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Abstract. Location traces are useful for various types of geo-data anal-
ysis tasks, and synthesizing location traces is a promising approach to
geo-data analysis while protecting user privacy. However, existing lo-
cation synthesizers do not consider friendship information of users. In
particular, a co-location between friends is an important factor for syn-
thesizing more realistic location traces.
In this paper, we propose a novel location synthesizer that generates
synthetic traces including co-locations between friends. Our synthesizer
models the information about the co-locations by two parameters: friend-
ship probability and co-location count matrix. The friendship probabil-
ity represents a probability that two users will be a friend, whereas the
co-location count matrix comprises a co-location count for each time
instant and each location. Our synthesizer also provides DP (Differen-
tial Privacy) for training data. We evaluate our synthesizer using the
Foursquare dataset. Our experimental results show that our synthesizer
preserves the information about co-locations and other statistical infor-
mation (e.g., population distribution, transition matrix) while providing
DP with a reasonable privacy budget (e.g., smaller than 1).

Keywords: synthetic trace · co-location · differential privacy · Laplace
mechanism · wavelet transform · Viterbi algorithm

1 Introduction

With the widespread use of mobile phones, LBS (Location-Based Services),
which utilize a user’s location information for some services (e.g., predicting traf-
fic congestion, user-tailored route suggestion), are becoming increasingly popu-
lar. LBS providers can also provide a large amount of location traces (time-series
location trails) to a third party (data analyst) to perform various geo-data anal-
yses such as finding popular POIs (Point-of-Interests) in the surrounding area [1]
and modeling human mobility patterns [2]. However, the disclosure of location
traces raises serious privacy concerns. For example, location traces may include
sensitive locations such as frequently visited hospitals and users’ home.
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To address the privacy issue, privacy-preserving location synthesizers (e.g.,
[3–5]) have been widely studied. The location synthesizer trains a generative
model from real trace data, and then generates synthetic traces based on the
trained generative model. Ideal synthetic traces should preserve various statisti-
cal features (e.g., population distribution [1], transition matrix [6]) of real trace
data while being able to protect user privacy. Synthetic traces can also be used
as a synthetic dataset for research purposes [7] and competitions [8].

However, the existing location synthesizers do not take into account friend-
ship information between users. In particular, friends tend to be in the same
place at the same time [9], which is also known as a co-location [10,11]. Thus, a
co-location between friends is an important factor for synthesizing more realistic
location traces. For example, a synthetic trace dataset including co-locations be-
tween friends may be useful for studying the effect of friend recommendation [9].

In this paper, we propose a novel location synthesizer that generates syn-
thetic traces including co-locations between friends. To preserve co-locations
information, our proposed method trains two parameters from real trace data:
friendship probability and co-location count matrix. The friendship probability
models a probability that two users will become friends. The co-location count
matrix comprises a co-location count for each time instant and each location,
and models a location that is likely to be visited by friends at a certain time
period (e.g., bars at night). Both the friendship probability and the co-location
count matrix provide strong privacy guarantee: DP (Differential Privacy) [12],
a gold standard for data privacy. Our contributions are as follows:

– We propose a novel location synthesizer that generates location traces in-
cluding co-locations between friends. Our proposed method models the in-
formation about co-locations between friends by two parameters: friendship
probability and co-location count matrix. Both the friendship probability and
the co-location count matrix provide DP for training data.

– We show that synthetic traces generated by the proposed method provide
high utility and privacy using the Foursquare dataset [9]. Specifically, we
show that our synthetic traces preserve the information about co-locations
and other statistical features (e.g., population distribution, transition ma-
trix) while providing DP with a reasonable privacy budget ε (e.g., ε ≤ 1).

2 Related Work

2.1 Co-locations

In this paper, we define a co-location as an event that two users are in the same
place at the same time. In particular, we focus on a co-location between friends
and use it to generate synthetic traces. Olteanu et al. [10, 11] showed that co-
location information improves the accuracy of location estimation attacks. They
also studied the users’ benefits of sharing co-locations and the impact of co-
locations on location privacy [13]. Yang et al. [9] showed a correlation between
co-location information and friendships on Twitter.



