Changes of the gene expression in silkworm larvae and Cordyceps militaris at late stages of the pathogenesis

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2022-09-21
	キーワード (Ja):
	キーワード (En):
	作成者: Kato, Tatsuya, Nishimura, Konomi, Misu,
	Sadahiko, Ikeo, Kazuho, Park, Enoch Y.
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00029137

1 Changes of the gene expression in silkworm larvae and *Cordyceps*

2 *militaris* at late stages of the pathogenesis

3 Tatsuya Kato^{1,2*}, Konomi Nishimura¹, Sadahiko Misu³, Kazuho, Ikeo³, Enoch Y. Park^{1,2}

4

- ⁵ ¹Laboratory of Biotechnology, Department of Agriculture, Graduate School of
- 6 Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku,
- 7 Shizuoka, Japan
- ⁸ ²Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute
- 9 of Green Science and Technology, Shizuoka University, 836
- 10 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- ¹¹ ³Department of Genomics and Evolutionary Biology, National Institute of Genetics,
- 12 Mishima, 411-8510, Japan
- 13 *Correspondence: kato.tatsuya@shizuoka.ac.jp (T. Kato); Tel.: +81-54-238-4937
- 14

15 AUTHORS CONTRIBUTIONS

- 16 **Tatsuya Kato:** Conceptualization (lead), Data curation (lead), Formal analysis
- 17 (supporting), Funding acquisition (lead), Investigation (supporting), Methodology
- 18 (lead), Project administration (lead), Resources (supporting), Supervision (lead),
- 19 Validation (lead), Visualization (lead), Writing-Original Draft Preparation (lead),
- 20 Writing-Review & Editing (lead). Konomi Nishimura: Conceptualization (supporting),
- 21 Data curation (supporting), Formal analysis (supporting), Investigation (lead),
- 22 Methodology (supporting), Project administration (supporting), Validation (supporting).
- 23 Sadahiko Misu: Formal analysis (supporting), Investigation (supporting), Software
- 24 (Supporting). Kazuho Ikeo: Formal analysis (lead), Investigation (supporting),

25	Software (lead), Writing-Review & Editing (supporting). Enoch Y. Park:
26	Conceptualization (supporting), Funding acquisition (supporting), Investigation
27	(supporting), Resources (lead), Supervision (supporting), Writing-Review & Editing
28	(supporting).
29	
30	CONFLICT OF INTEREST
31	The authors have declared no conflict of interest.
32	
33	FUNDING
34	This research was supported by Research Institute of Green Science and Technology
35	Fund for Research Project Support (2020-RIGST-20C01). in Shizuoka University.
36	
37	ORCID
38	Tatsuya Kato: 0000-0001-7990-2557
39	

41 HIGHLIGHTS

42

- Changes of the gene expression in the fat body of silkworm larvae were observed
- 44 during *Cordyceps militaris* infection.

- Genes encoding oligopeptide transporters and involved in phenolic substrate
- 47 degradation were upregulated in *Cordyceps militaris*.
- 48
- 49

50 Abstract

51 *Cordyceps militaris* is an entomopathogenic fungus that forms its fruiting body. The 52 gene expression change in C. militaris and silkworm larvae were analyzed using RNA-53 seq to investigate the relationship of *C. militaris* with the host, silkworm larvae before 54 the death by mycosis. At 144 h after the injection of C. militaris conidia, genes encoding proteases, protease inhibitors, and cuticle proteins in the fat body of silkworm 55 56 larvae were upregulated, but genes encoding lipoproteins and other proteins in 57 hemolymph were downregulated. On the other hand, at 168 h after the injection of C. 58 militaris conidia, genes encoding amino acid and oligopeptide transporters and 59 permeases in C. militaris were upregulated, suggesting that C. militaris may use 60 peptides and amino acids in silkworm larvae as a nutrient to grow in vivo. 61 Additionally, one gene cluster composed of genes putatively involved in the 62 degradation of phenolic substrates was also upregulated. The addition of 4,5-63 dichlorocatechol, an inhibitor of catechol 1,2-dioxygenase, inhibited the in vivo growth 64 of C. militaris, Beauveria bassiana and Metarhizium anisopliae. These results also 65 suggest that the expression of the gene cluster may be crucial for the *in vivo* growth of 66 C. militaris and entomopathogenic fungi. This study will clarify how C. militaris grows 67 in insect hosts by avoiding host's immune systems.

68

69 KEYWORDS

70 Cordyceps militaris, silkworm, RNA-seq, entomopathogenic fungi, catechol.

1 INTRODUCTION

74	Cordyceps militaris is a pathogenic insect fungus and produces its fruiting body on the
75	insect (Shrestha et al., 2012). The fruiting body has various types of bioactive
76	compounds and has been used for Chinese medicine and supplementary diet.
77	Cordycepin, a well-known bioactive compound in C. militaris, possesses anti-
78	inflammatory, anti-tumor, and immunomodulatory activities (Ashraf et al., 2020; Tan et
79	al., 2020; Yang et al., 2020). Therefore, the demand for the fruiting body for human
80	health has risen annually.
81	Entomopathogenic fungi grow as blastospores and hyphal bodies in the hemolymph
82	of insects upon entering the body of insects (Butt et al., 2016). During the
83	entomopathogenic fungus infection, these fungi attack the host immune system and
84	adapt to osmotic stress of the hemolymph. Entomopathogenic fungi produce some
85	proteins, bioactive metabolites, and peptides to adapt to the environment in the
86	hemolymph. Metarhizium anisopliae produces collagenous protective coat protein,
87	MCL1, on the surface to avoid the host's immune system by shielding own β -glucans
88	(Wang & St. Leger, 2006). Beauveria species produce beauvericin, bassianolide, and
89	oosporein, which are involved in the pathogenicity (Feng et al., 2015; Xu et al., 2008;
90	Xu et al., 2009). Metarhizium species also have various genes for their secondary
91	metabolite synthesis (Donzelli & Krasnoff, 2016).
92	In insect hosts, during the entomopathogenic fungus infection, cellular and humoral
93	immunities are induced to adapt against the infection (Butt et al., 2016). The humoral
94	responses in hosts during the entomopathogenic fungi infection include the expression
95	of anti-microbial peptides (AMPs) and protease inhibitors (Bulet & Stöcklin, 2005),

96	activation of phenol-oxidase (PO) (Eleftherianos & Revenis, 2011), and reactive oxygen
97	species (ROS) production (Troha & Buchon, 2019). The entomopathogenic fungi have
98	several methods to adapt against these immunities in hosts to survive and grow in
99	hemolymph.
100	Metarhizium and Beauveria have been used as biopesticides, given their
101	pathogenicity to insects (Lovett & St Leger, 2018). Numerous papers describe the gene
102	expression of these entomopathogenic fungi during infection to insects (Iwanicki et al.,
103	2020). Transcriptome analysis is a tool for showing the change in global gene
104	expression in the fungi and hosts. Additionally, proteome and metabolome analyses also
105	provide indicative information on fungal and host's responses to infection and host's
106	immunity (Bhadani et al., 2021; Brancini et al., 2019).
107	Unlike Metarhizium and Beauveria, C. militaris causes epizootics in populations of
108	Lepidoptera. However, the mechanisms of this epizootics in addition to the ways of
109	infection and the development of pathogenesis in hosts are still poorly understood
110	(Kryukov et al., 2020; Xiao et al., 2012). Compared to Metarhizium and Beauveria,
111	how C. militaris infects the host has been not investigated fully (Aw & Hue, 2017;
112	Ortiz-Urquiza & Keyhani, 2016). Until now, it was reported that cordycepin, which is
113	one of bioactive compounds produced by C. militaris, inhibits the immune response of
114	hemocytes and the expression of genes encoding anti-microbial peptides and lysozyme
115	in the host, and the growth of C. militaris in Galleria mellonella larvae at 25°C is
116	inhibited by the expression of genes encoding anti-fungal peptides, which is decreased
117	at 15°C (Kryukov et al., 2020; Wellham et al., 2021; Woolley et al., 2020). In this study,
118	the C. militaris gene expression and the host before its death by mycosis using RNA-seq
119	were investigated to show the infection mechanism of the fungus.

