum correction to the density
(2.10). In the WKB wave function (2.4), exp

( i
h

∫ x dy p(y)
)

can be regarded as the incoming wave toward the inverse har-
monic potential, while exp

(− i
h

∫ x dy p(y)
)

can be regarded
as the reflected wave. Then through the tunneling effect (2.2),
a part of the incoming wave will penetrate to the right side
of the potential, and the reflected wave will be decreased by
the factor

√
1 − PT (E). Hence the WKB wave function (2.4)

will be modified as

φE (x) → C(E)√
p(E, x)

× 1√
2

(
e

i
h̄

∫ x
−L dy p(E,y)−√

1−PT (E)e− i
h̄

∫ x
−L dy p(E,y)

)
,

(−L � x � −x0(E)). (2.11)

Note that this result is not reliable near the turning point
−x0(E), since the WKB approximation does not work. Also
we have assumed that the boundary x = −L is sufficiently
far, and we can ignore the further reflections there. This cor-
rection modifies the left hand side of (2.10), and the density
of the observable O(x̂, p̂) becomes,

m

π h̄

∫ −μ

E0(x)

dE

|p(E, x)|
(

1 − 1

2
PT (E)

)
O(x, p(E, x)).

(2.12)

By subtracting the classical result (2.10) from this result,
we obtain the contributions of the quantum tunneling to the
density of the observable O(x̂, p̂) as

− m

2π h̄

∫ −μ

E0(x)

dE

|p(E, x)|
O(x, p(E, x))

e−βL E + 1

= − m

2π h̄

∫ ∞

μ

dE

|p(−E, x)|
O(x, p(−E, x))

eβL E + 1
, (2.13)

where βL denotes the inverse temperature 1/TL and we have
approximated E0(x) ≈ −∞ by assuming that we are consid-
ering the density in a far region5 −L � x � −(h̄2/mα)1/4.
We also flipped E → −E in the last step.

We can interpret the result (2.13) as follows. Due to the
tunneling, the holes with positive energy E (E ≥ μ) appear
in the fermi sea. They move to the left and contribute to
the quantity O(x, p). Importantly, (2.13) shows that these
holes are thermally excited and obey the Fermi–Dirac distri-
bution at the temperature TL . Therefore the quantum tunnel-
ing indeed induces thermal radiation.

5 In this region, the tunneling of the particle with the energy E0(x) is
sufficiently suppressed.
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For example, if we choose O(x̂, p̂) = Ĥ in (2.13), we
obtain the energy density at x in the far region

− m

2π h̄

∫ ∞

0

dE

|p(−E, x)|
−E

eβL E + 1

= 1

(−x)

TL
48

(
1 + O

(
TL
αx2

))
. (2.14)

Here we have taken μ = 0 for simplicity. The obtained
energy density is positive reflecting the fact that the holes
carry the positive energies.

Our result indicates that the inverse harmonic potential
plays a role of a black body at the temperature TL . This
result reminds us the Hawking radiation [39–41] in which
the thermal excitation arises through the quantum effect even
though the system is not thermal in the classical limit. Indeed
we will see that the thermal excitation in the matrix model
is related to the acoustic Hawking radiation in quantum
fluid.

Notice that, since the thermal radiation at the tempera-
ture TL arises, the temperature bound (1.6) may be satu-
rated in this system.6 (The scattering of the particle in the
inverse harmonic potential would occur within the Ehren-
fest’s time7 t ∼ (1/λL) log(1/h̄). Hence the Lyapunov expo-
nent obtained in the classical motion (1.5) is reliable.)8

6 We should emphasize that this temperature is obtained through the
probability distribution of the observables (2.13), and it is not a genuine
temperature of this system. Indeed, since the c = 1 matrix model is free
and integrable, genuine thermalization does not occur. (In integrable
systems, thermalization to the Generalized Gibbs ensemble (GGE) [48,
62,63] may occur. It may be interesting to consider the role of the
temperature TL in the context of GGE.) In this sense, the saturation of
the bound (1.1) in our model might not be directly related to the one
studied in [4]. On the other hand, since our temperature is related to
Hawking radiation, it may capture an essence of the bound.
7 If we regard the the Ehrenfest’s time as the scrambling time t∗ [4], and
apply the scaling relation h̄ = 1/N in the c = 1 matrix model [36–38],
we obtain the scrambling time t∗ ∼ (

h̄βL
2π

) log N . Then the c = 1 matrix
model may be regarded as a fast scrambler [7]. In [4], the dissipation
time td ∼ 1/λL is also discussed, and exponential developments (1.5)
appear in td < t < t∗ in semi-classical chaotic systems. Particularly we
expect td ∼ h̄β in strongly coupled systems [4]. Interestingly, although
the c = 1 matrix model is free, it shows td ∼ 1/λL ∼ h̄βL through
(2.3) and imitates the relation in strongly coupled systems.
8 At very late times, the system will settle down into the state in which
the half of the fermions are in the left side of the potential and the other
half are in the right. There the formula (2.13) would not work. Thus the
argument of the temperature bound would be valid only for the initial
stage of the time evolution starting from the meta-stable configuration
sketched in Fig. 1 such that the formula (2.13) is reliable. (On the other
hand, the Lyapunov exponent (1.5) is always well defined classically,
since any particle motion obeys (1.3)).