Synthesizing Privacy-Preserving Location Traces Including Co-locations 3

However, no studies have utilized co-location information for generating syn-
thetic traces, to the best of our knowledge.

2.2 Location Synthesizers

Location synthesizers have been widely studied for over a decade (see [3, 5] for
detailed surveys). Bindschaeder and Shokri [3] proposed generating synthetic
traces by a synthetic location generation model that considers semantic fea-
tures of locations (e.g., most people stay a night at their home locations, which
are geographically different but semantically the same). He et al. [4] proposed
generating synthetic traces that satisfy small ε-differential privacy by training a
transition probability matrix common to all users. Murakami et al. [14] proposed
generating synthetic traces with high utility by clustering a transition matrix for
each user using tensor factorization.

However, there are no studies in which a co-location between friends is con-
sidered for generating synthetic traces, to our knowledge. As shown in [9], there
is a positive correlation between co-locations and friendships; i.e., friends tend
to be in the same place at the same time. Therefore, location synthesizers con-
sidering such co-location information are important to synthesize more realistic
traces. To our knowledge, we are the first to address this issue.

3 Problem Formalization

3.1 Notations

Let N, Z≥0, R, and R≥0 be the set of natural numbers, non-negative integers,
real numbers, and non-negative real numbers, respectively. For a finite set Z, let
Z∗ be the set of all finite sequences of elements of Z.

Let U be a finite set of users in training data, and n ∈ N be the number
of users; i.e., n = |U|. Let ui ∈ U be the i-th user. We discretize locations by
dividing an area of interest into some regions or extracting some POIs. Let X
be a finite set of locations, and xi be the i-th location. We also discretize time
by, for example, rounding down minutes to a multiple of 30. Let T be a finite
set of time instants, and ti ∈ T be the i-th time instant.

We also show the basic notations used in this paper in Table 1.

3.2 Friendship Data

In this paper, we use friendship data and real trace data as training data to
generate synthetic location traces including co-locations.

The friendship data contains friendship information between any pair of two
users, and therefore can be represented as an adjacency matrix of size n × n.
If two users are friends, then the corresponding element will be assigned value
“1”; Otherwise, “0”. The diagonal elements are “0” because there is no friend
relationship between the user and him/herself. Fig. 1 shows an example of the
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Table 1. Basic notations in this paper.

Symbol Description

U Finite set of users
n Number of users (n = |U|)
X Finite set of locations
T Finite set of time instants
E Finite set of events (E = X × T )
S Finite set of training traces (S ⊆ U × E∗)
ui i-th user (ui ∈ U)
xi i-th location (xi ∈ X )
ti i-th time instant (ti ∈ T )
A Adjacency matrix (A ∈ {0, 1}n×n)
ai i-th row of the adjacency matrix A (ai ∈ {0, 1}n)
si i-th training trace (si ∈ S)

𝑢1
𝑢3

𝑢2

𝑢4
𝑢5

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5

𝑢1 0 0 1 0 1

𝑢2 0 0 1 0 0

𝑢3 1 1 0 0 0

𝑢4 0 0 0 0 1

𝑢5 1 0 0 1 0

Fig. 1. An example of friendship data (n = 5).

friendship data. In this example, user u1 is a friend with u3 and u5. u2 is a friend
with u3.

Let A ∈ {0, 1}n×n be an adjacency matrix, and ai ∈ {0, 1}n be the i-th row
of A. In Fig. 1, a1 = (0, 0, 1, 0, 1), a2 = (0, 0, 1, 0, 0), · · · , a5 = (1, 0, 0, 1, 0). The
friendship data can also be represented as a graph (as shown in Fig. 1), where a
node represents a user and an edge represents a friendship between two users.

3.3 Trace Data

We define an event by a pair of a location and time instant, as in [5]. The trace
data contains a location trace for each user, and a location trace contains events.
Fig. 2 shows an example of the trace data. Co-location events are marked in red.
In this example, users u2 and u3 have a co-location event at location x1 and
time instant t1. u1 and u2 have a co-location event at x2 and t2.