121 2 MATERIALS AND METHODS

122

123 **2.1 Strain, cultivation, and conidia isolation**

- 124 C. miliaris NBRC103752, B. bassiana NBRC4848 and M. anisopliae NBRC 8556
- 125 purchased from Biological Resource Center, National Institute of Technology and
- 126 Evaluation (NBRC, Japan), was used in this study. This fungus was cultivated on potato
- 127 dextrose agar medium at 28°C. Its conidia were isolated according to the method
- 128 described in a previous paper (Zheng et al., 2011).

129

130 **2.2 Infection to silkworm larvae**

- 131 As a host of *C. militaris*, the 5th instar of larvae, purchased from Ehimesansyu (Ehime,
- 132 Japan), was used. For *C. militaris* infection of the silkworm larvae, 1×10^{6} /mL (25 µL)
- 133 of conidia suspended in phosphate-buffered saline (PBS, pH 7.4) was injected into
- 134 silkworm larvae. As a negative control, PBS was injected with the same volume of
- 135 conidia. The larvae were raised on an artificial diet, Silkmate S2 (Nosan, Yokohama,
- 136 Japan) at 23–24°C. Five or ten silkworm larvae were put into a plastic container ($15 \times$

137 20×5.5 cm).

138

139 **2.3 RNA extraction and RNA-seq analysis**

- 140 After 144 and 168 h, total RNA (each sample n = 2) was extracted from the fat body of
- 141 3 silkworm larvae in a group with Trizol (Thermo Fisher Scientific K. K., Tokyo,
- 142 Japan). Fat body (100 mg) was placed into liquid nitrogen and incubated for one
- 143 minute. Frozen fat body was crashed, and 1 mL of Trizol was added to the sample. After

incubation for 5 min at room temperature, 200 µL of chloroform was added to the
mixture, followed by incubation for 3 min. The mixture was centrifuged at 12,000 × g
for 15 min after which the supernatant was collected. Then, 2-propanol precipitation
was conducted. Precipitated RNA was dissolved with RNA-free water, followed by
DNase treatment and its purification.

149 To investigate the gene expression of silkworm larvae to respond to C. militaris 150 mycosis until they died, RNA-seq analysis was conducted using total RNA (including 151 RNAs of silkworm larvae and C. militaris) extracted from the fat body of silkworm 152 larvae, which has influences of intrinsic proteins in hemolymph and cuticles, at 144 h 153 after the conidia and PBS injection. Alternatively, to investigate the gene expression of 154 C. militaris in silkworm larvae in vivo, RNA-seq analysis was conducted using total 155 RNA (including RNAs of silkworm larvae and *C. militaris*) extracted from the fat body 156 of silkworm larvae at 144 h (survival rate of silkworm larvae: 50%) and 168 h (survival 157 rate of silkworm larvae: 0%) after conidia injection. Extracted total RNA was used for 158 strand-specific RNA-seq library construction using an Illumina HiSeq 4000 with the 159 sequence mode 2 × 100 bp (Eurofins Genomics K. K., Tokyo, Japan). Raw reads were 160 aligned to the reference genome of *Bombyx mori* (Kawamoto et al., 2019) and C. 161 militaris ATCC34164 (GenBank assembly accession: GCA 008080495.1). In each, 162 about 80–90 million raw reads were yielded, and Q30 values of each sample were 163 around 95%. Gene expression data were calculated based on FPKM (Fragments Per 164 Kilobase of exon per Million mapped reads) and compared between samples using NGS 165 data analysis system MASER (Kinjo et al., 2018). In brief, mapping was performed by 166 TopHat2 (Kim et al., 2013), followed by the estimation of expression levels of genes 167 using CuffLinks2. CuffDiff was used for the comparison of gene expression levels in

168 two groups (Trapnell et al., 2010). Upregulated and downregulated genes were defined 169 with a log 2-fold change (log FC) \geq 2.5 and \leq 2.5, respectively, with a *q*-value cutoff of 170 0.05.

171

172 2.4 RT-qPCR

- 173 RNA extraction was described above in 2.3 cDNA was prepared using PrimeScript RT-
- 174 PCR Kit (TAKARA Bio, Kusatsu, Japan) and 500 ng of total RNA. Quantitative PCR
- 175 was performed using THUNDERBIRD SYBR qPCR Mix (TOYOBO, Osaka, Japan).
- 176 Data were analyzed using comparative CT method ($2^{\Delta\Delta CT}$ method) using actin A3 gene
- 177 of *B. mori* (Genbank: NM_001126254.1) or the actin gene of *C. militaris* (Genbank:
- 178 XM_006670515.1). Sequences of primers are provided in Table 1.
- 179

180 **2.5 Growth of mycelia in silkworm larvae**

181 Twenty microliters of each concentration (1 and 10 mM) of catechol or 4,5-

182 dichlorocatechol dissolved with DMSO was injected at three sites in 5th instars of

183 silkworm larvae after they died with the injection of 25 μ L conidia (1 × 10⁶/mL) of

- 184 conidia) of each fungus (C. militaris, B. bassiana, M. anisopliae). Silkworm larvae died
- 185 at 72–96 h after the injection of conidia of *M. anisopliae* and *B. bassiana*, and silkworm
- 186 larvae died at 144–168 h after the injection of conidia of *C. militaris* (Kato et al., 2021).
- 187 These larvae injected with catechol or 4,5-dichlorocatechol were incubated at 23–24°C
- 188 for 144 h until the mycelia appeared on the larvae surface. As a negative control, the
- 189 same volume of DMSO as catechol or 4,5-dichlorocatechol was injected. In one
- 190 experiment, 5 silkworm larvae were used. Experiments were performed in duplicate.

192 **3 RESULTS**

193

194 **3.1 Sequencing of both** *B. mori* and *C. militaris* reads

195 Our previous paper indicates that the survival rate of silkworm larvae drops at 122 h

- 196 after the injection of *C. militaris* NBRC103752 conidia $(1 \times 10^{6}/\text{mL}, 25 \,\mu\text{L})$ and
- 197 reaches 0% at 168 h (Kato et al., 2021). After 168 h, any mycelia and stromata were not
- 198 observed on the surface of cadavers. Therefore, to investigate the gene expression of
- 199 silkworm larvae to respond to C. militaris mycosis until they died, RNA-seq analysis
- 200 was conducted at 144 h after the conidia and PBS injection. Alternatively, to investigate
- 201 the gene expression of *C. militaris* in silkworm larvae *in vivo*, RNA-seq analysis was
- 202 conducted at 144 h (survival rate of silkworm larvae: 50%) and 168 h (survival rate of
- silkworm larvae: 0%) after conidia injection.
- 204

205 **3.2 Differential gene expression analysis in** *B. mori*

- 206 First, to identify the genes involved in the response of silkworm larvae to *C. militaris*
- 207 mycosis, differential gene expression (DEG) in the fat body of silkworm larvae at 144 h
- after the conidia and PBS injection was analyzed. In this DEG analysis, 168 and 187
- 209 genes were significantly up and downregulated by greater than log Fold-Change (FC)
- 210 2.5 ($q \le 0.05$), respectively (Supplementary Table 1) in the fat body of silkworm larvae.
- 211 Changes of gene expression in *B. mori* are explained below.
- 212

213 Proteases and protease inhibitors

- Genes encoding several proteases and protease inhibitors (Table 2) were
- 215 upregulated. KWMTBOMO03899 encoding serine protease inhibitor (Serpin 3) which

216	is an inhibitor of proPO activating enzyme and KWMTBOMO15016 encoding protease
217	inhibitor were greatly up-regulated. On the other hand, the expression of
218	KWMTBOMO01542 encoding fungal protease inhibitor annotated as BmSPI38,
219	KWMTBOMO11319 encoding chymotrypsin inhibitor CI-8A and KWMTBOMO13850
220	encoding kazal-type proteinase inhibitor were expressed in 5th instar of larvae
221	substantially, but these genes were greatly downregulated by C. militaris mycosis (Table
222	2).
223	
224	Cuticular proteins
225	The increased expression of some genes encoding cuticular proteins
226	(KWMTBOMO02607, KWMTBOMO04384, KWMTBOMO13153,
227	KWMTBOMO12563 and KWMTBOMO13142) in this study (Table 3) also
228	corresponded to the previous paper, which reported that cuticular protein genes are
229	upregulated in silkworms by <i>B. bassiana</i> conidia injection (Xing et al., 2017). However,
230	KWMTBOMO09333 encoding cuticular protein glycine-rich 16 precursor was
231	substantially down-regulated by the infection of C. militaris.
232	
233	Hemolymph
234	In contrast to the upregulated genes by the fungal mycosis, some hemolymph protein
235	genes encoding several hemolymph proteins, including storage proteins,
236	microvitellogenins and lipoproteins were downregulated (Table 4). Especially,
237	KWMTBOMO11903 encoding low molecular 30 kDa lipoprotein PBMHPC-19-like
238	precursor and KWMTBOMO11904 encoding low molecular mass 30 kDa lipoprotein
239	19G1-like precursor were expressed in 5th instar of larvae abundantly, but greatly

downregulated by the fungal mycosis. Upregulation of genes encoding hemolymph
proteins including storage proteins, microvitellogenins and lipoproteins were not
observed.