3 Thermal radiation in the c = 1 matrix model and
acoustic Hawking radiation

We will show that the thermal radiation in the c = 1 matrix
model argued in the previous section is related to the acoustic
Hawking radiation [42]. (Several arguments in this section
have been done by [43] in the context of condensed matter
physics.)

3.1 Acoustic Hawking radiation in the c = 1 matrix model

As is well known, the fermions in the c = 1 matrix model
compose a two dimensional ideal fluid. The fermion parti-
cle number density ρ(x, t) and velocity field v(x, t) clas-
sically obey the following the continuity equation and the
Euler equation with pressure p = h̄2π2ρ3/3m [46–48],

∂tρ + ∂x (ρv) = 0,

∂tv + ∂x

(
1

2
v2 + h̄2π2

2m2 ρ2 + 1

m
V (x)

)
= 0. (3.1)

Here V (x) = −αx2/2. (But many of the arguments in this
section will work for general V (x).) We ignore the infinite
potential walls at x = ±L in this section. Hence we can apply
the story of the acoustic Hawking radiation to this system.

Here we briefly show the derivation of the acoustic Hawk-
ing radiation [42]. (See e.g. a review article [64].) We con-
sider the following small ε expansion

ρ(x, t) = ρ0(x, t) + ερ1(x, t) + ε2ρ2(x, t) + · · · ,

v(x, t) = v0(x, t) + εv1(x, t) + ε2v2(x, t) + · · · . (3.2)

Here we regard that ρ0 and v0 describe a background cur-
rent, and ρ1 and v1 describe the phonons propagating on it,
and ρn and vn (n ≥ 2) are the higher corrections. (We have
assumed that such a separation between the background and
the phonons is possible.) We will see that when we turn on
the quantum effect, ρ1 and v1 may show a thermal excitation
if there is a supersonic region in the background.

3.1.1 Acoustic geometry for phonons

In order to derive the acoustic Hawking radiation, we con-
sider the equations for the phonons. By substituting the
expansion (3.2) into the hydrodynamic Eq. (3.1) and expand-
ing them with respect to ε, we will obtain the equations for
ρn and vn order by order. Especially, at order ε, we obtain
the equations for ρ1 and v1,

∂tρ1 + ∂x (ρ0v1 + v0ρ1) = 0,

∂tv1 + ∂x

(
v0v1 + h̄2π2ρ0

m2 ρ1

)
= 0. (3.3)
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Here we introduce the velocity potential ψ such that v1 =
−∂xψ . Then from the second equation, we obtain

ρ1 = m2

h̄2π2ρ0
(∂tψ + v0∂xψ) . (3.4)

By substituting this result to the first equation of (3.3), we
obtain the wave equation for the velocity potential ψ as

0 =∂μ

√−ggμν∂νψ, (3.5)

where gμν (μ, ν = t, x) is given by

gμν = 1

γρ0

(
c2 − v2

0 v0

v0 −1

)
, (3.6)

and c denotes the speed of sound defined by

c(x, t) :=
√

∂p

∂ρ
= h̄π

m
ρ0(x, t). (3.7)

Here p is the pressure defined above (3.1). Note that γ in gμν

is an arbitrary constant, which cannot be fixed.9 This wave
equation is identical to the wave equation of a scalar field on
a curved manifold with the metric (3.6). For this reason, gμν

is called acoustic metric.
Importantly, if the fluid velocity |v0| is increasing along x-

direction and exceeds the speed of sound c at a certain point,
c = |v0| occurs there and the (t, t)-component of the metric
(3.6) vanishes similar to the event horizon of a black hole.
Correspondingly, we can show that no phonon can propagate
from the supersonic region (c < |v0|) to the subsonic region
(c > |v0|) across the point c = |v0|. For this reason, the
point c = |v0| is called acoustic event horizon. Then we
expect that the phonon ψ in the subsonic region (c < |v0|)
may be thermally excited quantum mechanically similar to
the Hawking radiation. We will confirm it later.

3.1.2 Acoustic black holes and white holes

When does c = |v0| occur in our matrix model? In order to
see it, it is convenient to define P± as

P±(x, t) := mv(x, t) ± h̄πρ(x, t). (3.8)

It means that

ρ(x, t) = 1

2π h̄
(P+(x, t) − P−(x, t)),

v(x, t) = 1

2m
(P+(x, t) + P−(x, t)). (3.9)

9 In two dimension, the wave Eq. (3.5) is invariant under a scale trans-
formation, and we have the ambiguity γ .

Here P± describe the boundaries of the droplet of the
fermions in the phase space as shown in Fig. 2. We have
implicitly excluded the case in which the folds [37,65] appear
on the boundaries of the droplet. Then from (3.7) and (3.9),
we can rewrite c and v0 by using P0±,

c ± v0 = ± 1

m
P0±(x, t), (3.10)

where we have expanded

P± = P0± + εP1± + ε2P2± + · · · , (3.11)

corresponding to the expansion (3.2). Therefore c = |v0|
occurs when P0+ or P0− vanishes, and an acoustic event
horizon may appear there.

