Research of an outcrop of the lower margin of the embankment at the head of the Aizome River, Atami City, Shizuoka Prefecture, central Japan.

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: jpn
	出版者:
	公開日: 2023-01-27
	キーワード (Ja):
	キーワード (En):
	作成者: 北村, 晃寿, 山下, 裕輝, 矢永, 誠人, 本山, 功, 中西,
	利典, 森, 英樹
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00029313

静岡県熱海市逢初川の源頭部の盛土下端部の露頭調査

北村晃寿^{1,2}•山下裕輝³•矢永誠人⁴ 本山 功⁵•中西利典⁶•森 英樹⁷

Research of an outcrop of the lower margin of the embankment at the head of the Aizome River, Atami City, Shizuoka Prefecture, central Japan.

Akihisa Kitamura^{1, 2}, Yuki Yamashita³, Makoto Yanaga⁴, Isao Motoyama⁵, Toshimichi Nakanishi⁶ and Hideki Mori⁷

I. はじめに

2021年7月3日に,静岡県熱海市逢初川の源頭部(標 高約390m,海岸から2km上流)にあった盛土の崩壊によ る土石流で,死者・行方不明者28人,全・半壊家屋64棟 の被害が出た.源頭部の未崩落の盛土,砂防堰堤を埋積 した土石流堆積物,集落に到達した土石流堆積物につい ては,第一著者が共同研究者とともに堆積学的,古生物 学的調査を行い,その結果を既に公表した(北村,2022; 北村・池田,2021;北村ほか,2022a,b).しかし,源頭部 の盛土の崩壊地の谷底については,静岡県(2021a)が 2021年8月2日に行った露頭調査の概略を報告している が,堆積学的,古生物学的調査は行われていなかった. この場所には盛土の崩壊地下端部があり,その調査から 崩落の原因を解明するための情報が得られる可能性があ る.

今回,2022年3月30日と5月2日に,第一著者の北村 は熱海市・静岡県の担当者の同行の下,盛土の崩壊地の 谷底で,盛土下端周辺の露頭を観察したので,調査・分 析結果を速報する.この露頭を木村(2021)は地点Fと したので(図1),本報告でもこの名称を用いる.

II. 調査地域

地点F(北緯35度7分17.37秒, 東経139度4分22.44 秒)は,発災時の空中写真(静岡県,2021b)では窪みと なっている所である(図1c).高さ約1.8m,幅約6mであ る.静岡県は2021年8月2日に,地点Fの露頭を撮影し, 下位から地山(熱水変質した溶岩または火砕岩),渓床堆 積土砂(礫層),崩土の順に重なると報告している(静岡 県,2021a)(図2a).また,下記の報告を行っている.

(引用ここから)

「崩壊地下端付近で、渓床が洗掘されている。旧渓床 堆積物の上に有孔管があるが、現在は管からの出水はな い。(標高355m付近)」

(引用ここまで)

2022年6月6日受付 2022年6月16日受理.

Received: 6 June 2022 Accepted: 16 June 2022

¹静岡大学理学部地球科学教室, 422-8529 静岡県静岡市駿河区大谷836

²静岡大学防災総合センター,422-8529静岡県静岡市駿河区大谷836

³静岡大学大学院総合科学技術研究科, 422-8529静岡県静岡市駿河区大谷836

⁴静岡大学理学部放射科学教育研究推進センター,422-8529 静岡市駿河区大谷836

⁵山形大学理学部地球科学分野, 990-8560 山形市小白川町1-4-12

⁶ふじのくに地球環境史ミュージアム,422-8017 静岡市駿河区大谷5762

⁷静岡大学技術部教育研究支援系教育研究第二部門, 422-8529 静岡市駿河区大谷836

¹Institute of Geosciences, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

E-mail: kitamura.akihisa@shizuoka.ac.jp

²Center for Integrated Research and Education of Natural Hazards, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

³Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

⁴Center for Radioscience Education and Research, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

⁵Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, 990-8560 Japan

⁶Museum of Natural and Environmental History, Shizuoka, 5762 Ohya, Suruga-ku, Shizuoka, 422-8017 Japan

