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The basic reproduction number R0 is a standard indicator of infection control in epidemiology.
Although R0 has been studied extensively for deterministic epidemic models, it has not been for-
mulated accurately for models adopting network structures. Here, we extend a four-compartment
model that includes commonly used epidemic models to a Markov process on networks. By exam-
ining the Markov process in detail, we derive a canonical formula for R0 involving two probability
values. Numerical calculations show that the derived formula is a better approximation than the
conventional formula when the network is very sparse. We propose this as a standard formula
for controlling infections that can only be transmitted through intimate contact, where contacts
between individuals can be described as a sparse network.

I. INTRODUCTION

Despite advances in medical science and public health,
infectious diseases pose serious threats to humanity, as
exemplified by the outbreaks of emerging infectious dis-
eases such as SARS, MERS, and COVID-19 [1, 2]. In
epidemiology, the basic reproduction number, R0, is an
important indicator of the transmission potential of in-
fectious diseases [3–6]. R0 gives the average number of
secondary cases for a typical infection in a completely
susceptible population. When R0 > 1, the infection
can spread in the host population. By contrast, when
R0 < 1, the infection does not spread. Higher values of
R0 indicate epidemics that are difficult to control, and in-
fection prevention measures are focused on reducing R0.
The features of R0 have been investigated thoroughly for
compartmental or mean-field models based on ordinary
differential equations [3–6]. Despite the fact that human
contact networks are a key factor in the spread of infec-
tion [7, 8], no unified formula for R0 has been obtained
for the epidemic models on networks [9–13].

In this paper, we consider an SEIRS model with four
compartments—susceptible (S), exposed (E), infectious
(I), and recovered (R)—that encompasses several com-
monly used epidemic models, and we investigate the im-
pact of population disorder as represented by a network
on the spreading processes. We assume a network that
is sparse and has no loops. By examining the stochastic
process of this model in detail, we clarify the importance
of two probability values, c1 and c2, defined below. Con-
sider a pair of individuals i and j. When an infection
transmission occurs from individual j to individual i, in-
dividual i recovers before individual j with probability c1
(Fig. 1(b)). By contrast, when an infection transmission
occurs from individual i to individual j, individual i re-
covers before individual j with probability c2 (Fig. 1(c)).
We derive a formula for R0 based on c1 and c2 for an
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SEIRS model on networks. This approach better ap-
proximates the number of secondary infections, which is
crucial given that neighbors with waned immunity can
be reinfected.
The remainder of this paper is organized as follows.

Section II redefines the SEIRS model as a Markov process
on networks. Section III presents a method for approx-
imating the basic reproduction number for the SEIRS
model on networks. Section IV compares the theoret-
ical results with numerical calculations for three types
of networks. Section V discusses the results and their
implications.

II. MODEL

Here, we consider the SEIRS model. A susceptible in-
dividual is not infected and not immune, and an exposed
individual is infected but is in the latent non-infectious
period. An infectious individual has completed the la-
tency period and is infectious, and a recovered individ-
ual is immunized after recovering. The current model
considers the process of returning from R to S, assuming
that immunity is lost over time. Let S, E, I, and R be
the populations of susceptible, exposed, infectious, and
recovered individuals, respectively. In the framework of
a deterministic ordinary differential equation model, the
SEIRS model is as follows:

dS(t)

dt
= −βS(t)I(t) + ωR(t),

dE(t)

dt
= βS(t)I(t)− σE(t),

dI(t)

dt
= σE(t)− γI(t),

dR(t)

dt
= γI(t)− ωR(t),

(1)

where β represents the rate of transmission between a
susceptible and an infectious individual, exposed indi-
viduals acquire infectivity at the rate σ (moving to I),
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FIG. 1. Illustration of the calculation of probabilities c1 and
c2 in terms of the rates of infection transmission σ, γ, and ω
between individuals in susceptible (S), exposed (E), infectious
(I), and recovered (R) states. Consider a pair of individuals
i, j who become I or E as a result of infection transmission be-
tween them. Panel (a) shows the rates of transition between
states E, I, R and S. Panel (b) shows the processes required for
a newly exposed individual i to recover and become suscepti-
ble again before the original infectious individual j recovers.
The probability of each process is shown on the right side of
the corresponding arrow. The product of the three proba-
bilities gives probability c1 in Eq. (12). Panel (c) shows the
processes required for the original infectious individual i to
recover and become susceptible again before a newly exposed
individual j recovers. There are multiple possible paths, and
summing their probabilities yields probability c2 in Eq. (16).
The lightly shaded arrows indicate the process by which the
I-S pair becomes I-E (i.e., infection occurs), and the probabil-
ity that this occurs is given by Eq. (11) if there are no other
infectious individuals adjacent to individual i. In the main
text, we calculate the average number of secondary infections
from individual j, indicated by the shaded circles.