Let E = X × T be a finite set of events. Let S ⊆ U × E∗ be a finite set of
training traces, and si ∈ S be the i-th training trace. Fig. 2 can be rewritten
as S = {s1, s2, s3, s4} and s1 = (u1, (x3, t1), (x2, t2), (x3, t3), (x3, t4)), · · · , s4 =
(u4, (x2, t1), (x3, t2), (x2, t3), (x3, t4)) .
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x3 x2 x3

x1 x2 x3

x1 x1 x4

Trace Data

user trace

x3

x3

x3

time

: Co-location

x2 x3 x2 x3

Fig. 2. An example of trace data (n = 4).

3.4 Threat Model and Differential Privacy

Threat Model. In this paper, we consider privacy preservation against an
attacker with any background knowledge other than the training data (friendship
data and trace data) used for generating synthetic traces. The attacker obtains
the synthetic traces, and attempts to violate user privacy in the training data
(e.g., membership inference attacks [15, 16]) based on the synthetic traces and
his/her background knowledge.

To strongly protect user privacy in the training data from the attacker with
any background knowledge, we use differential privacy (DP) [12,17] as a privacy
metric. DP provides user privacy against attackers with any background knowl-
edge and is known as a gold standard for data privacy. Below we explain DP for
friendship data and trace data in detail.

DP for Friendship Data. In graphs, there are two types of DP: edge DP and
node DP [18]. Edge DP hides the existence of one edge (friendship). In contrast,
node DP hides the existence of one node (user) and all edges connected to the
node, and hence guarantees much stronger privacy than edge DP. Therefore, we
use node DP to protect user privacy in the friendship data.

Formally, node DP considers two neighboring adjacency matrices A and
A′ that differ in one user and his/her all friendship information. For exam-
ple, consider a graph obtained by removing u3 and all edges connected to u3 in
Fig. 1. Let A′ ∈ {0, 1}4×4 be its adjacency matrix. In this case, a′1 = (0, 0, 0, 1),
a′2 = (0, 0, 0, 0), a′3 = (0, 0, 0, 1), and a′4 = (1, 0, 1, 0). A ∈ {0, 1}5×5 in Fig. 1
and A′ in this example are neighboring adjacency matrices.

Then node DP [18] is defined as follows.

Definition 1 (ε1-node DP). Let ε1 ∈ R≥0. A randomized algorithm M1 pro-
vides ε1-node DP if for any two neighboring adjacency matrices A and A′ that
differ in one node and its adjacent edges and any Z ⊆ Range(M1),

Pr[M1(A) ∈ Z] ≤ eε1 Pr[M1(A′) ∈ Z]. (1)

Intuitively, node DP guarantees that an adversary who obtains the output ofM1

cannot determine whether a particular node is included or not with a certain
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degree of confidence. This property is independent of the adversary’s background
knowledge. ε1 is called the privacy budget. When the privacy budget ε1 is small
(e.g., ε1 ≤ 1 [19]), privacy of each node (user) is strongly protected.

DP for Trace Data. We can also consider two types of DP for trace data:
event-level DP and user-level DP [20]. Event-level DP protects one event in a
trace, whereas user-level DP protects the entire history (i.e., whole trace) of one
user. Thus, user-level DP guarantees much stronger privacy than event-level DP.
We use user-level DP to protect user privacy in the trace data.

Formally, we consider two neighboring sets S and S ′ of training traces such
that S ′ is obtained by adding or removing a training trace of one user in S. For
example, consider a set S ′ of training traces obtained by removing s3 in Fig. 2;
i.e., S ′ = {s1, s2, s4}. S in Fig. 2 and S ′ in this example are neighboring.

Then user-level DP can be defined as follows.

Definition 2 (ε2-user-level DP). Let ε2 ∈ R≥0. A randomized algorithm M2

provides ε2-user-level DP if for any two neighboring sets S and S ′ of training
traces that differ in one trace and any Z ⊆ Range(M2),

Pr[M2(S) ∈ Z] ≤ eε2 Pr[M2(S ′) ∈ Z]. (2)

User-level DP guarantees that an adversary who obtains the output ofM2 can-
not determine whether a particular user is included or not in trace data. Again,
privacy of each user is strongly protected when the privacy budget ε2 is small
(e.g., ε2 ≤ 1). In addition, the privacy budget for each user in the training data
can be calculated as the sum of ε1 and ε1 by the composition theorem [21].
Therefore, user privacy in the training data is strongly protected by using ε1-
node DP with small ε1 for friendship data and ε2-user-level DP with small ε2
for trace data.