Now we solve the fluid Eq. (3.1), and find the acoustic
metric involving an acoustic event horizon. By substituting
(3.9) to (3.1), we obtain equations for P±,

∂t P+ + ∂x

(
1

2m
P2+ + V (x)

)
= 0,

∂t P− + ∂x

(
1

2m
P2− + V (x)

)
= 0. (3.12)

By using the expansion (3.11) in these equations and consid-
ering O(ε0) terms, we obtain equations for P0± which are
just P± → P0± in (3.12). We assume that the background is
stationary ∂t P0± = 0. Then the solution of these equations
are given by

P0± = σ
√

2m(E± − V (x)), (3.13)

where E± are constants and σ is +1 or −1.
To realize the acoustic event horizon, P0+ or P0− has to

cross 0. We can easily show that it occurs only when

P0+ =
√

2mE+ + mαx2, P0− = σ
√
mαx,

or P0+ = σ
√
mαx, P0− = −

√
2mE− + mαx2,

(3.14)

with positive E+ and E−. Here the acoustic event horizon
appears at x = 0 in both cases. Then depending on the choice
of σ = ±1, there are four possibilities. We call them as black
hole (right), black hole (left), white hole (right) and white
hole (left). See Fig. 3. These names refer to the ways of the
classical propagation of the phonons, and (left) and (right) are
related by parity x → −x . To see the phonon propagation,
we consider the black hole (right) case as an example. As
shown in Fig. 3, P0± in this case are given by

P0+ =
√

2mE+ + mαx2, P0− = √
mαx . (3.15)
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Fig. 2 The sketch of the fermions in the phase space. They compose
the droplet(s) in the phase space. The doted lines describe the separatri-
ces p = ±√

α/mx . (Left) P+(x, t) and P−(x, t) (3.8) are the upper and
lower boundaries of the droplet, respectively. (Right) If the boundaries

of the droplet have the multiple values as functions of x , P+(x, t) and
P−(x, t) are not enough to define the boundaries. Such a multiple value
configuration is called “fold” [37,65] and the hydrodynamic Eq. (3.1)
does not work there [63,66]. We do not consider this case in this article

(a) (c)(b) (d)

Fig. 3 Four possible acoustic event horizons (c = |v0|). (TOP)
Droplets in the phase space. (MIDDLE) The particle motion in the
potential. The arrows indicate the possible directions of the phonon
propagation. (BOTTOM) The plots of the fluid velocity v0 and the
speed of sound c (dashed line). a Black hole (right): The phonons in the

supersonic region (x > 0) cannot propagate into the subsonic region
(x < 0). b Black hole (left): x → −x of the black hole (right). c White
hole (right): The phonons in the subsonic region (x < 0) cannot propa-
gate to the supersonic region (x > 0). d White hole (left): x → −x of
the white hole (right)

From (3.10) (and the plots of v0 and c in Fig. 3), x < 0 is
the subsonic region (c > |v0|) while x > 0 is the super-
sonic region (c < |v0|). Then we expect that no phonon can
propagate into x < 0 from x > 0. Let us confirm it. The
propagation of the phonons can be read off from the wave
Eq. (3.5). By using new coordinates (called time-of-flight
coordinates)

z± := t − m
∫ x dx ′

P0±(x ′)
, (3.16)

the wave Eq. (3.5) becomes ∂z+∂z−ψ = 0. Thus the solution
is given by

ψ = ψ+(z+) + ψ−(z−). (3.17)
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Then P1± become

P1± = mv1 ± h̄πρ1 = 2m2

P0±
ψ ′±(z±). (3.18)

This relation shows (the well-known result for experts) that
the fluctuation of the boundaries of the droplet P± describes
the excitations of the phonons and they propagate depending
on z±.

In the black hole (right) case (3.15), P1+(z+) always prop-
agates toward the right direction, since P0+ is always positive
in (3.16). On the other hand, we need to take care P1−(z−).
Since P0− becomes zero at x = 0 and z− diverges there, z−
covers only the left region (x < 0) or the right region (x > 0)
as

z− =
⎧⎨
⎩
t −

√
m
α

log x + const. (x > 0)

t −
√

m
α

log(−x) + const. (x < 0)
. (3.19)

Thus P1−(z−) propagates to left in x < 0 and to right in
x > 0. Therefore both P1± cannot propagate into x < 0
from x > 0 as we expected. This is similar to the black hole
geometry in which no mode can propagate to the outside
from the inside. For this reason we call this case as “black
hole (right)”, by identifying the supersonic region (x > 0)
as the inside of the black hole.10

Lastly, we take a detour and discuss the white hole (right)
case. In Fig. 3c, P0± is given by

P0+ = −√
mαx, P0− = −

√
2mE− + mαx2. (3.20)

In this case, from (3.10), v0 is always negative and the back-
ground current flows from the right to left. Importantly the
fluid velocity |v0| decelerates along the flow, and the super-
sonic flow in x > 0 becomes subsonic at x = 0. As a result,
ψ in the subsonic region (x < 0) cannot propagate into the
supersonic region. This is an analogue of a white hole in fluid
mechanics.

However, this conclusion is valid only for ε → 0 limit.
P0+ is unstable against the perturbations and even tiny fluc-
tuations in the subsonic region can propagate into the super-
sonic region as shown in Fig. 4.