⁷Division of Technical Service, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

地点Fの露頭に関して、木村(2021)は「F地点は、盛 土体前面の勾配の遷緩点にあたり、勾配はその上流側の E-F間で勾配22°、下流側のF-G間で勾配13°と大幅に緩 くなることが理解できる.また、図9の立体図からは、F 地点は盛土に設けられた小段間の境にあたること、図10 の縦断図からは、盛土の層厚も、したがって礫層にかか る盛土の上載圧も半減することがわかる.これらのF地 点を境にした盛土の変化が意味することは、土石流発生 頃に想定される礫層中の地下水圧の増大で、礫層を覆う 盛土が破壊されて地下水が流出しやすい箇所にあたりそ うだということである.」と記している.

静岡県が2021年8月2日に撮影した露頭写真(図2a) と北村が2022年3月30日に観察した露頭(図2b)を比べ ると,露頭の浸食で有孔管の右岸(西)側に厚さ約2mの 粘土層が露出した.さらに,2022年5月2日の調査では, 有孔管と粘土層の間に新たな露頭が露出していた(図3). 露頭の高さは約2mで,下位から巨礫サイズの角礫層 (層厚0.7m以上),木質物を含む含礫砂層(層厚0.1m),

中礫サイズの亜円礫層(層厚0.4m),砂層(層厚0.8m以 上)の順に重なる(図3,4).角礫層とその下位の粘土層

図1 熱海市伊豆山地区の土石流の流路と試料採取地点.北村ほか(2022a)を一部改変.a-c:土石流の流路と試料採取地点.aの画像は 国土地理院(2021a)とbの画像は国土地理院(2021b)を使用.cの画像は静岡県(2021a)を使用.dは静岡県(2021b)から引用. No.1-8は静岡県(2021c)の試料採取地点.

の境界は崩土で覆われており,境界面を観察できなかった.今回の調査では,角礫層,含礫砂層,亜円礫層から 堆積物試料を採取した.なお,粘土層については,千木 良ほか(2022)が報告している.

III. 分析方法

採取した試料は, 60°Cで24時間乾燥後, 重量を測定 した. 試料のうちの一部(約100g)について乾燥重量を 測定した後, 8,000µm(8mm)以下の粒子について目開 き32, 63, 90, 125, 180, 250, 355, 500, 710, 1,000, 2,000, 4,000µmのふるいで水洗し, ふるいに残った粒子 の乾燥重量を測定した. これらの測定値と水洗前の乾燥 重量から32µmより小さい粒子の重量を算出した.

また, 試料のうち, 約40gをU8容器に封入し, 静岡 大学理学部放射科学教育研究推進センターの所有する 高純度ゲルマニウム半導体検出器 (SEIKO EG&G社 GMX25P4-70およびMCA-7a)を用いたy線スペクトロ メトリーにより, ¹³⁴Csと¹³⁷Csを定量した. ¹³⁴Csと¹³⁷Cs の値は, 2011年3月11日の東北日本太平洋沖地震に伴う

図2 地点Fの写真.aは静岡県(2021b)が2021年8月2日に撮影.bは北村が2022年3月30日に撮影.

巨大津波による福島第一原子力発電所の事故で大気中に 放射性セシウムが放出されたとされる2011年3月15日 (Adachi *et al.*, 2013)を基準に減衰補正を行った.

試料の一部をふるいにかけて 63μ m以下の粒径のサブ 試料を得て、メノウ乳鉢で粉末化した.この粉末試料 を、ふじのくに地球環境史ミュージアムのCHNS分析装 置(Flash 2000, Thermo Fisher Scientific 社製)で全有 機炭素(TOC),全窒素(TN)および全硫黄(TS)の 含有量を分析した.さらに、各試料について、ふるいで 0.35–0.50mmの粒子を抽出し、約60°Cで24時間乾燥さ せ,エポキシ系樹脂に包埋し,薄片を作成し,500個の 粒子の組成を顕微鏡で同定した.

礫に関しては長軸1cm以上のものについて,重量, 長軸,中軸,短軸を測定するとともに,円磨度印象図 (Krumbein, 1941)に基づき円磨度を記載した.また,肉 眼観察を行なうとともに,試料3の一部の礫については 薄片を作成し,観察した.