4 Proposed Method

4.1 Overview

Fig. 3 shows the overview of generating synthetic traces using our proposed
method. The proposed method uses a location dataset that includes both trace
data and friendship data (e.g., Foursquare dataset in [9]) as training data. To
distinguish between trace data in the training data and synthetic trace data, we
refer to the former trace data as real trace data.

In a nutshell, the proposed method generates co-locations between friends
using two parameters: friendship probability p′ ∈ [0, 1] and co-location count

matrix Q′ ∈ Z|T |×|X|≥0 . The friendship probability p′ represents the probability
that two users are friends. The co-location count matrix Q′ includes a co-location
count for each time instant and each location. For example, if friends tend to
meet at a bar from 6PM to 8PM, then the corresponding elements in Q′ have
large co-location counts.
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・Friendship probability
・Co-location count matrix

Train a location synthesizer Generate synthetic tracesReal trace data

Dataset (e.g., Foursquare)

Fig. 3. Overview of generating synthetic traces using the proposed method. p′ and Q′

in the dotted box are parameters in the proposed method to generate co-locations.

Friendship data

Real trace data

Friendship probability

Co-location count
matrix

Co-location count 
matrix

Friendship probability

Add DP noise
(Laplace)

Dataset
(e.g., Foursquare)

Add DP noise
(e.g., Laplace, Wavelet)

Fig. 4. Overview of training parameters p′ and Q′ in the proposed method. p′ and Q′

provide node DP and user-level DP, respectively.

The proposed method randomly generates friendship information in synthetic
traces using p′. Then it generates co-locations between friends at a specific lo-
cation and time instant using Q′. The generated co-locations preserve the infor-
mation about Q′; e.g., friends tend to meet at a bar from 6PM to 8PM. After
generating co-locations, the proposed method generates the remaining events in
synthetic traces using existing location synthesizers that model human movement
patterns as a transition matrix. Such location synthesizers include the location
synthesizers in [3–5,22]. In our experiments, we use the synthetic data generator
in [22] because it is easy to implement and provides user-level DP with a small
privacy budget. We train the existing location synthesizer using real trace data.

Fig. 4 shows the overview of training p′ and Q′ in the proposed method.
From friendship data, we calculate the friendship probability p ∈ [0, 1]. Then we
generate p′ by adding the Laplace noise [12] to p. The noisy friendship probability
p′ provides node DP.

From real trace data, we calculate the co-location count matrix Q by simply
counting co-locations between friends. Then we generate a co-location count
matrix Q′ that provides user-level DP by adding noise to Q. The simplest
way to provide DP for Q′ is to add the Laplace noise to each element in Q.
However, the total amount of the Laplace noise can be very large because the
number of elements in Q is large (|T ||X | elements in total). Therefore, we use
a DP mechanism based on the Wavelet transform called Privelet [23]. Privelet
(for one-dimensional nominal data) applies a nominal Wavelet transform to a
one-dimensional frequency matrix, and adds independent Laplace noise to each
wavelet coefficient (each node in a tree structure). Privelet can add noise ef-
fectively when a category or tree structure of locations is known. For example,
the Foursquare dataset [9] has a category (e.g., “travel & transport”, “shop &
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service”) and sub-category (e.g., “train station”, “subway”, “electronics store”,
“hobby shop”) of POIs [24], and each POI is associated with a category and sub-
category. In this case, Privelet can be used to provide DP for Q′ with a much
smaller amount of noise for each POI category and each time instant (e.g., “travel
& transport” from 7AM to 9AM). In our experiments, we compare Privelet with
the Laplace mechanism, and show that the former significantly reduces the noise.