243

244 3.3 Differential gene expression analysis in C. militaris before the death by mycosis To identify the genes of *C. militaris* involved in the in vivo growth, DEG in *C. militaris* 245 246 grown in silkworm larvae at between 144 h and 168 h after the conidia injection was 247 performed, following raw reads were aligned to the reference genome of C. militaris. 248 Supplementary Table 2 indicates the DEG in C. militaris between 144 h (the survival 249 rate of silkworm larvae was around 50%) and 168 h (the survival rate of silkworm 250 larvae was 0%). During this, 91 genes were significantly upregulated, showing that they 251 work greatly for its growth in vivo. Changes of gene expression in C. militaris are 252 explained below. 253

254 Transporters

255 Genes encoding transporters and permeases were upregulated in *C. militaris* (Table 5).

Especially, genes encoding oligopeptide transporters (A9K55_003014, A9K55_003410,

257 A9K55_003881, A9K55_006730, A9K55_006784 and A9K55_008881) and amino acid

258 permeases (A9K55_000740 and A9K55_009238) were up-regulated.

259

260 Gene clusters

- Interestingly, 4 upregulated gene clusters were also found (Table 6, Fig. 1). In
- 262 chromosome 7 (Chr. 7), two gene clusters were found, but, in one cluster, genes
- 263 encoding *A9K55_008710*, *A9K55_008711*, and *AK955_008712* were not annotated and

264 encode hypothetical proteins. In another cluster, genes encoding putative glutathione

265 metabolism were found. In Chr. 3, one gene cluster comprising genes encoding

266 A9K55_001226, A9K55_001227, A9K55_001228, and A9K55_001229 were

267 upregulated. A9K55_001226 is putative non-hemolytic phospholipase C and

A9K55_001229 has a putative caleosin domain.

Additionally, one cluster in Chr. 5 composed of genes encoding *A9K55_005209*,

270 *A9K55_005210*, *A9K55_005211*, *A9K55_005212*, and *A9K55_005213* was upregulated.

271 Especially, the expression of *A9K55_005210*, *A9K55_005211*, and A9K55_005213 was

increased significantly (Log₂ FC: 7.22, 6.63 and 5.97) in silkworm larvae at 168 h after

273 conidia injection. Interestingly, *A9K55_005210*, *A9K55_005211*, and *A9K55_005213*

274 genes encode putative catechol 1,2-dioxygenase, salicylate hydrolase, and 2,3-

dihydroxybenzoate decarboxylase. Additionally, the expression of one gene encoding

276 putative phenol 2-monooxygenase in Chr. 4 was also increased significantly (Log₂ FC:

277 7.14). To validate the expression data of genes in the cluster of Chr. 5, RT-qPCR was

278 conducted (Fig. 2). the *C. militaris* genes (*A9K55_005210*, *A9K55_005211*,

279 A9K55_005212, and A9K55_005213) in the gene cluster of Chr. 5 (Fig. 1) was

280 increased at 168 h after conidia injection than at 144 h (Fig. 2). Especially, the gene

281 (A9K55_005210) encoding putative catechol 1,2-dioxygenase was expressed by

approximately 180-fold at 168 h after conidia injection compared to at 144 h,

- 283 corresponding to Table 6, even though the significant difference was undetected.
- 284

3.4 Effects of a catechol 1,2-dioxygenase inhibitor on the *in vivo* growth of entomopathogenic fungi

287 The upregulation of one gene cluster, including genes encoding putative catechol 1,2-

288	dioxygenase, salicylate hydrolase, and 2,3-dihydroxybenzoate decarboxylase during the
289	in vivo growth of C. militaris was found. These enzymes are involved in the degradation
290	of phenolic substrates through catechol formation. Especially, catechol 1,2-dioxygenase
291	catalyzes the ring cleavage of catechol to form cis, cis-muconic acid. In other
292	entomopathogenic fungi, B. bassiana and M. anisopliae, the gene cluster similar to that
293	of C. militaris is found (Fig. 3A). It was supposed that the degradation pathway of
294	catechol, salicylate, and 2,3-dihydroxybenzoate may be activated in C. militaris to grow
295	in vivo (Fig. 3B). Insect cuticles have many kinds of phenolic substrates, including
296	catechol and salicylate as substrates of proPO for cuticular sclerotization (Andersen,
297	2010; Atkinson et al., 1973; Hopkins et al., 1999). Additionally, these phenolic
298	substrates work in the host immunity together with PO to produce melanin (Lu et al.,
299	2014; Butt et al. 2016; Sugumaran & Barek, 2016). To survive in silkworm larvae (in
300	vivo), this cluster may be upregulated for the degradation of phenolic substrates. To
301	confirm the need of the gene cluster for <i>in vivo</i> growth, the effect of 4,5-
302	dichlorocatechol, an inhibitor of catechol 1,2-dioxygenase, on in vivo growth in
303	silkworm larvae was investigated (Matera et al., 2010; Potrawfke et al., 2001) (Fig. 4A
304	and B). In this experiment, as a control, DMSO and catechol were also investigated in
305	parallel with 4,5-dichlorocatechol. The growth of <i>C. militaris</i> was slower than <i>B</i> .
306	bassiana and M. anisopliae, and the larvae infected with C. militaris also looked more
307	bacteria-infected. This result is consistent with the previous report (Kryukov et al.,
308	2020). The growth of <i>C. militaris</i> was slightly inhibited by 4,5-dichlorocatechol
309	compared to catechol and DMSO and the growth of <i>B. bassiana</i> and <i>M. anisopliae</i> was
310	also inhibited by 4,5-dichlorocatechol.

312 4 DISCUSSION

313 In this study, some characteristic gene expression in the fat body of silkworm larvae

during the *C. militaris* mycosis of the larvae was found using the RNA-seq.

315 Some proteases and protease inhibitors are involved in insect immunity, including

316 PO activity, the expression of AMPs, and Toll immune pathway (Felföldi et al., 2011;

317 Kanost & Jiang, 2015; Wang et al., 2017). Especially, KWMTBOMO03899 encoding

318 serine protease inhibitor (Serpin 3) is also expressed more in silkworm hemocytes and

319 fat body by the injection of bacteria and in this study (Zou et al., 2009). The increase in

320 the expression of KWMTBOMO3899 in this study (Table 2) corresponds to the

321 decrease in the PO activity in hemolymph of silkworm larvae injected with C. militaris

322 conidia in the previous papers, which report that the injection of *C. militaris* conidia

323 decreases PO activity in *Galleria mellonella* and silkworms (Kryukov et al., 2020; Kato

et al., 2021). Additionally, *Manduca sexta* Serpin 3, an ortholog to *B. mori* Serpin 3,

inhibits the activation of pro-PO activity in hemolymph by inhibiting PO-activating

326 proteinases (Zhu et al., 2003).