試料2から産出した2個の木質物(以下では、木質物1 と木質物2とする)の¹⁴C年代測定をBeta-Analytic社に依 頼し、加速器質量分析法により行なった。年代の暦年較

2022年5月2日14時40分撮影 北村

図3 地点Fの調査露頭の写真.

正はINTCAL20 (Reimer *et al.*, 2020) をデータセットと して,OxCal4.4を使用して計算した.木質物1と木質物 2の写真を図4に示す.保存状態は極めて良く,長さは木 質物1が約18cmで,木質物2が約11cmである.

IV. 結果

粒度組成に関しては、3試料ともに淘汰が悪い(図4). 放射性セシウム濃度については、試料1と2では¹³⁷Csが 1.2 ± 0.4Bq/kg乾土と1.3 ± 0.4Bq/kg乾土で、¹³⁴Csは検出 限界未満である(表1). 試料3は¹³⁷Csと¹³⁴Csはともに 検出限界未満である.

TOC・TN・TS含有量は, 試料1は1.32%, 0.15%, 0.06%, 試料2は2.83%, 0.23%, 0.16%, 試料3は1.80%, 0.14%, 0.12% である (表1).

0.35-0.50mmの粒子については, 試料1と2ともに凝集物と岩片が卓越する.石英, 斜長石, 輝石粒子の占有率は, 試料1は0%, 0.2%, 1.0%で, 試料2は0.6%, 1.4%, 1.0%で, 試料3は4.2%, 6.0%, 4.2%である(図4,表1). 試料3からは, 放散虫化石 Amphisphaera? sp. を含む泥

図4 地点Fの調査露頭の柱状図と¹³⁷Cs濃度,泥粒子の全硫黄量,0.35-0.50mmの粒子中の石英・斜長石・輝石の占有率,粒度組成,礫の 円磨度.円磨度は人工物を除く.¹⁴C年代値は,木質物1の年代である.この年代は木質物2よりも若い.

表1 各試料の堆積物の放射性セシウム濃度, 泥質物の全有機炭素・全窒素. 全硫黄濃度, 0.35–0.50mmの粒子組成. *は北村ほか (2022a). ** は北村ほか (2022b). *** は本論文. 放射性セシウム濃度のNDは検出限界未満. カッコ内は検出限界値.