10 Note that this result is valid only for sufficiently small fluctuations.
The ways of the propagation of the finite fluctuations of P± can be
read off from the particle trajectories as shown in Fig. 4. Particularly if
the fluctuations are large and they cross the separatrix p = −√

mαx ,
even the fluctuations in the supersonic region can propagate into the
subsonic region. Besides, it is known that arbitrary non-stationary fluc-
tuations develop to folds at late times, and the above arguments should
be modified once folds appear.

3.1.3 Acoustic Hawking radiation

Now we are ready to derive the acoustic Hawking radiation.
We consider the black hole (right) case. In this case, the
classical solution of ψ is given by (3.17), and importantly
the coordinate z− (3.19) covers only either x < 0 or x > 0.
This is an analogue of the tortoise coordinates in the black
hole geometries, and z− is not suitable to define the vacuum
of the quantized phonon.

A coordinate which is well defined on −∞ < x < ∞ is
a Kruskal-like coordinate U := −e−κz− = xe−√

α
m t , where

we have defined “the surface gravity”,11

κ :=
√

α

m
. (3.21)

The vacuum of the phonon ψ−(z−) should be defined by
using this coordinate. It implies that ψ− in the asymptotic
region (large negative x) will be thermally excited at temper-
ature

T = h̄κ

2π
= h̄

2π

√
α

m
, (3.22)

through the Bogoliubov transformation. Here the obtained
temperature precisely agrees with the lowest temperature TL
(1.7).

For example, we can calculate the expectation value of
the energy momentum tensor of the phonon by using the two
dimensional conformal field theory technique [67–69],

〈Tz−z−〉 = − cψ

24π
{U, z−} = h̄

48π
κ2, 〈Tz+z+〉 = 0,

(3.23)

where {U, z−} := U ′′′/U ′ − 3
2 (U ′′/U ′)2 is the Schwarzian

derivative and cψ is the central charge which we have taken
cψ = 1 since phonon is a boson. Note that 〈Tz+z+〉 = 0,
since z+ is well defined on −∞ < x < ∞.

3.2 Acoustic Hawking radiation from quantum mechanics

So far we have seen that the acoustic Hawking radiation
occurs in the c = 1 matrix model, since this model can be
regarded as a two dimensional fluid. Interestingly the Hawk-
ing temperature (3.22) is given by the temperature TL which
is also coincident with the temperature (2.3) derived from

11 Up to an overall factor, the line element of the acoustic metric
(3.6) can be written as ds2 = c2 f dt2 + 2v0dtdx − dx2, where
f := 1 − v2

0/c2 = −P0+P0−/m2c2. Then the surface gravity κ can
be written as the familiar formula κ = c

2 ∂x f |x=0. Also κ is written as
κ = 1

m ∂x P0−|x=0. The equations in this footnote work even for a gen-
eral potential V (x) if the local maximum is at x = 0 and the acoustic
event horizon appears there.
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Fig. 4 The sketch of the propagation of finite fluctuations of P± on
the black hole (right) and the white hole (right) in the phase space.
We can read off the propagation from the classical particle trajectories
E = p2/2m − αx2/2 in the phase space. (Recall that the droplet is
the collection of the fermionic particles, and each point in the droplet
moves according to (1.3).) In the black hole case, small fluctuations

in the supersonic region (x > 0) cannot propagate into the subsonic
region (x < 0). However, large fluctuations which cross the separatrix
p = −√

mαx can propagate. In the white hole case, even small fluc-
tuations on P+ in the subsonic region (x < 0) can propagate into the
supersonic region (x > 0). It means that the “causality” of the acoustic
white hole is unstable against perturbations on P+

the quantum mechanics of the fermions in Sect. 2. Although
the configuration of the fermions for the bosonic non-critical
string case sketched in Fig. 1 and the acoustic Hawking radi-
ation case sketched in Fig. 3 are different,12 the same tem-
perature is obtained. We argue why these two temperatures
agree.

In the classical particle picture, both the bosonic non-
critical string and the acoustic black hole are described by the
flow of the fermions from the left. The difference of these two
configurations are just the maximum energies. The energy of
the fermions are filled up to the fermi energy −μ < 0 in the
bosonic non-critical string case while up to E+ > 0 in the
acoustic black hole case. Correspondingly all the fermions
are reflected by the potential in the classical limit h̄ → 0
in the bosonic non-critical string case, and, in the acoustic
black hole case, they are reflected if E < 0 and go through
the potential if 0 < E ≤ E+. As we have seen in Sect. 2, for
the fermions with E < 0, the holes appear in the fermi sea
through the quantum tunneling, and they cause the thermal
radiation. In the acoustic black hole case, in addition to these
holes, even the fermions with 0 < E ≤ E+ are reflected
quantum mechanically, and they may also contribute to the
thermal radiation. Indeed, the probability of the reflectance of
this process for the fermion with energy E can be calculated
as [43,61]

12 In terms of the fluid variables, the configuration of the bosonic non-
critical string is given by P0± = ±√−2mμ + mαx2, (x < 0). See Fig.
1 (RIGHT).