Features. The main feature of our proposed method is that it can generate
synthetic traces including co-locations. The synthetic traces preserve the infor-
mation about p′ (i.e., how likely two users will be a friend) and Q′ (i.e., how
likely a co-location event will happen at a certain location for each time instant),
both of which are trained from training data. In addition, the synthetic traces
strongly protect user privacy: node DP for friendship data and user-level DP for
real trace data. The privacy budgets are also reasonable (e.g., smaller than 1),
as shown in our experiments.

4.2 Friendship Probability p′

Calculation of p′. Below we explain how to calculate the friendship probability
p′ ∈ [0, 1] in our method.

First, we calculate the friendship probability p by simply calculating the
proportion of edges in friendship data; i.e., the proportion of “1”s in the non-
diagonal elements of adjacency matrix A. In the example of Fig. 1, we can
calculate p as p = 8/(5× 4) = 0.4. For b ∈ R≥0, let Lap(b) be a random variable
that represents the Laplace noise with mean 0 and scale b. Then we calculate p′

by adding the Laplace noise Lap( 2
nε1

); i.e., p′ = p+ Lap( 2
nε1

).

DP of p′. LetMLap
1 be a randomized algorithm that takes an adjacency matrix

A as input and outputs p′. Then we have the following privacy guarantee.

Proposition 1. MLap
1 provides ε1-node DP.

Proof. Let f : {0, 1}n×n → [0, 1] be a function that takes A as input and outputs
p. Let ∆f be the global sensitivity [12] of f given by:

∆f = max
A∼A′

|f(A)− f(A′)|, (3)

where A ∼ A′ represents that A and A′ are neighboring. Let d ∈ Z≥0 be the
number of “1”s in A. Assume that A′ is obtained by removing one node in A.
In this case, ∆f takes the maximum value when the removed node has edges
with all the other nodes. Thus, when n ≥ 3, we have:

|f(A)− f(A′)| ≤ d
n(n−1) −

d−2(n−1)
(n−1)(n−2) <

d
n(n−1) −

d−2(n−1)
n(n−1) = 2

n . (4)

Note that f(A) ≤ 1 when n = 2 and f(A) = 0 when n ≤ 1. Thus, (4) also holds
when n < 3. When A′ is obtained by adding one node in A, the right-hand side
of (4) becomes 2

n+1 <
2
n . Therefore, ∆f ≤ 2

n .
Since adding the Laplace noise Lap(∆f/ε1) to p provides ε1-DP [12] and

∆f ≤ 2
n , MLap

1 that adds Lap( 2
nε1

) to p provides ε1-node DP. ut
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x3 x2 x3

x1 x2 x3

x1 x1 x4

Trace Data

user trace

x3

x3

x3

time

: Co-location

Co-locations

x2 x3 x2 x3

Trimming ( ）

Co-locations

Co-location count matrix

Fig. 5. Overview of calculating the co-location count matrix Q.

4.3 Co-location Count Matrix Q′

Calculation of Q′. Next we explain how to calculate the co-location count

matrix Q′ ∈ Z|T |×|X|≥0 in the proposed method.
From the real trace data, we calculate the co-location count matrix Q ∈

[0, 1]|T |×|X|, which includes the number of co-locations for each time instant
and each location. Here we introduce an upper limit c ∈ Z≥0 on the number
of co-locations per user – when the number of co-locations reaches c, the user’s
co-locations are not read anymore. This is called trimming [25] and is used to
upper-bound the global sensitivity in DP. Fig. 5 shows an overview of calculating
Q when c = 3. In this example, user u1’s co-locations are not read after reading
three co-locations of u1.

Then we calculate Q′ by adding noise to Q. In this paper, we use the Laplace
mechanism or Privelet (for nominal data) [23] to add noise. The Laplace mech-
anism simply adds Lap(c/ε2) to each element of Q. Privelet applies the Wavelet
transform to a tree structure of locations, and adds the Laplace noise to a wavelet
coefficient for each node in the tree. See [23] for more details.

DP of Q′. LetMLap
2 be a randomized algorithm that takes a set S of training

traces as input and outputs Q′ by adding Lap(c/ε2) to each element of Q. Then
we have the following privacy guarantee.

Proposition 2. MLap
2 provides ε2-user-level DP.