infectious individuals recover at the rate γ (moving to
R), and recovered individuals lose immunity at the rate
ω (moving to S). Although several studies have used β/N
(where N is the total population) instead of β in Eq. (1)
[3–6], we adopt this form to facilitate the introduction of
the network structure, setting β to be the rate at which
an infectious individual infects a neighboring susceptible
individual.

Here, we assume that the outbreak occurs on a short
time scale (i.e., that the epidemic dynamics is substan-
tially faster than the demographic dynamics). Thus,
births and deaths are neglected, and therefore the total
population N = S(t) + E(t) + I(t) + R(t) remains con-
stant. As summarized in Table I, the model represented
as Eq. (1) includes various commonly used models as lim-
its.

For the model in Eq. (1), the basic reproduction num-
ber is [4]

R0 =
β

γ
N. (2)

This is because the average length of the infectious period

TABLE I. Several popular models expressed as parameter-
limits of Eq. (1). c1 and c2 are the probability coefficients
derived in this paper.

Model σ ω c1 c2

SIS → ∞ → ∞ 1/2 1/2

SEIS (0,∞) → ∞ 1

2

σ

σ + γ
1− 1

2

σ

σ + γ

SIRS → ∞ (0,∞)
1

2

ω

ω + γ

1

2

ω

ω + γ

SIR → ∞ → 0 0 0

SEIR (0,∞) → 0 0 0

is 1/γ, and the rate of new infections during the infectious
period is βN . A more rigorous method for calculating R0

uses the next-generation matrix [3, 14, 15]. Note that
Eq. (2) is independent of σ and ω.
If the population is well mixed, the above statement is

adequate. In reality, however, individuals are in contact
with only a very small portion of the entire population.
A simple way to model such a situation is to describe
human interactions as a network that is relatively sparse
[16]. Given a population of N individuals, the network is
represented using the N ×N adjacency matrix in which
entry (i, j) represents the link between individuals i and
j, as follows:

Aij =

{
1 if there is a link between i and j

0 otherwise
. (3)

Here, we assume that the network is undirected (Aij =
Aji) and that the weights of the connections are uniform.
In this case, the degree of individual i is defined as

ki =

N∑
j=1

Aij , (4)

and the average degree of the network is given as

⟨k⟩ = 1

N

N∑
i=1

N∑
j=1

Aij . (5)

When the SEIRS model given by Eq. (1) is extended
to a population network of size N , the 4N -state Markov
process should be considered [17]. This is because each
individual is in one of the four compartments (S,E,I,R).
Individuals in compartments E, I, and R independently
transition to compartments I, R, and S at rates σ, γ, and
ω, respectively, as shown in Fig. 1(a).

III. APPROXIMATION THEORY

By applying the conventional individual-based mean-
field approximation [7, 17], we obtain approximated dif-
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ferential equations instead of Eq. (1):

dpS(i, t)

dt
= −β

∑N
j=1 AijpS(i, t)pI(j, t) + ωpR(i, t),

dpE(i, t)

dt
= β

∑N
j=1 AijpS(i, t)pI(j, t)− σpE(i, t),

dpI(i, t)

dt
= σpE(i, t)− γpI(i, t),

dpR(i, t)

dt
= γpI(i, t)− ωpR(i, t),

(6)
where pS(i, t), pE(i, t), pI(i, t), and pR(i, t) are the prob-
abilities that individual i is in states S, E, I, and R,
respectively. By performing a stability analysis of the
disease-free state, the 2N -dimensional Jacobi matrix of
Eq. (6) can be obtained

J =

(
−σI βA

σI −γI

)
. (7)

where I is the N -dimensional unit matrix. Then, by
dividing the Jacobi matrix into the parts related to in-
fections and the rest of the transitions

J = T − Σ =

(
0 βA

0 0

)
−

(
σI 0

−σI γI

)
, (8)

the next-generation matrix can be constructed [7, 17]

TΣ−1 =
β

γ

(
A A

0 0

)
. (9)

Thus, the basic reproduction number would be calculated
as follows:

R0 =
β

γ
Λ1,A, (10)

where Λ1,A is the largest eigenvalue of the adjacency
matrix A. For a complete graph (Aij = 1 for all i, j),
Eq. (10) is equivalent to Eq. (2). In what follows, we de-
rive a deviation from this approximation for the infection-
spreading process in sparse networks.