Fig. 5 The mechanism of the appearance of the Hawking radiation
in the acoustic black hole (right) in the phase space. The holes and
the reflected fermions which are not allowed in the classical motions
cause the acoustic Hawking radiation when we consider the quantum
corrections

PR(E) = 1

exp
(

2π
h̄

√
m
α
E

)
+ 1

. (3.24)

The derivation is shown in Appendix A. Again this probabil-
ity can be interpreted as the Fermi–Dirac distribution at the
temperature TL . Thus the Hawking radiation in the acous-
tic black hole may be explained as the net effect of the holes
and reflected fermions.13 See Fig. 5. Since both the holes and

13 Thus the acoustic Hawking radiation is related to the quantum tun-
neling of the fermions. This result may remind us the derivation of the
Hawking radiation through the quantum tunneling proposed by Parikh
and Wilczek [70]. However they are not directly connected, since the
former is the tunneling of the fermions which compose the fluid and the
latter is the tunneling of the phonons in the acoustic geometry.
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reflected fermions obey the same Fermi–Dirac distribution,
the temperature of the bosonic non-critical string case and
the acoustic black hole case are the same.

Now it is natural to interpret the thermal radiation in the
bosonic non-critical string case as a variety of the acoustic
Hawking radiation. Although there is no supersonic region
in the bosonic non-critical string case, the mechanism of the
appearance of the radiation is related to the Hawking radia-
tion in the acoustic black hole.

Finally, in order to confirm that the Hawking radiation
in the acoustic black hole can be explained by the quantum
mechanics of the fermions, we evaluate the density of the
observable O(x̂, p̂) in the two different ways: the quantum
mechanics of the fermions and the second quantized phonon.
In Appendix B, we show that these two derivations provide
the same result,

m

2π h̄

∫ ∞

0

dE

eβL E + 1

(
O(x, p(E, x))

|p(E, x)| − O(x, p(−E, x))

|p(−E, x)|
)

.

The first term is the contribution of the reflected fermions
and the second one is that of the holes which is equivalent
to (2.13). (One important point to derive this result in the
phonon calculation is that we need to evaluate the O(ε2)

correction ρ2 and v2 in the ε expansion (3.2), since they are
the same order to 〈ψψ〉 which is the leading contribution
of the Hawking effect.) In this way, we can show that the
acoustic Hawking radiation of the phonon is equivalent to
the quantum tunneling and reflection of the fermions in the
quantum mechanics.

4 Discussions

We have studied the thermal radiation in the c = 1 matrix
model which is related to the acoustic Hawking radiation in
the supersonic fluid. Remarkably, although the system is not
chaotic, the temperature TL (1.7) of this radiation saturates
the chaos bound (1.1) [4]. The mechanism of the appear-
ance of the bound14 in our model is very simple. The clas-
sical motion of the particle in the inverse harmonic potential
(1.3) receives the quantum correction (2.2) or (3.24), and it
causes the thermal radiation. This mechanism would be uni-
versal since only the dynamics around the tip of the potential
is relevant for the radiation and it does not depend on the
details of the potential in the far region. Thus our result may

14 Throughout this paper, we have considered the system at zero temper-
ature. We have merely observed that the thermal flux whose temperature
saturates the bound (1.7) is induced in the semi-classical regime, and
we do not claim that the bound (1.7) is really saturated in our system.
It would be interesting to understand the relation between the induced
thermal flux in our model and the chaos bound (1.1) in genuine thermal
many body systems.

be applicable to various other systems. Particularly, applica-
tions to the classical chaotic systems would be interesting. It
would be valuable to investigate whether any thermal radia-
tion associated with the classical Lyapunov exponent arises
in these systems in the semi-classical regime. If the mode
which classically shows the exponential sensitivity of the
initial condition (1.4) effectively feels the inverse harmonic
potential approximately, thermal radiation might be induced
through the quantum effect.

Besides the acoustic black hole may provide a chance to
explore the nature of the chaos bound in experiment. Several
interesting phenomena related to chaos may occur near the
event horizon of black holes (e.g. [4,7,71,72]), and some of
them may occur even in the acoustic event horizon. Since
acoustic black holes may be realized in laboratories [73–75],
these predictions of the chaotic behaviors might be tested in
future.

Finally, understanding the role of the chaos bound (1.1)
in quantum gravity is a quite important challenge. Since the
c = 1 matrix model describes a two dimensional gravity, it
is natural to ask whether the bound has any special meaning
in this context. Naively, one may expect that the bound is
related to a black hole in the gravity, but it is hard to consider
black holes in the matrix model [58]. We leave this problem
for future investigations.

Acknowledgements The author would like to thank Koji Hashimoto,
Pei-Ming Ho, Shoichi Kawamoto, Manas Kulkarni, Gautam Man-
dal, Yoshinori Matsuo, Joseph Samuel, Tadashi Takayanagi and Asato
Tsuchiya for valuable discussions and comments. The work of T. M.
is supported in part by Grant-in-Aid for Young Scientists B (No.
15K17643) from JSPS.