327 The expression of KWMTBOMO01542 encoding fungal protease inhibitor

annotated as BmSPI38 and KWMTBOMO13850 encoding kazal-type proteinase

329 inhibitor was reduced by C. militaris mycosis (Table 2). These genes are overexpressed

in *B. bassiana*-resistant silkworm larvae K8 strain (Xing et al., 2017). BmSPI38 is also

involved in fungal resistance in silkworms (Li et al., 2012; Li et al., 2015). These results

332 suggest that *C. militaris* may suppress the expression of these genes encoding protease

inhibitors to survive and grow in silkworm larvae.

The increased expression of some cuticular proteins in this study (Table 3) also corresponded to the previous paper, which reported that cuticular protein genes are

336 upregulated in silkworms by *B. bassiana* conidia injection (Xing et al., 2017). However, 337 some genes encoding cuticular proteins were also down-regulated by the infection of C. 338 militaris. Insect cuticles are barriers for entomopathogenic fungi to penetrate to both 339 inside and outside of larvae. These results suggest that C. militaris may rearrange the 340 composition of cuticular proteins in cuticles for the penetration of cuticles and the 341 growth by the control of the expression of genes encoding cuticular proteins of 342 silkworms. It was reported that some cuticular proteins in *Tribolium castaneum* have 343 anti-fungal roles (Sirasoonthorn et al., 2021) and some cuticular proteins in insects may 344 be controlled for the penetration of cuticles by entomopathogenic fungi. 345 Some hemolymph protein genes encoding several hemolymph proteins, including 346 storage proteins, microvitellogenins and lipoproteins were downregulated (Table 4). The 347 gene encoding apolipophorin III is downregulated in the 6th instar of *Thitarodes pui* 348 after the expression is increased once (Sun et al., 2012). In silkworm larvae, some 349 lipoproteins in hemolymph have anti-fungus activities and are functional in the immune 350 system (Li et al., 2019; Ye et al., 2021). It suggests that C. militaris may inhibit the 351 expression of silkworm lipoprotein genes to evade the immune system in the silkworm 352 for its growth in vivo. 353 In addition to the change of gene expression in silkworm larvae, in C. militaris, the 354 remarkable changes of gene expression were also observed by the RNA-seq. 355 Genes encoding oligopeptides and amino acid transporters and other transporters, 356 including ABC multidrug transporters, were upregulated (Table 5). Additionally, some protease genes were also upregulated. These results suggest that C. militaris may 357

358 retrieve peptides and amino acids from silkworm larvae as a nutrient to grow *in vivo*. In

359 fact, Gao et al. propose that Metarhizium species may access products of proteins

360 degradation in insects because *Metarhizium* species have more amino acid and

- 361 oligopeptide transporters than other fungi (Gao et al., 2011). In *B. bassiana*, ABC
- 362 multidrug transporters contribute to the antioxidation and pathogenicity (Song et al.,
- 363 2013). The upregulation of ABC multidrug transporter genes in entomopathogenic fungi
- 364 may be an important factor for the *in vivo* growth to cope with oxidative stresses.
- In Chr. 3, one gene cluster including genes encoding *A9K55_001226*,

366 A9K55_001227, A9K55_001228, and A9K55_001229 were upregulated (Table 6).

367 A9K55_001226 is putative non-hemolytic phospholipase C and A9K55_001229 has a

368 putative caleosin domain. Caleosin is a lipid droplet-associated protein and, in *B*.

369 *bassiana*, the loss of the caleosin gene causes abnormal multi-lamellar formation and

the decrease in its virulence (Fan et al., 2015). It was reported that phospholipase is

involved in the virulence in human pathogenic fungi (Ghannoum, 2000; Keyhani,

372 2018). In *M. anisopliae*, phospholipase C activity is observed on the conidial surface

373 (Santi et al., 2010). These results suggest that lipid metabolism may also be an

374 important factor for the colonization of *C. militaris*.

One cluster in Chr. 5 composed of genes encoding *A9K55_005209*, *A9K55_005210*,

376 *A9K55_005211*, *A9K55_005212*, and *A9K55_005213* was also upregulated.

377 *A9K55_005210*, *A9K55_*005211, and *A9K55_005213* genes encode putative catechol

378 1,2-dioxygenase, salicylate hydrolase, and 2,3-dihydroxybenzoate decarboxylase,

379 respectively. These enzymes are involved in the degradation of phenolic substrates

- through catechol formation. In Fig. 4, 4,5-dichlorocatechol, which is an inhibitor of
- 381 catechol 1,2-dioxygenase, inhibited the growth of entomopathogenic fungi in silkworm

382 larvae. These results suggest that the degradation of phenolic substrates may be crucial

383 for the *in vivo* growth of entomopathogenic fungi. Therefore, it is supposed that the

384	increased expression of the gene cluster in Chr. 5 indicated in Fig. 3 was detected for
385	the growth of C. militaris mycelia from 144–168 h after the injection of C. militaris
386	conidia (Table 6). Cuticles of silkworm larvae have a large number of phenolic
387	substrates for the ecdysis and the response (melanization) to microbial attack (Ortiz-
388	Urquiza & Keyhani, 2013; Yatsu & Asano, 2009). To survive, grow and spread in
389	silkworm larvae, entomopathogenic fungi may cope with the large number of phenolic
390	compounds (Fig. 5). However, we need to investigate the activity of the catechol 1,2-
391	dioxygenase and the phenolic substrate degradation at the stage.

. .

.

392

. . .

393 **5 Conclusion**

394 In this study, RNA-seq analyses showed the changes of genes encoding proteases, 395 protease inhibitors, cuticular proteins and hemolymph proteins in B. mori by C. militaris 396 growth just before the larvae died. In addition, the analyses also revealed that the 397 degradation pathway of phenolic substrates, including catechol in C. militaris was 398 activated during its in vivo growth. From these results, we propose the mechanism of in 399 vivo growth of C. militaris in silkworm larvae (Fig. 5). However, during the mycosis of 400 insects by C. militaris at 23 °C, the growth of bacteria is also predominant in insects 401 (Fig. 4B) because of the dysfunction of host's immune systems (Kryukov et al., 2020). 402 Therefore, changes of the gene expression in the fat body of silkworm larvae in this 403 study is also caused by the growth of bacteria. It is important to consider the interplay 404 between insect hosts, entomopathogenic fungi and symbiotic bacterial community. 405

406 AUTHORS CONTRIBUTIONS

407 **Tatsuya Kato:** Conceptualization (lead), Data curation (lead), Formal analysis

408	(supporting), Funding acquisition (lead), Investigation (supporting), Methodology
409	(lead), Project administration (lead), Resources (supporting), Supervision (lead),
410	Validation (lead), Visualization (lead), Writing-Original Draft Preparation (lead),
411	Writing-Review & Editing (lead). Konomi Nishimura: Conceptualization (supporting),
412	Data curation (supporting), Formal analysis (supporting), Investigation (lead),
413	Methodology (supporting), Project administration (supporting), Validation (supporting).
414	Sadahiko Misu: Formal analysis (supporting), Investigation (supporting), Software
415	(Supporting). Kazuho Ikeo: Formal analysis (lead), Investigation (supporting),
416	Software (lead), Writing-Review & Editing (supporting). Enoch Y. Park:
417	Conceptualization (supporting), Funding acquisition (lead), Investigation (supporting),
418	Resources (lead), Supervision (supporting), Writing-Review & Editing (supporting)
419	
420	CONFLICT OF INTEREST
421	The authors have declared no conflict of interest.
422	
423	FUNDING
424	This research was supported by Research Institute of Green Science and Technology
425	Fund for Research Project Support (2020-RIGST-20C01). in Shizuoka University.
426	
427	SUPPLEMENTARY INFORMATION
428	Table S1 Profile of differentially gene expression in silkworm larvae at 144 h after the
429	injection of <i>C. militaris</i> conidia and PBS.
430	
431	Table S2 Profile of differentially gene expression in C. militaris between 144 h and 166
	19