Proof. Since we read at most c co-locations per user from S, adding or removing
a training trace of one user in S changes each element of Q by at most c.
Thus, the global sensitivity of each element of Q is at most c. Since MLap

2 adds
Lap(c/ε2) to each element of Q, it provides ε2-user-level DP. ut

Let MWavelet
2 be Privelet. Then MWavelet

2 with the Laplace noise based on the
global sensitivity c also provides ε2-user-level DP. See [23] for the proof.



10 Authors Suppressed Due to Excessive Length

User Synthetic trace

Time

…

…

…

…

…

Friendship 
probability

Co-location count
matrix

Synthetic graph Co-location probability
matrix

User

Time

…

…

…

…

…

(1)

x2

x3x2

x3

x4

x4

x3

Synthetic trace

Location synthesizer
(transition matrix)

(2)

(3)

(3)

(4)

(4)

x2

x3x2

x3

x4

x4

x3

x3 x3 x1

x4

x4 x3

x1 x1 x2

(1) Generate a synthetic graph.
(3) Generate co-locations.

(2) Normalize counts to probabilities.
(4) Generate the remaining locations.

Fig. 6. Overview of generating synthetic traces in our proposed method.

4.4 Generating Synthetic Traces

We generate a synthetic trace using the friendship probability p′, co-location
count matrix Q′, and a location synthesizer that trains a transition matrix from
real trace data (e.g., [3–5,22]).

Fig. 6 shows the overview of generating synthetic traces in our proposed
method. Specifically, we generate a synthetic trace for each of n users as follows.

1. Generate a synthetic graph G′ with n nodes based on the Erdös-Rényi model,
which randomly generates each edge with probability p′.

2. Calculate the category co-location probability matrix R′ ∈ [0, 1]|T |×|X| by
normalizing each row of the co-location count matrix Q′ so that the sum of
the rows is 1. Note that an element in Q′ may have a negative value. Thus,
we calculate each row of R′ by adding the absolute value of the minimum
value to all elements and dividing them by their sum.

3. Generate θ ∈ N co-location events between friends (who have an edge in G′).
Specifically, we iterate the following three steps until θ co-location events are
obtained: (i) Randomly select a pair of friends from G′; (ii) Randomly select
a time instant from T ; (iii) Randomly generate a co-location at the selected
time instant by using the corresponding row of R′. Note that if either of the
two users in step (i) has already had a co-location at a time instant selected
in step (ii), we use it as a co-location in step (iii) for consistency with the
previously generated co-location.

4. Generate the remaining locations in n synthetic traces using the transi-
tion matrix of a location synthesizer (e.g., [3–5, 22]). Specifically, we use
the Viterbi algorithm to complement the remaining locations.

Note that the number θ of co-location events is a parameter in our proposed
method. We set θ to various values in our experiments. It is also possible to
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Table 2. POI categories and sub-categories.

POI category POI sub-category

travel & transport train station, airport, platform, subway,
airport terminal

shop & service electronics store, hobby shop, record shop, mall
arts & entertainment arcade
professional & other places tech startup, convention center

calculate the frequency of co-location events (with DP noise) from real trace
data, and set θ based on the co-location frequency.

Although we use the Erdös-Rényi model to generate a graph G′ for simplicity,
there exist more complicated and realistic graph models (e.g., Barabási–Albert
model [26]) that have power-law degree distributions. An interesting avenue of
future work is to incorporate such models into our proposed method.

5 Experimental Evaluation

5.1 Datasets

In our experiments, we used the Foursquare dataset in [9]. This dataset contains
22,809,624 check-ins from 114,324 users and 3,820,891 POIs. The dataset also
includes the users’ friendship data on SNS and a category and sub-category of
POIs [24]. We used the check-in data in Tokyo (916,136 check-ins, 8,357 checked-
in users, and 83,647 POIs). We set the length of a time instant to be one hour, and
extracted two temporally-continuous location events from the dataset (|T | = 24).

Since the number of check-ins for each POI is highly biased, the matrix Q
becomes extremely sparse when we use all POIs. Therefore, we used check-in data
for 100 POIs whose numbers of check-ins are the largest (n = 8357, |X | = 100).
The number m of POI categories was m = 4. The number of POI sub-categories
was 12. Table 2 shows the POI categories and sub-categories.