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: arXiv:1801.00967 [hep-th].]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Quantum mechanics in the inverse har-
monic potential

In this appendix, we review the derivation of the transmit-
tance PT (E) (2.2) and the reflectance PR(E) (3.24) by solv-
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ing the Schrödinger Eq. (2.1). We start from the Schrödinger
equation in the inverse harmonic potential (2.1)

Eφ(x) = Ĥφ(x), Ĥ = − h̄2

2m
∂2
x − α

2
x2,

⇒ φ′′ + mα

h̄2 x2φ + 2mE

h̄2 φ = 0. (A.1)

By defining the variables

w =
(

4mα

h̄2

)1/4

x, a = −
√
m

α

E

h̄
, (A.2)

the Schrödinger equation becomes

∂2
wφ +

(
1

4
w2 − a

)
φ = 0. (A.3)

The two independent solutions of this equation are given
by the parabolic cylinder function E(a, w) and its complex
conjugate E∗(a, w), where we follow the notation of [76].

To derive the transmittance and the reflectance, we con-
sider the connection between E(a, w) and the WKB wave
function

φE±(x) = A(E)√
p(E, x)

exp

(
± i

h̄

∫ x

dy p(E, y)

)
,

p(E, x) =
√

2mE + mαx2, (A.4)

where A(E) is a normalization factor which is irrelevant
in the following discussion. As shown in 19.24.1 of [76],
E(a, w) oscillates for large w (� √|a|) as

E(a, w) = Feiχ ,

χ � 1

4
w2 − a log w + · · ·

= i

h̄

(√
mα

2
x2 +

√
m

α
E log

((
4mα

h̄2

)1/4

x

)
+ · · ·

)
,

F �
√

2

w

(
1 + O(w−2)

) =
√
h̄

(mαx2)1/4 + · · · . (A.5)

On the other hand, the momentum p(E, x) in the WKB wave
function (A.4) behaves

p(ε, x) � √
mαx +

√
m

α

E

x
+ · · · , (x2 � |E |/α).

(A.6)

Thus by comparing this with (A.5), we can read off the con-
nection between E(a, w) and the WKB wave function (A.4)
as

E(a, w) →
√
h̄√

p(E, x)
exp

(
i

h̄

∫ x

dy p(E, y)

)
,

(w � √|a|). (A.7)

Hence E(a, w) and E∗(a, w) describe the right (p > 0) and
left (p < 0) moving wave in w � √|a|, respectively.

The final task for obtaining the transmittance and the
reflectance is finding the relation between the WKB wave
function (A.4) in x → −∞ and in x → ∞. For this pur-
pose, the relation 19.18.3 of [76] is useful,

√
1 + e2πa E(a, w) = eπa E∗(a, w) + i E∗(a,−w),

⇒ E(a, w) = i
√

1 + e2πa E∗(a,−w)

− ieπa E(a,−w). (A.8)

Then, for a large negative w, we obtain

E(a, w) → i
√

1 + e2πa

√
2

−w
e
−i

(
w2
4 +···

)

− ieπa

√
2

−w
e
i
(

w2
4 +···

)
, (A.9)

from (A.5). Note that the momenta carried by the first term
and the second term at a large negative w are positive and
negative, respectively, as

− i∂w

(√
2

−w
e
−i

(
w2
4 +···

))
� −w

2

(√
2

−w
e
−i

(
w2
4 +···

))
,

− i∂w

(√
2

−w
e
i
(

w2
4 +···

))
� w

2

(√
2

−w
e
i
(

w2
4 +···

))
.

(A.10)

Thus the first term represents the in-coming wave towards the
inverse harmonic potential and the second term describes the
reflected wave. On the other hand, E(a, w) at large positive
w can be regarded as the transmitted wave. These waves are
connected to the WKB wave function (A.4) in the asymptotic
region as we have seen in (A.7).

By normalizing the coefficient of the in-coming wave to
1 in the relation (A.8), we obtain

E∗(a,−w) = 1√
e−2πa + 1

E(a,−w)

− i
1√

e2πa + 1
E(a, w)

= 1√
exp

(
2π
h̄

√
m
α
E

)
+ 1

E(a,−w)

− i
1√

exp
(
− 2π

h̄

√
m
α
E

)
+ 1

E(a, w). (A.11)
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See Fig. 6. Then, from the coefficients of the reflected wave
E(a,−w) and the transmitted wave E(a, w), we can read
off the reflectance PR(E) and transmittance PT (E)

PR(E) = 1

exp
(

2π
h̄

√
m
α
E

)
+ 1

,

PT (E) = 1

exp
(
− 2π

h̄

√
m
α
E

)
+ 1

, (A.12)

respectively. Note that PR(E) and PT (E) satisfy PT (E) →
1, PR(E) → 0 as E → +∞, and PT (E) → 0, PR(E) → 1
as E → −∞. They agree with the classical motion of the
particles.

AppendixB:Comparisonof the thermal radiationderived
from the quantum mechanics and fluid dynamics

As we argued in Sect. 3.2, the temperature derived from the
quantum mechanics of the N fermions (2.3) and the tem-
perature derived from the Bogoliubov transformation of the
phonon (3.22) agree.15 However you may wonder whether
these differently obtained radiation are really equivalent. In
fact, the fermions obey the Fermi–Dirac distribution (2.13)
while the phonons obey the Bose-Einstein distribution. Thus
it is important to evaluate the radiation quantitatively and
confirm whether they agree. In this appendix, we evaluate the
density of the observable O(x̂, p̂) in the black hole (right)
case (3.15) both from the fermions and the phonons, and we
will see the agreement.