- 432 h after the injection of *C. militaris* conidia.
- 433

434 **REFERENCES**

- 435 Andersen, SO, 2010. Insect cuticular sclerotization: a review. Insect Biochem Mol Biol
- 436 40(3), 166–178. https://doi.org/10.1016/j.ibmb.2009.10.007.
- 437 Ashraf, SA, Elkhalifa AEO, Siddiqui, AJ, Patel, M, Awadelkareem, AM, Snoussi, M,
- 438 Ashra, MS, Adnan, M, Hadi, S, 2020. Cordycepin for health and wellbeing: A potent
- 439 bioactive metabolite of an entomopathogenic *Cordyceps* medicinal fungus and its
- 440 nutraceutical and therapeutic potential. Molecules 25(12), 2735.
- 441 <u>https://doi.org/10.3390/molecules25122735</u>.
- 442 Atkinson, PW, Brown, WV, Gilby, AR, 1973. Phenolic compounds from insect cuticle:
- 443 Identification of some lipid antioxidants. Insect Biochem 3(11), 309–315.
- 444 https://doi.org/10.1016/0020-1790(73)90062-0.
- 445 Aw, KMS, Hue, SM, 2017. Mode of infection of *Metarhizium* spp. fungus and their
- 446 potential as biological control agents. J Fungi (Basel) 3(2), 30.
- 447 https://doi.org/10.3390/jof3020030.
- 448 Bhadani, RV, Gajera, HP, Hirpara, DG, Kachhadiya, HJ, Dave, RA, 2021.
- 449 Metabolomics of extracellular compounds and parasitic enzymes of *Beauveria*
- 450 *bassiana* associated with biological control of whiteflies (*Bemisia tabaci*). Pestic
- 451 Biochem Physiol 176, 104877. <u>https://doi.org/10.1016/j.pestbp.2021.104877</u>.
- 452 Brancini, GTP, Ferreira, MES, Rangel, DEN, Braga, GÚL, 2019. Combining
- 453 transcriptomics and proteomics reveals potential post-transcriptional control of gene
- 454 expression after light exposure in *Metarhizium acridum*. G3 (Bethesda) 9(9), 2951–
- 455 2961. https://doi.org/10.1534/g3.119.400430.

- 456 Bulet, P, Stöcklin, R, 2005. Insect antimicrobial peptides: structures, properties and gene
- 457 regulation. Protein Pept Lett 12(1), 3–11.
- 458 https://doi.org/10.2174/0929866053406011.
- 459 Butt, TM, Coates, CJ, Dubovskiy, IM, Ratcliffe, NA, 2016. Entomopathogenic fungi:
- 460 New insights into host-pathogen interactions. Adv Genet 94, 307–364.
- 461 <u>https://doi.org/10.1016/bs.adgen.2016.01.006</u>.
- 462 Donzelli, BGG, Krasnoff, SB, 2016. Molecular genetics of secondary chemistry in
- 463 *Metarhizium* fungi. Adv Genet 94, 365–436.
- 464 <u>https://doi.org/10.1016/bs.adgen.2016.01.005</u>.
- 465 Eleftherianos, I, Revenis, C, 2011. Role and importance of phenoloxidase in insect
- 466 hemostasis. J Innate Immun 3(1):28–33. <u>https://doi.org/10.1159/000321931</u>.
- 467 Fan, Y, Ortiz-Urquiza, A, Garrett, T, Pei, Y, Keyhani, NO, 2015. Involvement of a
- 468 caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic
- filamentous fungus, *Beauveria bassiana*. Environ Microbiol 17(11):4600–4614.
- 470 https://doi.org/10.1111/1462-2920.12990.
- 471 Felföldi, G, Eleftherianos, I, Ffrench-Constant, RH, Venekei, I, 2011. A serine
- 472 proteinase homologue, SPH-3, plays a central role in insect immunity. J Immunol
- 473 186(8), 4828–4834. <u>https://doi.org/10.4049/jimmunol.1003246</u>.
- 474 Feng, P, Shang, Y, Cen, K, Wang, C, 2015. Fungal biosynthesis of the bibenzoquinone
- 475 oosporein to evade insect immunity. Proc Natl Acad Sci USA 112(36), 11365–
- 476 11370. <u>https://doi.org/10.1073/pnas.1503200112</u>.
- 477 Gao, Q, Jin, K, Ying, SH, Zhang, Y, Xiao, G, Shang, Y, Duan, Z, Hu, X, Xie, XQ, Zhou,
- 478 G, Peng, G, Luo, Z, Huang, W, Wang, B, Fang, W, Wang, S, Zhong, Y, Ma, LJ, St
- 479 Leger, RJ, Zhao, GP, Pei, Y, Feng, MG, Xia, Y, Wang, C, 2011. Genome sequencing

- 480 and comparative transcriptomics of the model entomopathogenic fungi *Metarhizium*
- 481 *anisopliae* and *M. acridum*. PLoS Genet 7(1), e1001264.
- 482 <u>https://doi.org/10.1371/journal.pgen.1001264</u>.
- 483 Ghannoum, MA, 2000. Potential role of phospholipases in virulence and fungal
- 484 pathogenesis. Clin Microbiol Rev 13(1), 122–143,
- 485 <u>https://doi.org/10.1128/CMR.13.1.122</u>.
- 486 Hopkins, TL, Starkey, SR, Xu R, Merritt, ME, Schaefer J, Kramer KJ, 1999. Catechols
- 487 involved in sclerotization of cuticle and egg pods of the grasshopper, *Melanoplus*
- 488 *sanguinipes*, and their interactions with cuticular proteins. Arch Insect Biochem
- 489 Physiol 40, 119–128. <u>http://dx.doi.org/10.1002/(SICI)1520-</u>
- 490 <u>6327(1999)40:3%3C119::AID-ARCH1%3E3.0.CO;2-H</u>.
- 491 Iwanicki, NSA, Júnior, ID, Eilenberg, J, De Fine Licht, HD, 2020. Comparative
- 492 RNAseq analysis of the insect-pathogenic fungus *Metarhizium anisopliae* reveals
- 493 specific transcriptome signatures of filamentous and yeast-like development. G3
- 494 (Bethesda) 10(7), 2141–2157. <u>https://doi.org/10.1534/g3.120.401040</u>.
- 495 Kanost, MR, Jiang, H, 2015. Clip-domain serine proteases as immune factors in insect
- 496 hemolymph. Curr Opin Insect Sci 11, 47–55.
- 497 <u>https://doi.org/10.1016/j.cois.2015.09.003</u>.
- 498 Kawamoto, M, Jouraku, A, Toyoda, A, Yokoi, K, Minakuchi, Y, Katsuma, S, Fujiyama,
- 499 A, Kiuchi, T, Yamamoto, K, Shimada, T, 2019. High-quality genome assembly of
- 500 the silkworm, *Bombyx mori*. Insect Biochem Mol Biol 107, 53–62.
- 501 <u>https://doi.org/10.1016/j.ibmb.2019.02.002</u>.
- 502 Keyhani, NO, 2018. Lipid biology in fungal stress and virulence: Entomopathogenic
- 503 fungi. Fungal Biol 122(6), 420–429. <u>https://doi.org/10.1016/j.funbio.2017.07.003</u>.

504	Kim, D, Pertea, G, Trapnell, C, Pimentel, H, Kelley, R, Salzberg SL. 2013. TopHat2:
505	accurate alignment of transcriptomes in the presence of insertions, deletions and
506	gene fusions. Genome Biol 14(4), R36. <u>https://doi.org/10.1186/gb-2013-14-4-r36</u> .
507	Kinjo, S, Monma, N, Misu, S, Kitamura, N, Imoto, J, Yoshitake, K, Gojobori, T, Ikeo K,
508	2018. Maser: one-stop platform for NGS big data from analysis to visualization.
509	Database (Oxford) 2018, bay027. https://doi.org/10.1093/database/bay027.
510	Kryukov, VY, Kryukova, NA, Tomilova, OG, Vorontsova, Y, Chertkova, E, Pervushin,
511	AL, Slepneva, I, Glupov, VV, Yaroslavtseva, ON, 2020. Comparative analysis of the
512	immune response of the wax moth Galleria mellonella after infection with the fungi
513	Cordyceps militaris and Metarhizium robertsii. Microb Pathog 141, 103995.
514	https://doi.org/10.1016/j.micpath.2020.103995.
515	Kryukov, VY, Kosman, E, Tomilova, O, Polenogova, O, Rotskaya, U, Tyurin, M,
516	Alikina, T, Yaroslavtseva, O, Kabilov, M, Glupov, V, 2020. Interplay between fungal
517	infection and bacterial associates in the wax moth Galleria mellonella under
518	different temperature conditions. J Fungi (Basel) 6(3), 170.
519	https://doi.org/10.3390/jof6030170.
520	Li, Y, Zhao, P, Liu, S, Dong, Z, Chen, J, Xiang, Z, Xia, Q, 2012. A novel protease
521	inhibitor in Bombyx mori is involved in defense against Beauveria bassiana. Insect
522	Biochem Mol Biol 42(10), 766–775. <u>https://doi.org/10.1016/j.ibmb.2012.07.004</u> .
523	Li, Y, Zhao, P, Liu, H, Guo, X, He, H, Zhu, R, Xiang, Z, Xia Q, 2015. TIL-type protease
524	inhibitors may be used as targeted resistance factors to enhance silkworm defenses
525	against invasive fungi. Insect Biochem Mol Biol 57, 11–19.