Consider a pair consisting of neighboring individuals
i and j who are susceptible and infectious, respectively.
The probability that individual i becomes exposed before
individual j recovers is

p≥1 =
β

β + γ
. (11)

Immediately after this infection occurs, the pair is in the
state shown at the top of Fig. 1(b). The probability
that individual i recovers and becomes susceptible again
before individual j recovers is

c1 =
1

2

σ

σ + γ

ω

ω + γ
, (12)

because three independent events must occur, as shown
in Fig. 1(b). The values of c1 for some well-known mod-
els are summarized in Table I. Assuming that individual
i has no other infectious neighbors, it is possible for in-
dividual j to infect individual i again with a probability
of

p≥2 = c1

(
β

β + γ

)2

. (13)

In the generalized form, the probability that individual i
is repeatedly infected at least h times is

p≥h = ch−1
1

(
β

β + γ

)h

. (14)

Thus, we can compute the average number of times a
neighbor is infected by a focal node as follows:

h̄ =

∞∑
h=1

h(p≥h − p≥h−1)

=

∞∑
h=1

p≥h

=
β

β(1− c1) + γ
.

(15)

Conversely, consider the case of infection from individ-
ual i to j. As the exposed individual j can cause infection
in kj − 1 individuals other than individual i, the average
number of secondary infections is (kj − 1)h̄. In addi-
tion, there is a possibility of reinfection if individual i
has recovered. If we approximate that individual i has
no other infectious neighbors, the probability that this
neighbor recovers before individual i can be calculated
as follows:

c2 =
1

2

σ

σ + γ

ω

ω + γ
+

γ

σ + γ

(
σ

σ + ω

ω

ω + γ
+

ω

σ + ω

)
.

(16)
The derivation of Eq. (16) is illustrated in Fig. 1(c), and
the values of c2 for some well-known models are given
in Table I. Clearly, c1 ≤ c2. If there is no recovery
stage (ω → ∞), c1 + c2 = 1, and if there is no exposure
stage (σ → ∞), c1 = c2. The average number of times
the infection is transferred back to the source neighbor
is c2h̄. By summing the above results, we obtain the
average number of infections from individual j as

nj
infection = (kj − 1 + c2)

β

β(1− c1) + γ
. (17)

Now, to calculate the basic reproduction number, we de-
velop a new individual-based mean-field approximation
using Eq. (17). The average number of times that infec-
tious individual j infects one of its neighbors is approxi-
mated by dividing Eq. (17) by kj :

nj
infection

kj
≃ β[1− (1− c2)/kj ]

β(1− c1) + γ
. (18)
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Here, we do not specify which neighbor is the original
source of infection but approximate it by a uniform dis-
tribution. Thus, the average number of infections from
individual j to individual i can be approximated by

Bij =
β[1− (1− c2)/kj ]

β(1− c1) + γ
Aij , (19)

which provides the next-generation matrix. Clearly,
Bij ≤ (β/γ)Aij , and Bij = (β/γ)Aij if c1 = c2 = 1.
Thus, the basic reproduction number is given by

R0 =
β

γ
Λ1,B , (20)

where Λ1,B is the largest eigenvalue of Bij .

IV. EXAMPLES

A. Regular graph

As a simple example, we consider the case of a reg-
ular graph in which all nodes are of the same degree,
ki = k. In this case, it is apparent that (1, 1, ..., 1)T

is an eigenvector of Bij , and according to the Perron–
Frobenius theorem, it gives the largest eigenvalue. Thus,
the basic reproduction number is given as

R0 =
β(k − 1 + c2)

β(1− c1) + γ
, (21)

and the epidemic threshold (i.e., β satisfying R0 = 1) is
therefore given as

βc =
γ

k − 2 + c1 + c2
. (22)

In the limit of large k, we obtain R0 = kβ/γ, which is
consistent with the result from Eq. (10). If k is finite,
R0 and βc depend on c1 and c2. In the case of k = 2,
for SIR and SEIR (c1 = c2 = 0), βc diverges to infin-
ity, which implies that the infection cannot spread. This
is consistent with the fact that a disease cannot spread
when k < 2.