	Cs-137 (Ba/kg乾十)	Cs-134 (Ba/kg乾十)	全有機	全窒素	全硫黄	団粒	岩片	石革	斜長石	輝石	その他・
	(2011/03/15補正値)	(2011/03/15補正値)	炭素(%)	工业 (%)	(%)	(%)	(%)	(%)	(%)	(%)	不明(%)
地点B1 盛土・黒色の土砂*	1.8 ± 0.6	ND (< 60)	2.27	0.14	0.13	28.1	40.0	14.8	9.5	3.5	4.1
地点 B2 盛土・褐色の土砂*	9.5 ± 0.8	ND (< 61)	1.54	0.10	0.04	55.6	15.2	2.8	6.7	13.2	6.5
地点B3 土石流堆積物*	4.8 ± 0.7	ND (< 59)	2.09	0.13	0.10	46.8	26.6	8.7	8.6	5.2	4.1
地点A2 十石流堆積物*		(/	2.48	0.20	0.18	61.8	18.8	3.4	5.8	3.4	7.0
地占A5 十石流堆積物*	48+11	ND (< 101)	2.10	0.17	0.20	67.1	13.0	5.5	5.3	5.3	3.2
地占S1 十撞*			5 50	0.29	0.11	62.6	1 9	1 9	4.2	15.4	14.0
地占92 土壤*			1 20	0.14	0.02	74.1	5.3	0.0	0.2	14.0	5.5
地占国 試料1***	12+04	ND (< 21)	1.20	0.15	0.02	96.6	12.0	0.0	0.2	14.5	0.0
地占⊑ 試約2***	1.2 ± 0.4	ND (< 31)	2.92	0.15	0.00	96.4	12.0	0.0	1.4	1.0	2.0
地点F 武科Z	1.3 ± 0.4	ND (< 42)	2.03	0.23	0.16	00.4	0.0	0.0	1.4	1.0	2.0
地点F 武科3****	ND (< 1.0)	ND (< 31)	1.80	0.14	0.12	49.4	33.8	4.2	6.0	4.Z	1.8
	Cs-137(Ba/kg乾土)	Cs-134(Ba/kg乾土)	全有機	全窒素	全硫黄	団粒	岩片	石英	斜長石	輝石	その他・
深度(m)	(2011/03/15補正値)	(2011/03/15補正値)	炭素(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	不明(%)
0.00-0.05	ND (< 1.6)	ND (< 73)	1.74	0.08	0.18	47.0	21.4	5.6	4.6	3.8	3.6
0.35-0.40	5.9 ± 0.7	ND (< 50)	2.31	0.12	0.14	56.0	22.8	2.4	1.8	2.0	2.2
0.90-0.95	ND (< 1.8)	ND (< 59)	1.81	0.09	0.13	70.8	17.0	2.6	4.4	4.4	0.8
1.00-1.05	3.7 ± 0.7	ND (< 59)	1.80	0.08	0.16	67.6	18.6	4.6	3.4	3.2	2.6
1.20-1.25	6.6 ± 0.9	ND (< 75)	2.39	0.13	0.13	61.0	15.2	2.6	1.6	2.0	3.8
2.95-3.00	6.7 ± 0.8	ND (< 60)	2.22	0.11	0.19	75.0	13.8	3.0	3.4	2.6	2.2
3.00-3.05	7.5 ±0.9	ND (< 73)	2.41	0.16	0.16	64.8	19.0	3.6	4.8	3.0	4.8
3.63-3.67	4.3 ± 1.2	ND (< 112)	2.01	0.10	0.39	46.8	28.6	7.8	5.8	5.8	5.2
3.67-3.70	7.7 ±0.9	ND (< 101)	2.40	0.17	0.12	50.2	16.6	2.2	2.8	4.2	2.8
3.70-3.74	7.5 ±0.8	ND (< 68)	1.55	0.11	0.07	52.8	9.8	3.2	4.0	2.4	1.6
3.74-3.78	2.6 ±0.3	ND (<31)	1.34	0.10	0.05	80.4	7.6	0.0	1.0	0.4	2.8
3.78-3.82	51.8 ± 0.8	52.3 ± 14.7	3.33	0.23	0.04	86.2	4.8	1.6	2.6	2.0	2.8
3.85-3.88	184.5 ± 1.7	179.5 ± 19.6	3.82	0.26	0.03	80.6	7.6	2.0	2.0	2.0	5.8
3.95-4.00	ND (< 2.7)	ND (< 83)	1.15	0.05	0.01	92.8	1.6	0.0	0.6	2.4	2.6
4.80-4.85	ND (< 3.3)	ND (< 103)	1.40	0.07	0.01	93.0	2.6	0.0	1.4	1.0	2.0
4.95-5.00	ND (< 4.2)	ND (< 126)	1.09	0.07	0.01	74.4	3.8	0.0	0.2	0.4	1.2
5.00-5.05	3.5 ± 1.0	ND (< 93)	0.92	0.05	0.00	71.0	25.6	1.0	0.0	1.0	1.4
5.50-5.55	ND (< 2.9)	ND (< 92)	0.58	0.02	0.01	66.4	25.8	0.4	0.8	4.6	0.8
5.95-6.00	ND (< 3.1)	ND (< 99)	0.97	0.04	0.01	83.6	13.6	0.8	0.2	0.6	1.2
6.50-6.55	ND (< 3.2)	ND (< 96)	0.84	0.03	0.02	93.6	5.4	0.4	0.2	0.0	0.4
7.00-7.05	ND (< 3.6)	ND (< 130)	0.73	0.03	0.01	73.2	21.6	0.8	0.8	3.2	0.4
7.55-7.60	ND (< 4.0)	ND (< 125)	0.68	0.03	0.00	76.4	17.0	0.8	1.6	3.0	1.2
8.00-8.05	ND (< 2.9)	ND (< 80)	0.37	0.00	0.00	73.4	23.8	0.4	0.4	0.2	1.8
8.67-8.74	ND (< 3.2)	ND (< 99)	0.32	0.00	0.00	44.0	52.6	0.6	0.4	2.2	0.2
10.50-10.55	ND (< 2.3)	ND (< 81)	0.08	0.00	0.00	52.2	29.6	0.0	0.0	0.2	0.0
11.50-11.55	ND (< 1.8)	ND(< 62)	0.07	0.00	0.00	62.4	35.8	0.8	0.8	0.2	0.0