- 526 <u>https://doi.org/10.1016/j.ibmb.2014.11.006</u>.
- 527 Li, R, Hu, C, Shi, S, Geng, T, Lv, D, Gao, K, Hou, C, Guo, X, 2019. Silkworm storage

- 528 protein Bm30K-19G1 has a certain antifungal effects on *Beauveria bassiana*. J
- 529 Invertebr Pathol 163, 34–42. <u>https://doi.org/10.1016/j.jip.2019.02.008</u>.
- 530 Lovett, B, St Leger, RJ, Genetically engineering better fungal biopesticides. Pest Manag
- 531 Sci 74(4), 781–789. <u>https://doi.org/10.1002/ps.4734</u>.
- Lu, A, Zhang, Q, Zhang, J, Yang, B, Wu, K, Xie, W, Luan, YX, Ling, E, 2014. Insect
- 533 prophenoloxidase: the view beyond immunity. Front Physiol 5, 252.
- 534 https://doi.org/10.3389/fphys.2014.00252.
- 535 Matera, I, Ferraroni, M, Kolomytseva, M, Golovleva, L, Scozzafava, A, Briganti, F,
- 536 2010. Catechol 1,2-dioxygenase from the Gram-positive *Rhodococcus opacus* 1CP:
- 537 quantitative structure/activity relationship and the crystal structures of native
- enzyme and catechols adducts. J Struct Biol 170(3), 548–564.
- 539 <u>https://doi.org/10.1016/j.jsb.2009.12.023</u>.
- 540 Ortiz-Urquiza, A, Keyhani, NO, 2016. Molecular genetics of *Beauveria bassiana*
- 541 infection of insects. Adv Genet 94, 165–249.
- 542 https://doi.org/10.1016/bs.adgen.2015.11.003.
- 543 Potrawfke, T, Armengaud, J, Wittich, RM, 2001. Chlorocatechols substituted at
- 544 positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-
- dioxygenase of *Pseudomonas chlororaphis* RW71. J Bacteriol 183(3), 997–1011.
- 546 <u>https://doi.org/10.1128/JB.183.3.997-1011.2001</u>.
- 547 Santi, L, da Silva, WOB, Berger, M, Guimarães, JA, Schrank, A, Vainstein, MH, 2010.
- 548 Conidial surface proteins of *Metarhizium anisopliae*: Source of activities related
- 549 with toxic effects, host penetration and pathogenesis. Toxicon 55(4), 874–880.
- 550 <u>https://doi.org/10.1016/j.toxicon.2009.12.012</u>.
- 551 Shrestha, B, Han, SK, Sung, JM, Sung, GH, 2012. Fruiting body formation of

- 552 *Cordyceps militaris* from multi-ascospore isolates and their single ascospore
- 553 progeny strains. Mycobiology 40(2), 100–106.
- 554 https://doi.org/10.5941/MYCO.2012.40.2.100.
- 555 Sirasoonthorn, P, Kamiya, K, Miura, K, 2021. Antifungal roles of adult-specific
- 556 cuticular protein genes of the red flour beetle, *Tribolium castaneum*. J Invertebr
- 557 Pathol 186, 107674. <u>https://doi.org/10.1016/j.jip.2021.107674</u>.
- 558 Song, TT, Zhao, J, Ying, SH, Feng, MG, Differential contributions of five ABC
- 559 transporters to mutidrug resistance, antioxidion and virulence of *Beauveria*
- 560 *bassiana*, an entomopathogenic fungus. PLoS One 8(4), e62179.
- 561 <u>https://doi.org/10.1371/journal.pone.0062179</u>.
- 562 Sugumaran, M, Barek, H, 2016. Critical analysis of the melanogenic pathway in insects
- and higher animals. Int J Mol Sci 17(10), 1753.
- 564 <u>https://doi.org/10.3390/ijms17101753</u>.
- 565 Sun, Z, Yu, J, Wu, W, Zhang, G, 2012. Molecular characterization and gene expression
- of apolipophorin III from the ghost moth, *Thitarodes pui* (Lepidoptera, Hepialidae).
- 567 Arch Insect Biochem Physiol 80(1), 1–14. <u>https://doi.org/10.1002/arch.20456</u>.
- Tan, L, Song X, Ren, Y, Wang, M, Guo, G, Guo, D, Gu, Y, Li, Y, Cao, Z, Deng, Y, 2020.
- 569 Anti-inflammatory effects of cordycepin: A review. Phytother. Res. In press.
- 570 <u>https://doi.org/10.1002/ptr.6890</u>.
- 571 Trapnell, C, Williams, BA, Pertea, G, Mortazavi, A, Kwan, G, van Baren, MJ, Salzberg,
- 572 SL, Wold, BJ, Pachter, L. 2010. Transcript assembly and quantification by RNA-Seq
- 573 reveals unannotated transcripts and isoform switching during cell differentiation.
- 574 Nat Biotechnol 28(5), 511–515. <u>https://doi.org/10.1038/nbt.1621</u>.
- 575 Troha, K, Buchon, N, 2019. Methods for the study of innate immunity in Drosophila

- 576 *melanogaster*. Wiley Interdiscip Rev Dev Biol 8(5), e344.
- 577 https://doi.org/10.1002/wdev.344.
- 578 Wang, C, St Leger, RJ, 2006. A collagenous protective coat enables *Metarhizium*
- 579 *anisopliae* to evade insect immune responses. Proc Natl Acad Sci USA 103(17),
- 580 6647–6652. <u>https://doi.org/10.1073/pnas.0601951103</u>.
- 581 Wang, JB, St Leger, RJ, Wang, C, 2016. Advances in genomics of entomopathogenic
- 582 fungi. Adv Genet 94, 67–105. <u>https://doi.org/10.1016/bs.adgen.2016.01.002</u>.
- 583 Wang, X, Wang, K, He, Y, Lu, X, Wen, D, Wu, C, Zhang, J, Zhang, R, 2017. The
- functions of serpin-3, a negative-regulator involved in prophenoloxidase activation
- and antimicrobial peptides expression of Chinese oak silkworm, *Antheraea pernyi*.
- 586 Dev Comp Immunol 69, 1–11. <u>https://doi.org/10.1016/j.dci.2016.11.022</u>.
- 587 Wellham, PAD, Hafeez, A, Gregori, A, Brock, M, Kim, DH, Chandler, D, de Moor, CH,
- 588 2021. Culture degeneration reduces sex-related gene expression, alters metabolite
- 589 production and reduces insect pathogenic response in *Cordyceps militaris*.
- 590 Microorganisms 9(8) 1559. <u>https://doi.org/10.3390/microorganisms9081559</u>.
- 591 Woolley, VC, Teakle, GR, Prince, G, de Moor, CH, Chandler, D, 2020. Cordycepin, a
- 592 metabolite of *Cordyceps militaris*, reduces immune-related gene expression in
- 593 insects. J. Invertebr. Pathol. 177, 107480. <u>https://doi.org/10.1016/j.jip.2020.107480</u>.
- 594 Xiao, G, Ying, SH, Zheng, P, Wang, ZL, Zhang, S, Xie, XQ, Shang, Y, St Leger, RJ,
- 595 Zhao, GP, Wang, C, Feng, MG, 2012. Genomic perspectives on the evolution of
- fungal entomopathogenicity in *Beauveria bassiana*. Sci Rep 2, 483.
- 597 <u>https://doi.org/10.1038/srep00483</u>.
- 598 Xing, D, Yang, Q, Jiang, L, Li, Q, Xiao, Y, Ye, M, Xia, Q, 2017. RNA-Seq analyses for
- two silkworm strains reveals insight into their susceptibility and resistance to