The top graph in Fig. 2(a) shows plots of Eq. (21)
for four cases: SIS, SEIS, and two types of SIRS (short
and long immunity duration), as summarized in Table II.
The results for k = 20 show that the difference between
models is small for large k; thus, Eq. (10) is acceptable
when the network is not sparse. SIS and SEIS have the
same epidemic threshold βc = γ/(k−1) because c1+c2 =
1, but they have different values of R0, in contrast to the
results from the deterministic model. For SIRS, c1 = c2,
and this value increases with ω. Thus, the longer the
period of R, the smaller R0 becomes, and the larger βc

becomes.
To validate the above theoretical results, we performed

numerical calculations of the Markov process on a net-
work with N = 10, 000 (the middle graph in Fig. 2(a)).

Here, the network was built using a configuration model
that is designed to eliminate self-loops and multi-links
[18]. The Gillespie algorithm was used for the infec-
tion simulation [19], and the average was taken over 1010

Monte Carlo steps, where a new infection was introduced
every time all infections became extinct. To estimate the
epidemic threshold numerically, we plotted the coefficient
of variation Std(I)/⟨I⟩, which is the standard deviation
of the number of individuals infected divided by the av-
erage (bottom graph in Fig. 2(a)). The maximum of
Std(I)/⟨I⟩ is considered to correspond to the epidemic
threshold. It can be seen that the present theory agrees
well with the numerical calculations.

B. Network with two types of nodes

Next, as an example of a case where the degree is dis-
tributed, we consider the case of a network in which half
of the nodes have degree 2 and the other half have de-
gree 6. Here, we also consider the effect of degree cor-
relation, which is measured by the assortativity coeffi-
cient r [20]. We created three networks (r = 0.2, 0,
and −0.2) using the configuration model method [18],
where the probability of connection between tips emerg-
ing from a node changes to match the degree correlation.
Figure 2(b) shows the results of calculations similar to
those described in Sec. IVA. The top graph shows the
basic reproduction number, as given by Eq. (20). Ow-
ing to the degree fluctuations, R0 is smaller than in the
case of a regular graph and increases with the degree
correlation. These trends are consistent with those in
previous reports [20, 21]. We find that βc for SIS is
slightly smaller than that for SEIS (see also Table II).
The bottom graph shows that the epidemic thresholds
obtained from Eq. (20) are a little smaller than the nu-
merical results, but considerably better than the results
from Eq. (10) in Table II. In particular, the effect of
degree correlation is qualitatively well reproduced.

C. Barabási–Albert model

A final example is the Barabási–Albert model [22],
in which the degree distribution follows a power law,
ρ(k) ∼ k−3. For this case, the epidemic threshold βc

is known to converge to zero when N → ∞ [23]. Fig-
ure 2(c) shows the results of calculations similar to those
described in Secs. IVA and IVB. The discrepancy be-
tween the theoretical and numerical results appears to be
larger than in the previous two cases. In addition, βc in
SEIS is slightly smaller than βc in SIS, indicating that
the incubation period can increase the likelihood of the
spread of infection. This may be because c2 is larger for
SEIS than for SIS, and its effect outweighs that of the
smaller c1 value.
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TABLE II. Parameters (σ, ω, c1, c2) and epidemic threshold (βc) for the four types of compartment models shown in Table I.

N = 10, 000 and γ = 1. Here, β
(RG4)
c and β

(RG20)
c represent βc values for a regular graph with k = 4 and k = 20, respectively;

β
(2,6+)
c , β

(2,6)
c , and β

(2,6−)
c are those for networks having two degrees (k = 2 and k = 6), where r = 0.2, r = 0, and r = −0.2,

respectively; and β
(BA)
c is that for the Barabási–Albert network with ⟨k⟩ = 4. The upper rows show the theoretically determined

threshold (Eq. (20) or Eq. (22)) and the lower rows show the numerically estimated value based on the maximum of coefficient
of variation Std(I)/⟨I⟩. The figures in parentheses are calculated by Eq. (25). The bottom line shows the results using the
conventional formula, Eq. (10).