5.2 Utility Metrics

Co-locations. To quantitatively show how our proposed method preserves
the information about co-locations, we evaluated the utility of the friendship
probability p′ and the co-location count matrix Q′.

Specifically, we evaluated the absolute error |p − p′| between p and p′ as a
utility metric for p′. For utility of Q′, co-location counts for each POI cate-
gory and each time instant (e.g., “travel & transport” from 7AM to 9AM) are

especially important. Thus, we did the following. Let Q∗ ∈ Z|T |×|X|≥0 be a co-
location count matrix before adding noise when we do not perform trimming.
Q∗ is identical to Q when c = ∞. We calculated a per-category co-location

count matrix Q
∗ ∈ Z|T |×m≥0 (|T | = 24, m = 4), which comprises of counts for

each time instant and each POI category, by summing up counts in Q∗ for each
POI category. Similarly, we calculated a per-category co-location count matrix
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Q
′ ∈ Z|T |×m≥0 by summing up counts in Q′ for each POI category. Then we eval-

uated the MAE (Mean Absolute Error) and MSE (Mean Square Error) between

Q
∗

and Q
′
. The MAE is given by: 1

|T |m
∑|T |

i=1

∑m
j=1 |Q

∗
ij −Q

′
ij |, where Q

∗
ij and

Q
′
ij are the (i, j)-th elements of Q

∗
and Q

′
, respectively. The MSE is given by:

1
|T |m

∑|T |
i=1

∑m
j=1(Q

∗
ij −Q

′
ij)

2. Note that the difference between Q
∗

and Q
′

can

be caused by two factors: trimming and adding DP noise.
Our proposed method randomly generates co-locations in synthetic traces

based on p′ and Q′. Thus, when the absolute error of p′ is small, our synthetic
traces preserve the information about how likely two users will be a friend. When

the MAE and MSE of Q
′
are small, our synthetic traces preserve the information

about how likely a co-location event between friends will happen at a certain
POI category for each time instant (e.g., “travel & transport” from 7 to 9AM).

Other statistical features. We also evaluated how our synthetic traces pre-
serve statistical features (other than co-locations) about real trace data. Specifi-
cally, we calculated two basic statistical features for geo-data analysis: population
distribution and transition probability matrix. The population distribution (|X |-
dimensional probability vector) is a key feature to find popular POIs [1], whereas
the transition probability matrix (|X | × |X | matrix) is a key feature to model
user movement patterns [6]. For both of them, we evaluated the MAE and MSE
between real trace data and synthetic traces.

5.3 Location Synthesizers

We evaluated three location synthesizers for comparison. The first synthesizer
is a simple one that independently and randomly generates a location at each
time instant from the uniform distribution. We denote this method by Uniform.

The second synthesizer is the synthetic data generator in [3]. This synthe-
sizer can be applied to any kind of data, and it was applied to location traces
in [5]. This synthesizer can be applied to location traces as follows. First, we
train a transition probability matrix (|X | × |X | martrix) common to all users
from real trace data, and add the Laplace noise Lap(c/ε2) to each element to
provide ε2-user-level DP. Then we randomly generate the first location based on
a stationary distribution calculated from the transition matrix, and then gen-
erate the remaining locations using the transition matrix. Since this method is
based on the transition probability matrix, we denote this method by TPM.

The third synthesizer is our proposed method. We denote it by Proposal.
In Proposal, we trained p′ from friendship data by adding the Laplace noise,
and Q′ from real trace data using the Laplace mechanism or Privelet. Then we
generated θ co-locations using p′ and Q′. Finally, we generated the remaining
locations using TPM.

In each location synthesizer, we set the length of a time instant to be one
hour, and generated a trace with the length of one day for each of n users.
For each synthesizer, we generated synthetic traces five times, and averaged the
utility metrics over the five runs to stabilize the performance.
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5.4 Experimental Results

Friendship probability p′. Fig. 7 shows the absolute error of p′ when we
changed the privacy budget ε1 from 0.01 to 5.