- 600 *Beauveria bassiana* infection. Int J Mol Sci 18(2), 234.
- 601 <u>https://doi.org/10.3390/ijms18020234</u>.
- Ku, Y, Orozco, R, Wijeratne, EMK, Gunatilaka, AAL, Stock, SP, Molnár, I, 2008.
- Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of
- the entomopathogenic fungus *Beauveria bassiana*. Chem Biol 15(9), 898–907.
- 605 <u>https://doi.org/10.1016/j.chembiol.2008.07.011</u>.
- Ku, Y, Orozco, R, Wijeratne, EMK, Espinosa-Artiles, P, Gunatilaka, AAL, Stock, SP,
- Molnár, I, 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an
- 608 insecticidal virulence factor of *Beauveria bassiana*. Fungal Genet Biol 46(5), 353-
- 609 364. <u>https://doi.org/10.1016/j.fgb.2009.03.001</u>.
- 610 Yatsu, J, Asano, T, 2009. Cuticle laccase of the silkworm, *Bombyx mori*: purification,
- 611 gene identification and presence of its inactive precursor in the cuticle. Insect
- 612 Biochem Mol Biol 39(4), 254–262. <u>https://doi.org/10.1016/j.ibmb.2008.12.005</u>.
- 413 Yang, L, Li, G, Chai, Z, Gong, Q, Guo, J, 2020. Synthesis of cordycepin: Current
- scenario and future perspectives. Fungal Genet Biol 143, 103431.
- 615 <u>https://doi.org/10.1016/j.fgb.2020.103431</u>.
- 616 Ye, Y, Zhang, Y, Dong, Z, Guo, P, Zhao, D, Li, H, Hu, H, Zhou, H, Chen, H, Zhao, P,
- 617 2021. Five silkworm 30K proteins are involved in the cellular immunity against

618 fungi. Insects 12(2), 107. <u>https://doi.org/10.3390/insects12020107</u>.

- 619 Zheng, Z, Huang, C, Cao, L, Xie, C, Han, R, 2011. Agrobacterium tumefaciens-
- 620 mediated transformation as a tool for insertional mutagenesis in medicinal fungus
- 621 *Cordyceps militaris*. Fungal Biol. 115(3), 265–274.
- 622 <u>https://doi.org/10.1016/j.funbio.2010.12.011</u>.
- E23 Zhu, Y, Wang, Y, Gorman, MJ, Jiang, H, Kanost, MR, 2003. Manduca sexta serpin-3

- 624 regulates prophenoloxidase activation in response to infection by inhibiting
- 625 prophenoloxidase-activating proteinases. J Biol Chem. 278(47), 46556–46564.
- 626 https://doi.org/10.1074/jbc.M309682200.
- 627 Zou, Z, Picheng, Z, Weng, H, Mita, K, Jiang, H, 2009. A comparative analysis of serpin
- 628 genes in the silkworm genome. Genomics 93(4), 367–375.
- 629 https://doi.org/10.1016/j.ygeno.2008.12.010.

Name	5'-3'
Cmactin-F	GTCCCCGTCATCATGGTATC
Cmactin-R	GGTGTGGTGCCAAATCTTCT
Cm_amidohydrolase_F	CGTGCCATTTTACCTGCACC
Cm_amidohydrolase_R	TTGACGTCCTCGAACCAGTG
Cm_transcript fact_F	CAGTCGGCTGTTTCCGTTTG
Cm_transcript fact_R	CAGGTCCAAGACGTCCCATC
Cm_salicylate hydr_F	TGGAGAGCGGAACAATCACG
Cm_salicylate hydr_R	ATCTTGTCCCACTTGCCCTC
Cm_catechol diox_F	AAAACGGCACGACAATCACG
Cm_catechol diox_R	ACCTGCTTCTCATCCTGCTG

TABLE 1 Primers used in this study

TABLE 2 List of genes encoding proteases and protease inhibitors expressed differentially in the fat body of silkworms injected with *C*.

Gene	Annotation	Cm 144h	PBS 144h	Log ₂ FC	q-value
KWMTBOMO04136	uncharacterized protein LOC105841582	2.26939	64.9877	-4.83979	3.05E-05
KWMTBOMO10720	chymotrypsin-2	2.25524	46.9419	-4.37952	0.000150673
KWMTBOMO04985	serine protease gd	4.43512	87.4091	-4.30074	0.00248281
KWMTBOMO01542	fungal protease inhibitor F-like	91.9173	1399.5	-3.92843	0.000210305
KWMTBOMO11319	chymotrypsin inhibitor CI-8A, partial	85.0038	796.036	-3.22723	0.00759012
KWMTBOMO13850	kazal-type proteinase inhibitor precursor	128.131	1199.68	-3.22696	0.0213181
KWMTBOMO13450	inducible metalloproteinase inhibitor protein-like	6.48719	0.557108	3.54157	3.82E-05
KWMTBOMO13852	protease inhibitor 1 precursor	77.6846	6.55854	3.56618	6.40E-06
KWMTBOMO08941	matrix metalloproteinase 1 isoform 1	84.7479	4.17022	4.34498	0.000427735
KWMTBOMO03899	serine protease inhibitor 3 precursor	550.862	21.3358	4.69035	3.63E-06
KWMTBOMO06700	uncharacterized protein LOC101746589 isoform X2	0.759282	0.0261449	4.86003	0.000682077
KWMTBOMO12098	salivary cysteine-rich peptide precursor	398.034	10.7372	5.21220	1.01E-06
KWMTBOMO15016	protease inhibitor protein	2695.72	69.8156	5.27098	2.52E-05
KWMTBOMO02640	A disintegrin and metalloproteinase with thrombospondin motifs 14	3.48149	0.0866836	5.32780	7.18E-05
KWMTBOMO07132	serine protease 7	104.418	2.55292	5.35408	1.00E-08

militaris conidia and PBS (q-value < 0.05).

KWMTBOM015225	melanization protease 1	51.2343	0.863814	5.89025	8.58E-07
KWMTBOMO03772	trypsin-like serine protease isoform X1	8.22752	0.112625	6.19086	0.000137206
KWMTBOMO16361	serine protease easter	11.7144	0.114992	6.6706	2.20E-05
KWMTBOMO14032	uncharacterized protein LOC114246586 isoform X3	41.9292	0.265015	7.30574	1.72E-09
KWMTBOMO04597	carboxypeptidase D-like isoform X2	16.3792	0.0608962	8.07129	1.90E-06

TABLE 3 List of genes encoding cuticle proteins expressed differentially in the fat body of silkworms injected with *C. militaris* conidia

636 and PBS (q-value < 0.05).

Gene	Annotation	Cm 144h	PBS 144h	Log ₂ FC	q-value
KWMTBOMO09333	cuticular protein glycine-rich 16 precursor	28.864	3670.53	-6.99057	4.93E-10
KWMTBOMO06667	cuticle protein 6.4	2.23838	57.1307	-4.67374	0.00186685
KWMTBOMO14312	cuticular protein RR-2 motif 143	0.854633	13.6172	-3.99398	0.00842974
KWMTBOMO04385	cuticular protein RR-1 motif 3 precursor	23.1891	0.355374	6.02797	0.000295781
KWMTBOMO13337	cuticular protein RR-3 motif 148 precursor	119.808	1.78459	6.06899	1.12E-05
KWMTBOMO02607	TPA: putative cuticle protein	331.141	3.64879	6.50388	7.49E-05
KWMTBOMO04384	TPA: putative cuticle protein	51.7868	0.295935	7.45116	1.86E-06
KWMTBOMO13153	cuticular protein RR-1 motif 32 precursor	12.1662	0.0436811	8.12165	0.00589931
KWMTBOMO12563	cuticular protein RR-1 motif 21 isoform X1	378.405	0.873731	8.75853	2.69E-08
KWMTBOMO13142	cuticular protein glycine-rich 21 isoform X1	5.36725	0.00629397	9.73600	0.00684964

TABLE 4 List of genes encoding hemolymph proteins which were downregulated in the fat body of silkworms injected with *C. militaris*

640 conidia (q-value < 0.05).