B.1 Radiation through the quantum mechanics of the
fermions

We evaluate the density of the operator O(x̂, p̂) in the acous-
tic black hole case (3.15) by using the quantum mechanics
of the fermions. The derivation is almost same to the deriva-
tion of (2.13) in the bosonic non-critical string case studied
in Sect. 2. As we argued in Sect. 3.2, the difference between
the bosonic non-critical string and the acoustic black hole is
the existence of the fermions with energy 0 < E < E+ only.
Thus what we should do is evaluating the contributions of
these fermions to the radiation.

A tiny technical issue for these fermions is the boundary
condition of the WKB wave function (A.4) at x = ±L . If we

15 The choice of the vacuum in the Bogoliubov transformation would
correspond to the choice of the state in the quantum mechanics. In the
Bogoliubov transformation, we implicitly chose the Unruh vacuum to
describe the acoustic Hawking radiation. In the quantum mechanics,
this vacuum would correspond to the state in which the fermions flows
from the left to right. This state is not stationary through the quantum
effects, and the radiation appears.

impose φE±(L) = φE±(−L) = 0, (0 < E < E+) which
we employed for the fermions with E < 0 in Sect. 2, the
fermions are reflected at x = ±L and they cannot compose
the stationary configuration (3.15) in the classical limit. In
order to avoid this issue, we impose the periodic boundary
condition φE±(L) = φE±(−L) only for the fermions with
positive energy E . Then the configuration (3.15) becomes
stationary in the classical limit16 (The boundary condition
at x = ±L should be irrelevant for the radiation, if L is
sufficiently large.)

Then, in the classical limit (h̄ → 0), the WKB wave func-
tion for the fermion with energy E > 0 is given by

φE±(x) = A(E)√
p(E, x)

exp

(
± i

h̄

∫ x

dy p(E, y)

)
,

p(E, x) =
√

2mE + mαx2. (B.1)

Here the energy is quantized as

∫ L

−L
dx |p(E, x)| = 2π h̄n, (n = 1, 2, . . .), (B.2)

due to the periodic boundary condition. The normalization
factor A(E) is given by

|A(E)|2 =
(∫ L

−L

dx

|p(E, x)|
)−1

. (B.3)

By using this WKB wave function, we evaluate the density
of the observable O(x̂, p̂) in the far region −L � x �
−(h̄2/mα)1/4. Particularly the leading quantum corrections
to this quantity would correspond to the Hawking radiation.
Recall that, in the classical limit (h̄ → 0), the fermions with
energy E > 0 just go through the potential from the left
to right, and the left moving fermions appear only through
the quantum reflection with the probability PR(E). Hence
we should evaluate the leading contributions of the left mov-
ing fermions to O(x̂, p̂) to obtain the Hawking radiation.
Through the similar calculation to the E < 0 case (2.10),
such contributions to the density of O(x̂, p̂) can be obtained
as

∫ E+

0
dE ρ(E)PR(E)|φE−(x)|2O(x, p(E, x)). (B.4)

16 If we impose the periodic boundary condition to the fermions with
negative energy, the fermions cannot compose a stationary bosonic non-
critical string configuration. Thus we need to apply the two different
boundary conditions depending on the sign of the fermion energy. We
can avoid such a energy dependent boundary condition by employing
the periodic potential V = α(L/π)2 cos(πx/L) instead of the inverse
harmonic potential and impose the periodic boundary condition x =
x + 4L , and put the fermions appropriately so that the configuration
near x = 0 becomes (3.15).
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Fig. 6 The scattering of the
in-coming wave E∗(a,−w)

through the relation (A.11).
E(a,−w) and E(a, w) describe
the reflected wave and the
transmitted wave, respectively

Here the energy density ρ(E) is given by

ρ(E) = ∂n

∂E
= m

2π h̄

∫ L

−L

dx

|p(E, x)| , (E > 0), (B.5)

through the quantization condition (B.2). Then the density
(B.4) can be calculated as

∫ E+

0
dE ρ(E)PR(E)|φE−(x)|2O(x, p(E, x))

= m

2π h̄

∫ E+

0

dE

|p(E, x)|
O(x, p(E, x))

eβL E + 1
. (B.6)

This is the contribution to the Hawking radiation from the
fermions with 0 < E ≤ E+. By assuming that E+ is suf-
ficiently large and can be approximated as E+ ≈ ∞, and
adding the contribution of the fermions with negative energy
(2.13) with μ = 0, we obtain the density of the observable
O(x̂, p̂) induced by the Hawking radiation as

m

2π h̄

∫ ∞

0

dE

eβL E + 1

(
O(x, p(E, x))

|p(E, x)| − O(x, p(−E, x))

|p(−E, x)|
)

,

− L � x � −
(

h̄2

mα

)1/4

. (B.7)

The first term is the contribution of the reflected fermions
and the second term is that of the holes, and both obey the
Fermi–Dirac distribution at the temperature TL (1.7).

More concretely, we take O(x̂, p̂) as O(x̂, p̂) = x̂ k p̂n

and evaluate (B.7) as17

m

2π h̄

∫ ∞

0

dE

eβL E + 1

(
−xk p(E, x)n−1 + xk p(−E, x)n−1

)

= − (n − 1)h̄

48π
(mα)

n−1
2 xk+n−3 + · · · . (B.8)

Here we have used
∫ ∞

0
dE E
eβE+1

= π2

12β2 . We will compare
this result with the quantum field theory calculation of the
phonons in the next section.