Model σ ω c1 c2 threshold β
(RG4)
c β

(RG20)
c β

(2,6+)
c β

(2,6)
c β

(2,6−)
c β

(BA)
c

SIS → ∞ → ∞ 1/2 1/2
theoretical 0.333 0.053 0.224 0.230 (0.250) 0.237 0.065 (0.077)

numerical 0.343 0.052 0.228 0.238 0.245 0.078

SEIS 1 → ∞ 1/4 3/4
theoretical 0.333 0.053 0.224 0.231 (0.250) 0.238 0.064 (0.077)

numerical 0.350 0.052 0.230 0.238 0.246 0.071

SIRS 1 → ∞ 1 1/4 1/4
theoretical 0.400 0.054 0.251 0.260 (0.286) 0.269 0.069 (0.080)

numerical 0.405 0.053 0.258 0.269 0.279 0.093

SIRS 2 → ∞ 1/10 1/22 1/22
theoretical 0.478 0.055 0.280 0.290 (0.324) 0.301 0.072 (0.083)

numerical 0.477 0.054 0.289 0.300 0.314 0.116

Eq. (10) 1 1 0.250 0.050 0.184 0.188 (0.200) 0.193 0.059 (0.072)

V. DISCUSSION

The epidemic threshold βc was obtained from the ba-
sic reproduction number given by Eq. (20). Although the
numerical calculations do not give exact values of βc be-
cause of the finite size of the population (N = 10, 000), it
is clear that these results are an improvement over those
given by Eq. (10). However, the theoretical values of βc

tend to be underestimated. This is because the calcula-
tions in Eq. (15) and Eq. (17) ignore the possibility that
after becoming susceptible, individual i may be infected
by a neighbor other than individual j (bottom graphs
in Fig. 1(b) and (c)). As this effect is large for hubs in
the Barabási–Albert network, it would explain the large
discrepancy seen in that example.

The above approximation theory can be coarse-grained
by using the degree-based mean-field approximation [7,
11, 23, 24]. For the case with no degree correlation (r =
0), the average number of secondary infected individuals
with degree k′ transmitted from an infectious individual
with degree k is

Bk′k =
β(k − 1 + c2)

β(1− c1) + γ

k′p(k′)

⟨k⟩
, (23)

which gives the next-generation matrix by classifying the
individuals by degree [24]. Calculating its largest eigen-
value according to Ref. [24], the basic reproduction num-
ber is given by

R0 =
β

β(1− c1) + γ⟨k⟩

(
⟨k2⟩
⟨k⟩

− 1 + c2

)
. (24)

Thus, the epidemic threshold for R0 = 1 is given as

βc =
γ⟨k⟩

⟨k2⟩ − (2− c1 − c2)⟨k⟩
. (25)

For a regular graph, ⟨k2⟩ = k2; thus, Eq. (25) becomes
Eq. (22). The numbers in parentheses in Table II are
the epidemic threshold values calculated by Eq. (25) and
shown by the short arrows in Fig. 2(b) and (c). These
numbers tend to be larger than those given by Eq. (20);
this is due to the fact that there are fluctuations in the
probability of infection for individuals of the same degree.
βc = γ⟨k⟩/⟨k2⟩ and βc = γ⟨k⟩/(⟨k2⟩−⟨k⟩) are well-known
theoretical formulas for SIS and SIR [7, 16], respectively,
but Eq. (25) indicates that

βc =
γ⟨k⟩

⟨k2⟩ − ⟨k⟩
for SIS and SEIS,

βc =
γ⟨k⟩

⟨k2⟩ − 2⟨k⟩
for SIR and SEIR,

(26)

because c1 + c2 = 1 for SIS and SEIS, and c1 = c2 = 0
for SIR and SEIR. These equations deviate from the
well-known degree-based mean-field approximation re-
sults [7, 11, 23] by the amount of −⟨k⟩ in the denomina-
tor. For SIS, the same equation as that in Eq. (26) was
obtained by approximations that consider dynamical cor-
relation [25, 26]. Note, however, that such degree-based
approximations are not always accurate because they do
not reproduce the vanishing threshold even when γ > 3
[27].
Note that our derivation of the theoretical equation