図5 試料3の微化石の薄片写真. Amphisphaera? sp.の可能性のある放散虫化石を含む泥岩岩片(a, b). 有孔虫化石(c, d). 矢印が微化石.

岩岩片が見つかった(図5a, b).また,試料3からは種同 定はできないが,1個体の有孔虫殻が見つかった(図5c, d).これらの放散虫と有孔虫はともに海洋性の微化石で ある.

各試料の礫の写真を図6に示した. 試料1の礫の円磨 度は0.1から0.4で,最頻値は0.2であり(表2,図4),苦 鉄質岩からなり,人工物は含まれない. 試料2は,コン クリートの付着した礫が3個あり(礫番号2-3,4,5),そ れらを除く礫の円磨度は0.1から0.4で,最頻値は0.3で ある(表3,図4).1個の礫(礫番号2-7)の礫種は未判 別だが,それ以外は苦鉄質岩である. 試料3は,1個のコ ンクリート(礫番号3-3),2個のコンクリートの付着し た礫(礫番号3-8,13),1個の瓦の破片(礫番号3-14)を 含む.それらを除く礫の円磨度は0.1から0.8で,最頻値 は0.6である(表2,図4).1個の礫(礫番号3-15)は苦 鉄質岩である.

薄片観察の結果, 礫番号3-1は, 緑泥石が見られ(図 7a, b), 変質岩である. 礫番号3-5と3-11は円磨した粒子 を多数含むことから,砂岩である(図7c, d, i, j). 礫番号 3-6と3-9は円磨した砂粒子と基質が見られるので砂質泥

図6 礫の写真. スケールバーは1cm.

試料1						
礫番号	重量 (g)	長軸 (cm)	中軸 (cm)	短軸 (cm)	円磨度	礫種
1 – 1	69.8	4.2	4.2	2.9	0.2	苦鉄質岩
1-2	16.4	4.7	3.3	1.3	0.1	苦鉄質岩
1-3	10.5	3.5	2.7	1.4	0.2	苦鉄質岩
1-4	4.0	2.5	2.2	0.7	0.2	苦鉄質岩
1-5	4.3	2.0	1.5	1.2	0.3	苦鉄質岩
1-6	4.6	2.3	1.5	1.4	0.2	苦鉄質岩
1-7	3.0	1.7	1.6	1.0	0.3	苦鉄質岩
1-8	1.7	1.8	1.6	0.7	0.2	苦鉄質岩
1-9	3.6	1.7	1.4	1.1	0.4	苦鉄質岩
1-10	1.9	1.7	1.4	0.7	0.3	苦鉄質岩

表2 礫の重量	,大きさ,	円磨度,	礫種.
----------------	-------	------	-----

試料2

礫番号	重量 (g)	長軸 (cm)	中軸 (cm)	短軸 (cm)	円磨度	礫種
2-1	379.5	96.2	6.0	6.0	0.2	苦鉄質岩
2-2	16.6	25.4	26.0	19.0	0.3	苦鉄質岩
2-3	9.7	2.3	2.0	1.6		コンクリート付着
2-4	6.3	2.0	1.7	1.3		コンクリート付着
2-5	3.9	2.3	1.3	1.3		コンクリート付着
2-6	3.5	2.7	2.0	1.0	0.1	苦鉄質岩
2-7	2.3	1.9	1.3	0.7	0.2	検討中
2-8	1.2	1.8	1.1	0.6	0.4	苦鉄質岩
2-9	0.8	2.0	1.2	0.4	0.3	苦鉄質岩
2-10	0.9	1.5	1.3	0.4	0.4	苦鉄質岩
2-11	1.0	1.0	0.9	0.7	0.3	苦鉄質岩