17 We need to take care of the sign of p = ±√
2m(E − V ). p in

O(x, p) at negative x takes a negative value, since the holes and the
reflected fermions carry negative momenta (see Fig. 5).

B.2 Radiation through quantum field theory of phonons

We evaluate the observable O(x̂, p̂) = x̂ k p̂n in the acoustic
black hole through the quantum field theory computation.
We introduce the Wigner phase space density u(x, p) which
classically satisfies

u(x, p) =
{

1 If the point (x, p) in the phase space is occupied by a fermion.

0 If the point (x, p) in the phase space is unoccupied.

(B.9)

By using this function, we can evaluate the density of the
observable O(x̂, p̂) at position x in the classical limit as
[46–48]

1

2π h̄

∫ ∞

−∞
dp u(p, x)O(x, p)

= 1

2π h̄

∫ P0+(x)

P0−(x)
dp xk pn

= 1

2π h̄

xk

n + 1

(
Pn+1

0+ (x) − Pn+1
0− (x)

)
. (B.10)

Here P0±(x) are the acoustic black hole background given
in (3.15).

Now we consider the quantum corrections to this equation.
In quantum field theory, Pn+1

0± should be replaced by 〈Pn+1± 〉,
where the expectation value is taken by the vacuum for the
phonon discussed in Sect. 3.1.3 which satisfies

〈P−〉 → P0−, h̄ → 0, and 〈P+〉 = P0+. (B.11)

The contributions of the Hawking radiation would be the
leading quantum corrections to the classical result (B.10),
and we evaluate them as

1

2π h̄

xk

n + 1

(
〈Pn+1+ (x)〉 − 〈Pn+1− (x)〉

)

− 1

2π h̄

xk

n + 1

(
Pn+1

0+ (x) − Pn+1
0− (x)

)

= − xk

2π h̄

(
εPn

0−〈P1−〉

+ε2
(n

2
Pn−1

0− 〈P2
1−〉 + Pn

0−〈P2−〉
)

+ · · ·
)

. (B.12)
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Here we have kept the terms up to O(ε2) in the ε expansion
(3.11). From now, we take ε = 1, since h̄ will play the role of
a natural expansion parameter in the h̄ expansion around P0±
(B.11). By using the relation (3.18), we obtain the expectation
values of P1− as

〈P1−〉 = 2m2

P0−
〈∂z−ψ−〉 = 0,

〈P2
1−〉 = 4m4

P2
0−

〈: ∂z−ψ−∂z−ψ− :〉. (B.13)

Hence we need to evaluate 〈: ∂z−ψ−∂z−ψ− :〉. Although we
can calculate it by using the Bogoliubov transformation, here,
instead, we take a shortcut by using the relation to the energy
momentum tensor18

Tz−z− = m2

h̄π
: ∂z−ψ−∂z−ψ− : . (B.16)

Then, from (3.23), we obtain

〈P2
1−〉 = 4m4

P2
0−

h̄π

m2 〈Tz−z−〉 = 4m2h̄π

P2
0−

h̄

48π

α

m
. (B.17)

Next we calculate 〈P2−〉. By applying the ε expansion
(3.11) to the equation for P− (3.12), we obtain

0 = ∂t P2− + 1

m
∂x

(
P0−P2− + 1

2
P2

1−
)

,

⇒
(

∂t + P0−
m

∂x

)
(P0−P2−)

= −1

2

(
∂t + P0−

m
∂x

) (
P2

1−
)

+ 1

2
∂t

(
P2

1−
)

, (B.18)

where we have used ∂t P0− = 0. Since ∂t 〈P2
1−〉 = 0, by

integrating this equation, we obtain

〈P2−〉 = − 1

2P0−
〈P2

1−〉. (B.19)

18 Here the coefficientm2/h̄π in (B.16) can be read off from the Hamil-
tonian of the fluid variables [37,48,65]

H =
∫

dx ρ(x)

(
1

2
mv(x)2 + h̄2π2

6m
ρ(x)2 + V (x)

)
. (B.14)

By substituting the expansion (3.2) to this Hamiltonian, we can derive
the action for ψ as

S[ψ] =
∫

dtdx
√−g

m2

2π h̄
gμν∂μψ∂νψ, (B.15)

and we obtain the energy momentum tensor (B.16).

By substituting these results to (B.12), we obtain

− xk

2π h̄

(
Pn

0−〈P1−〉 +
(n

2
Pn−1

0− 〈P2
1−〉 + Pn

0−〈P2−〉
)

+ · · ·
)

= − xk

2π h̄

(
n − 1

2
Pn−1

0− 〈P2
1−〉 + · · ·

)

= − (n − 1)h̄

48π
(mα)

n−1
2 xk+n−3 + · · · , (B.20)

for the large negative x . Here we have used (3.15) for P0−.
This agrees with the result (B.8) obtained from the quan-
tum mechanics. Therefore the Hawking radiation obtained
from the quantum mechanics and quantum field theory are
consistent.
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