takes into account the effect of reinfection between the
same pair but ignores the effect of dynamical correla-
tions between adjacent pairs and network loops. In
other words, even without considering the effects of such
higher-order correlations, our results are more accurate
than those of the conventional mean-field theory. The
next-generation matrix in Eq. (19) generally differs from
those obtained using heterogeneous pair approximation
[28]; however, oddly, they coincide in the case of regu-
lar graphs. Furthermore, we performed numerical cal-
culations on networks with larger clustering coefficients,
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FIG. 2. Comparison of theoretical and numerical calculations for the following networks: (a) two regular graphs with k = 4
(solid lines) and k = 20 (dotted lines); (b) random networks with 5000 nodes having degree 2 and 5000 nodes having degree
6, where the degree correlation is r = 0.2 (dotted lines), 0 (solid lines) and −0.2 (dashed lines); (c) Barabási–Albert network
with ⟨k⟩ = 4. We set N = 10, 000 and γ = 1. The graphs in the top row plot the theoretical calculated value of R0 as a
function of β/γ. Here, the black curve corresponds to R0 = kβ/γ as obtained by Eq. (10). The purple, green, blue, and orange
curves represent Eq. (21) or Eq. (20) for SIS, SEIS, SIRS 1, and SIRS 2, respectively, where the values of c1 and c2 are as
listed in Table II. The graphs in the middle row plot the relative frequency of infectious individuals (⟨I⟩/N) as a function
of β/γ by numerical simulation. The graphs in the bottom row plot the coefficient of variation Std(I)/⟨I⟩, the maximum of
which corresponds to the epidemic threshold. Here, the long downward arrows represent the epidemic thresholds βc given by
Eq. (22), and the short downward arrows represent those given by Eq. (25); these values are likewise shown in Table II. Note
that in the middle graph of panel (a), the results for SEIS and SIRS 1 with k = 20 nearly overlap.

which have many loops, and the epidemic threshold in-
creased with the clustering coefficient as expected (not
shown in this paper). Theoretical formulation of R0 by
higher-order approximation is a subject for future study.

In summary, we derived a unified formula for R0 for
epidemic models of networks. The next-generation ma-
trix is represented by Eq. (19), which contains two the-
oretically calculated probability values, c1 and c2. In
reality, reinfection may be much less frequent, and there-
fore c1 and c2 may be considered to have smaller values.
Recently, Markov process models that consider dynam-
ical correlations among the states of two or more nodes
have been used to study infectious disease transmission
[29, 30]. Although such models can more accurately de-
termine the epidemic threshold, the computational cost

is enormous. By contrast, the formula derived in this pa-
per for the basic reproduction number is simple and easy
to use. For complex models that can be attributed to
the Markov process, we expect that our formula can be
used if c1 and c2 can be estimated. With the increasing
availability of high-resolution data on human contacts,
this result for R0 can be used as a reference quantity for
controlling the spread of infectious diseases.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI (grant
nos. 21K03387 and 21H01575).



7

[1] N. C. Peeri, N. Shrestha, M. S. Rahman, R. Zaki,
Z. Tan, S. Bibi, M. Baghbanzadeh, N. Aghamohammadi,
W. Zhang, and U. Haque, International Journal of Epi-
demiology 49, 717 (2020).

[2] J. Guarner, American Journal of Clinical Pathology 153,
420 (2020).

[3] O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, J.
Math. Biol. 28, 365 (1990).

[4] R. M. Anderson and R. M. May, Infectious diseases of
humans: dynamics and control (Oxford University Press,
Oxford, New York, 1991).

[5] H. W. Hethcote, SIAM Rev. 42, 599 (2000).
[6] O. Diekmann and J. A. P. Heesterbeek, Mathematical

Epidemiology of Infectious Diseases: Model Building,
Analysis and Interpretation, Wiley Series in Mathemati-
cal & Computational Biology (Wiley, West Sussex, Eng-
land, 2000).

[7] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[8] I. Z. Kiss, J. C. Miller, and P. L. Simon, Mathematics of
Epidemics on Networks (Springer International Publish-
ing, Cham, Germany, 2017).

[9] M. Boguñá and R. Pastor-Satorras, Phys. Rev. E 66,
047104 (2002).

[10] K. T. D. Eames and M. J. Keeling, PNAS 99, 13330
(2002).

[11] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
Rev. Mod. Phys. 80, 1275 (2008).

[12] S. Yuan, P. van den Driessche, F. H. Willeboordse,
Z. Shuai, and J. Ma, J. Math. Biol. 73, 665 (2016).

[13] J. Yang and F. Xu, IEEE Access 7, 26474 (2019).
[14] O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts,

J. R. Soc. Interface 7, 873 (2010).
[15] P. van den Driessche, Infect. Dis. Model. 2, 288 (2017).
[16] A.-L. Barabási and M. Pósfai, Network Science (Cam-
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