礫番号	重量 (g)	長軸 (cm)	中軸 (cm)	短軸 (cm)	円磨度	礫種
3-1	415.0	10.9	5.5	5.5	0.5	変質岩(緑色岩)
3-2	218.0	9.3	6.8	2.8	0.8	検討中
3-3	184.0	8.9	6.6	2.5		コンクリート
3-4	94.2	6.0	4.8	2.2	0.6	検討中
3-5	80.5	6.0	3.7	2.3	0.7	砂岩
3-6	63.1	5.1	4.2	1.7	0.6	砂質泥岩
3-7	73.2	4.1	3.6	2.8	0.4	検討中
3-8	44.2	4.5	3.2	2.3		コンクリート付着
3-9	35.6	4.8	3.1	1.7	0.6	砂質泥岩
3-10	18.9	2.4	2.1	1.8	0.6	検討中
3-11	12.0	2.9	2.2	1.9	0.3	砂岩
3-12	17.8	3.2	3.0	1.5	0.7	検討中
3-13	19.2	3.5	2.7	2.1		コンクリート付着
3-14	13.8	3.1	2.5	1.7		瓦
3-15	12.8	3.1	2.1	1.8	0.1	苦鉄質岩
3-16	10.1	3.3	2.1	1.3	0.5	検討中
3-17	7.7	2.3	2.0	1.3	0.3	検討中

図7 試料3の礫の薄片写真. a, bは礫番号3-1, c, dは礫番号3-5, e, fは礫番号3-6, g, hは礫番号3-9, i, jは礫番号3-11.

	δ ¹³ C (‰)	percent modern carbon (pMC)	暦年代 (2σ) (cal yr) (95.4%)	ラボナンバー
木質物1	-30.1	109.38 ± 0.41	西暦1997-2001年 (88.8%) 西暦1957年 (6.6%)	Beta-627896
木質物2	-26.7	116.98 ± 0.44	西暦1987-1989年 (90%) 西暦1957-1958 年 (5.4%)	Beta-627897

表3¹⁴C年代測定の結果.

岩である(図7e-h). したがって,角礫層と含礫砂層は 円磨度の低い苦鉄質岩からなる点で共通し,亜円礫層は 円磨度と礫種がともに下位層の礫とは異なる.

¹⁴C年代値については,木質物1は109.38±0.41pMC で,木質物2は116.98±0.44pMCである(表3).pMC (percent Modern Carbonの略)は大気圏内核実験以前 の1950年を標準とした現代炭素に対する試料炭素の¹⁴C 濃度の割合であり,100を超える値は核実験の影響によ る.暦年代換算(2標準偏差95.4%)では,木質物1は西 暦1997-2001年(88.8%),西暦1957年(6.6%)であり, 木質物2は西暦1987-1989年(90%),西暦1957-1958年 (5.4%)である(表3).試料2の堆積年代は,木質物1の 年代より若い.

V. 考察

静岡県(2021a)は、地点Fの礫層を渓床堆積土砂と報告している.本研究でも、巨礫サイズの角礫層は人工物を含まないし、北村(2022)と北村ほか(2022a,b)が報告した他所から搬入された物質(海生貝類の貝殻、チャー

ト岩片,含化石泥岩岩片)も検出されなかった.これらのことは,静岡県(2021a)の解釈を支持する.なお,角 礫層の堆積物から¹³⁷Csが検出されたので,1950年以降から盛土の形成以前の堆積物である.

含礫砂層の堆積年代は,堆積物の¹³⁷Cs濃度と木質物の ¹⁴C年代値に核実験の影響が出ているので,1950年以降 である.そして,人工物を含むので,盛土と解釈するの が妥当である.この含礫砂層を覆う亜円礫層は放散虫化 石を含む泥岩岩片と有孔虫を含むので,他所から搬入さ れた盛土である.