Gene	Annotation	Cm 144h	PBS 144h	Log ₂ FC	q-value
KWMTBOMO11955	microvitellogenin	0.846819	264.043	-8.28451	4.08E-12
KWMTBOMO01262	sex-specific storage-protein 2 precursor	0.0264395	6.61221	-7.96630	0.0255479
KWMTBOMO04913	carbonic anhydrase 7	0.176093	26.9208	-7.25624	5.48E-06
KWMTBOMO11903	low molecular 30 kDa lipoprotein PBMHPC-19-like precursor	33.0201	4507.03	-7.09269	3.55E-09
KWMTBOMO11904	low molecular mass 30 kDa lipoprotein 19G1-like precursor	11.945	1148.22	-6.58685	1.45E-05
KWMTBOMO08267	hemicentin-1	0.0285761	1.43683	-5.65194	0.033124
KWMTBOMO01263	silkworm storage protein	14.9467	409.94	-4.77751	0.00148665
KWMTBOMO11946	microvitellogenin isoform X1, microvitellogenin isoform X2	4.17965	111.437	-4.73671	6.67E-05
KWMTBOMO11903	low molecular 30 kDa lipoprotein PBMHPC-19-like precursor	62.4695	1420.82	-4.50742	0.000560136
KWMTBOMO08264	roundabout homolog 3	0.359146	6.95044	-4.27446	0.00513965
KWMTBOMO08515	leucine-rich repeat-containing protein 24	12.488	228.127	-4.19122	0.00124637
KWMTBOMO11944	microvitellogenin isoform X1	0.937786	16.2211	-4.11247	0.0112246
KWMTBOMO13038	yellow-c	1.18018	16.8939	-3.83942	0.000840765

	Gene	Annotation	Cm 144h	Cm 168h	Log ₂ FC	q-value
Chr. 2	A9K55_000740	high affinity methionine permease	0.239955	22.7181	6.56494	0.00137337
	A9K55_001034	ABC multidrug transporter	0.23899	9.47377	5.30891	0.0100232
Chr. 3	A9K55_001228	ABC multidrug transporter	0.0263955	3.40255	7.01018	2.73E-05
Chr. 4	A9K55_002395	ABC multidrug transporter	0.0531925	11.3527	7.7376	0.000547884
	A9K55_003014	small oligopeptide OPT family	0.0977206	29.4449	8.23514	2.59E-05
	A9K55_003410	Tetrapeptide OPT1 isp4	1.1095	32.1653	4.85753	0.0217291
Chr. 5	A9K55_003881	OPT peptide transporter Mtd1	0.0639788	4.32712	6.07967	0.000115189
	A9K55_003920	General substrate transporter	0.14568	15.4402	6.72775	0.00652256
	A9K55_004408	bicyclomycin resistance	1.37565	26.6367	4.27524	0.028083
Chr. 6	A9K55_005984	MFS multidrug transporter	0.239429	8.31024	5.11722	0.0237589
	A9K55_006730	Oligopeptide transporter	1.06794	35.6944	5.0628	0.0237589
	A9K55_006784	Oligopeptide transporter OPT superfamily	1.05646	30.2642	4.8403	0.00866372
Chr. 7	A9K55_007089	major facilitator superfamily transporter	1.0676	87.3402	6.35421	0.000405537
	A9K55_007381	protein CCC1, putative	1.102	49.1297	5.47841	0.0016399
	A9K55_008881	oligopeptide transporter	0.0127827	19.739	10.5926	5.56E-06
	A9K55_009238	amino-acid permease inda1	0.00637409	5.07179	9.63606	0.0405053

643	TABLE 5 List of gene	es encoding transporters a	and permeases wh	ich were upregulated in C	<i>militaris</i> at 168 h (q-value < 0.05).
-----	-----------------------------	----------------------------	------------------	---------------------------	--

	Gene	Annotation	Cm 144h	Cm 168h	Log ₂ FC	q-value
Chr. 3	A9K55_001226	non-hemolytic phospholipase C	0.0845705	4.06736	5.5878	0.000220309
	A9K55_001227	hypothetical protein A9K55_001227	1.35619	180.899	7.05948	4.09E-08
	A9K55_001228	ABC multidrug transporter	0.0263955	3.40255	7.01018	2.73E-05
	A9K55_001229	caleosin domain containing	1.87461	104.745	5.80414	7.76E-06
Chr. 5	A9K55_005210	catechol dioxygenase	0.113638	16.9733	7.22267	0.0154719
	A9K55_005211	Salicylate hydrolase	0.105612	10.5049	6.63616	0.0100232
	A9K55_005213	amidohydrolase family	0.374856	23.5821	5.97521	0.0326857
Chr. 7	A9K55_007810	hypothetical protein A9K55_007810	0.70273	47.8577	6.08964	0.0100232
	A9K55_007811	hypothetical protein A9K55_007811	17.7859	1537.38	6.4336	0.00137337
	A9K55_007812	hypothetical protein A9K55_007812	0.330197	7.31883	4.47021	0.0437199
	A9K55_009268	glutathione-S-transferase GST	0.133532	15.5788	6.86626	0.0133208
	A9K55_009269	Cys Met pyridoxal phosphate-dependent enzyme	0.224183	7.5145	5.06693	0.0297471
	A9K55_009271	sarcosine oxidase	0.549478	15.1118	4.78147	0.0139504

TABLE 6 List of genes in a cluster which were upregulated in *C. militaris* at 168 h (q-value < 0.05).

647	Figure legends	
-----	----------------	--

648

649	FIGURE 1 Upregulated gene clusters in C. militaris during the in vivo growth. DEG of
650	genes, which are composed of gene clusters, in C. militaris between 144 h and 168 h
651	was indicated in Table 6 (q-value < 0.05). Here the construction of 4 upregulated gene
652	clusters was indicated.
653	
654	FIGURE 2 RT-qPCR analysis to validate the RNA-seq analysis Expression of <i>C</i> .
655	<i>militaris</i> genes (A9K55_005210, A9K55_005211, A9K55_005212, A9K55_005213) was
656	expressed in the gene cluster of Chr. 5 in silkworm larvae at 144 h and 168 h after the
657	injection of <i>C. militaris</i> conidia. Three biological replicates were performed $(n = 3)$.
658	
659	FIGURE 3 The gene cluster composed of genes encoding putative phenolic substrate
660	degrading enzymes in C. militaris, B. bassiana and M. anisopliae. (A) Construction of
661	the gene cluster composed of genes encoding putative phenolic substrate degrading
662	enzymes in these entomopathogenic fungi (B) Proposed degrading reaction of
663	salicylate, catechol and 2,3-dihydroxybenzoate.
664	
665	FIGURE 4 Effects of catechol and 4,5-dichlorocatechol on the growth of C. militaris,
666	B. bassiana, and M. anisopliae in silkworm larvae. (A) Injection of each concentration
667	(0.1 and 1-mM) of catechol or 4,5-dichlorocatechol into each entomopathogenic fungus-
668	infected silkworm larva. As a negative control, the same volume of DMSO was
669	injected. These solutions were injected into infected silkworm larvae after they died but
670	before the mycelia did not appear on the surface. (B) Morphologies of each

- entomopathogenic fungus-infected silkworm larvae in the presence of DMSO, catechol,
- 672 or 4,5-dichlorocatechol. Three independent experiments were performed and typical
- 673 results were shown.
- 674
- 675 **FIGURE 5** Infection mechanism of *C. militaris* to silkworm larvae proposed in this
- 676 study.