Fig. 7 shows that the absolute error rapidly decreases as ε1 increases from 0.01
to 0.5. It also shows that the absolute error is very small and almost unchanged
after ε1 = 0.5, which means that we can accurately estimate the friendship prob-
ability p′ with a small privacy budget ε1 = 0.5 in node DP for friendship data.

Per-category co-location count matrix Q
′
. Fig. 8 and Fig. 9 show the

MAE/MSE of Q
′
. Here we set the privacy budget ε2 in user-level DP for real

trace data to ε2 = 1, and the upper limit c on the number of locations per user
in trimming to c = 1, 5, 10, 15, or 20.

Fig. 8 and Fig. 9 show that Privelet achieves much smaller MAE and MSE
than the Laplace mechanism, which means that Privelet significantly reduces
the amount of noise for each POI category and each time instant (e.g., bars at
night). These figures also show that when c = 5 and 10, Privelet achieves the
smallest MAE and MSE, respectively. This indicates that there is a trade-off
between the effect of trimming (which is large when c is small) and the Laplace
noise (which is large when c is large).

Fig. 10 and Fig. 11 show the relationship between ε2 and MAE/MSE, where
c = 5. We observe that the MAE and MSE rapidly decreases as ε2 increases
from 0.1 to 1, and that they remain almost unchanged after ε2 = 1.

In Fig. 11, when ε2 is 2.5 or more, the MSE of Privelet is larger than that of
Laplace. One reason for this is that Privelet algorithm adds noise to each node
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of a tree structure and the number of targets for noise addition (i.e., the number
of nodes) in Privelet is larger than the number of elements in Q.

Other statistical features. Finally, we evaluated the relationship between the
number θ of generated co-location events and the MAE/MSE of the population
distribution and the transition matrix. Fig. 12 and Fig. 13 show the MAE/MSE
of the population distribution. Fig. 14 and Fig. 15 show the MAE/MSE of the
transition matrix. Here we set θ to θ = 1, 5, 10, 50, 100, 500, 1000, or 5000.

Fig. 12, Fig. 13, Fig. 14, and Fig. 15 show that when the number θ of gen-
erated co-location events is smaller than 1000, the proposed method (Proposal)
achieves much smaller MAE and MSE than the uniform synthesizer (Uniform),
and almost the same MAE and MSE as the synthetic data generator in [22]
(TPM). Note that TPM does not generate co-location events between friends,
unlike Proposal. In other words, Proposal can generate co-location events between
friends based on p′ and Q′ while keeping high utility in terms of other statistical
features such as the population distribution and transition matrix.

However, when the number θ of co-location events increases from 1000, the
MAE and MSE in Proposal become larger. This is because there are too many co-
locations in the synthetic traces and the population distribution and transition
matrix are not preserved well even if we complement the remaining locations
using the Viterbi algorithm. Therefore, we should determine an appropriate value
of θ in advance, either manually or automatically. One way to automatically set
θ is to calculate the frequency of co-location events from real trace data while
providing DP for the real trace data, and then set θ based on the co-location
frequency. Exploring such automatic setting of θ is left for future work.

6 Conclusion

In this paper, we proposed a location synthesizer for synthesizing location traces
including co-location events, which are important for synthetic traces to be more
useful and realistic. Our proposed method generates synthetic traces using the
friendship probability and the co-location count matrix, while providing node DP
for friendship data and user-level DP for real trace data. We showed that our
location synthesizer can generate synthetic traces that preserve the information
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about the friendship probability and co-location count matrix, as well as other
statistical features such as the population distribution and transition matrix. We
also showed that our location synthesizer provides node DP and user-level DP
with reasonable privacy budgets (e.g., smaller than 1).

For future work, we plan to evaluate the utility of various location synthe-
sizers [3–5] when they are used to complement locations other than co-locations
using the Viterbi algorithm in our proposed method. Another line of future work
is to automatically determine an appropriate value of θ (number of generated
co-location events) while providing DP for the real trace data. It would also be
interesting to incorporate the friendship level (numerical value rather than 0/1)
between users into our algorithm, and to assess the accuracy of privacy attacks
such as membership inference as a function of ε.
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