図8と9に既報(北村ほか,2022a)の盛土の褐色の土 砂,黒色の土砂,土石流堆積物,土壌と本研究の測定値 をプロットした.図8のTOCとTSの散布図では,角礫 層(図中のF1)は褐色の土砂に近い値を示し,含礫砂層 (図中のF2)と亜円礫層(図中のF3)は黒色の土砂,土 石流堆積物(地点A2とB3)に近い値を示す(図8).砂 粒子の石英,斜長石,輝石の比率に関しては,角礫層(図 中のF1)は土壌に類似し,含礫砂層(図中のF2)と亜円 礫層(図中のF3)は,盛土の黒色の土砂よりも土石流堆 積物に近い値を示す(図9).

図8 各試料の泥粒子の全有機炭素量,全窒素量,全硫黄量の関係.a:全窒素量-全有機炭素量の散布図.b:全硫黄量-全有機炭素量の 散布図.F1-3は本研究の測定値で,他の測定値は北村ほか(2022a)に基づく.

100<u>g52</u> 0 50 石英(%)

F1

図9 0.35-0.50mm サイズの石英,斜長石,輝石の量比を示す三角 ダイヤグラム. F1-3 は本研究の測定値で,1-3 は試料1-3 に対応する.他の測定値は北村ほか(2022a)に基づく.

木村(2021)は、静岡県の公表した盛土の状況の写真 をもとに、逢初川崩壊箇所付近の縦断面図(木村(2021) の図10)を作成し、盛土は三層構造で、2009年6月期前 の盛土層、褐色の土砂、黒色の土砂の順に重なるが、地 点Fでは黒色盛土層が2009年6月期前の盛土層を直接覆 うとしている。本稿の調査結果は、この解釈を支持し、 含礫砂層(層厚0.1m)は2009年6月期前の盛土層に対応 し、亜円礫層(層厚0.4m)は黒色盛土層に対応すると考 えられる。

今回の盛土崩落に関して、黒色盛土層の最下部の亜円 礫層は次の3点が注目される.第一に,亜円礫層は放散 虫化石を含む泥岩岩片を産し、地点Fから約300m下流の 砂防堰堤の埋積土の深度3.74-3.70mからも海綿骨針を含 む化石泥岩岩片が発見されていることである(北村ほか, 2022b). これは,盛土の崩落の早い時期の土石流に亜円 礫層由来の堆積物が含まれていた可能性を示唆する.第 二に、亜円礫層では礫と礫の間にある空間を砂質堆積物 が充填しているが、その含泥率は10%程度しかないこと である(図4). これは、砂質堆積物の透水性が高い可能 性を示唆する. 第三に, 亜円礫層が有孔虫を含むことで ある.これは、同層の供給源の一部は沿岸堆積物である ことを示し、したがって崩落しやすい性質を有していた 可能性が十分ある(北村ほか, 2022c).以上の3点から, 地点Fにあった黒色盛土層の最下部の亜円礫層は, 第0波 (北村ほか(2022b)が定義した砂防堰堤内の土石流堆積 物を運搬した土石流)の土石流の起点であった可能性が ある.

謝辞

熱海市と静岡県の関係者には、立ち入り禁止区域内の 調査にご協力いただいた。静岡大学理学部の石橋秀巳博 士には礫の薄片観察にご協力いただいた。東京大学大学 院理学系研究科の池田昌之博士と静岡大学理学部のJulien Legrand博士には本稿の査読を行っていただいだ. これ らの皆さんに感謝申し上げる.本研究の経費は静岡大学 防災総合センターと未来社会デザイン機構の予算を使用 した.

引用文献

- Adachi, K., Kajino, M., Zaizen, Y. & Igarashi, Y. (2013), Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. *Scientific Report*, 3, 2554.
- 千木良雅弘・北村晃寿・木村克己・市村康治(2022),熱 海市逢初川盛土崩壞の地質的原因について.静岡 大学地球科学研究報告,49.
- 木村克己 (2021), 熱海市の逢初川土石流災害の地形・地 質的背景. 深田地質研究所年報, No. 22, 185–202.
- 北村晃寿(2022),静岡県熱海市伊豆山地区の土砂災害現 場の盛土の崩壊斜面と土石流堆積物から見つかっ た海生二枚貝の貝殻.第四紀研究,61(印刷中), doi:10.4116/jaqua.61.2114.
- 北村晃寿・池田昌之(2021),2021年7月3日に静岡県熱 海市伊豆山地区で発生した土石流の速報.静岡大 学地球科学研究報告,48,63-71.
- 北村晃寿・岡嵜颯太・近藤 満・渡邊隆広・中西利典・ 堀 利栄・池田昌之・市村康治・中川友紀・森 英樹(2022a),静岡県熱海市伊豆山地区の土砂災 害現場の盛土と土石流堆積物の地球化学・粒子組 成分析.静岡大学地球科学研究報告,49,73-86.
- 北村晃寿・矢永誠人・岡嵜颯太・片桐 悟・中西利典・ 森 英樹(2022b),静岡県熱海市逢初川の砂防 堰堤の埋積土の放射性セシウム濃度と粒子組成の 層位変化 -2021年7月3日の土石流堆積物の識 別一.静岡大学地球科学研究報告,49,87-95.
- 北村晃寿・山下裕輝・矢永誠人・中西利典・森 英樹 (2022c),静岡県熱海市逢初川源頭部の東側地点 の盛土に関する調査速報.静岡大学地球科学研究 報告,49,97-103.
- 国土地理院 (2021a), https://maps.gsi.go.jp/#14/35.128 368/139.078674/&base=std&ls=std&disp=1&vs=c 1g1j0h0k0l0u0t0z0r0s0m0f1&d=m 2022年4月24 日引用.
- 国土地理院 (2021b), https://www.gsi.go.jp/BOUSAI/ R3 0701 heavyrain.html#3 2022年4月24日引用.
- Krumbein, W. C. (1941), Measurement and geologic significance of shape and roundness of sedimentary particles. *Journal of Sedimentary Petrology*, 11, 64–72.
- Reimer, P.J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey, C. *et al.* (2020), The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). *Radiocarbon*, 62(4), 725–757.

- 静岡県(2021a),第1回逢初川土石流の発生原因調査検 証委員会配布資料(1~17).2021年9月7日開 催 http://www.pref.shizuoka.jp/kensetsu/ke-350/ sabouka/r3hasseigenninncyousakennsyouiinnkai. html 2022年4月24日引用.
- 静岡県(2021b),2021年7月3日静岡県熱海市土砂災害 動画.ドローン撮影動画1.https://www.geospatial. jp/ckan/dataset/20210703-atami-movie 2022年4 月24日引用.
- 静岡県(2021c),熱海市伊豆山地区土石流土質調査結果 (速報) http://www.pref.shizuoka.jp/kensetsu/ke-350/sabouka/documents/doshitucyousakekka.pdf 2021年9月9日引用.

著者貢献

北村晃寿:試料採取,砂粒子の鉱物種・岩石種の同定, 礫種の同定,全体総括,論文執筆を担当.山下裕輝:泥 粒子のCNS分析と礫種の同定を担当.矢永誠人:放射性 セシウム濃度の測定,論文執筆を担当.本山 功:放散 虫化石の同定,中西利典:泥粒子のCNS分析を担当.森 英樹:薄片作成を担当.

補遺

以下の記載と図を追記する.本論と千木良ほか(2022) を再度比較したところ,本論で記載した地点Fの露頭の 下位約2mも露出していることが分かった. 岩体・堆積 物は,下位から,地山の熱水変質粘土,最大層厚10cm で膨縮・尖減する砂礫層,角礫混じり砂質粘性土(乱雑 堆積物;層厚2.0m),巨礫サイズの角礫層(層厚0.7m), 木質物を含む含礫砂層(層厚0.1m),中礫サイズの亜円 礫層(層厚0.4m),砂層(層厚0.8m以上)の順に重なる (補遺図1).膨縮・尖減する砂礫層の上面はすべり面で ある(千木良ほか,2022).

補遺図1 地点Fの調査露頭の柱状図と¹³⁷Cs濃度,泥粒子の全硫黄量,0.35-0.50mmの粒子中の石英・斜長石・輝石の占有率,粒度組成, 礫の円磨度,円磨度は人工物を除く.