Stratigraphic distribution of radiocesium concentration and grain compositions in buried soil of sabo dam in Aizome River, Atami City, Shizuoka Prefecture, central Japan: Identification of debris flow deposits that occurred on July 3, 2021

SURE 静岡大学学術リポジトリ

Shizuoka University REpository

メタデータ	言語: jpn
	出版者:
	公開日: 2023-01-27
	キーワード (Ja):
	キーワード (En):
	作成者: 北村, 晃寿, 矢永, 誠人, 岡嵜, 颯太, 片桐, 悟, 中西,
	利典, 森, 英樹
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/00029316

静岡県熱海市逢初川の砂防堰堤の埋積土の 放射性セシウム濃度と粒子組成の層位変化 - 2021年7月3日の土石流堆積物の識別-

北村晃寿^{1,2}•矢永誠人³•岡嵜颯太⁴ 片桐 悟⁴•中西利典⁵•森 英樹⁶

Stratigraphic distribution of radiocesium concentration and grain compositions in buried soil of sabo dam in Aizome River, Atami City, Shizuoka Prefecture, central Japan: Identification of debris flow deposits that occurred on July 3, 2021

Akihisa Kitamura^{1, 2}, Makoto Yanaga³, Sota Okazaki⁴, Satoru Katagiri⁴, Toshimichi Nakanishi⁵ and Hideki Mori⁶

Abstract On July 3, 2021, a debris flow caused by a landslide from an embankment occurred along the Aizome River in the Izusan area of Atami City, Shizuoka Prefecture, central Japan, and buried sabo dam which was located approximately 450 m downstream of the embankment. Shizuoka Prefectural Government sampled one 13.1-m long core of deposits buried in the sabo dam in late August 2021. In this paper, radiocesium concentration was measured and grain compositions was investigated for this core sample. As a result, ¹³⁴Cs and ¹³⁷Cs released from the Fukushima Daiichi Nuclear Power Plant in mid-March 2011 were detected, and these markers specified the depositional surface at mid-March 2011 at 3.95-3.85 m core depth. In addition, the occurrence of fragments of both mudstone and chert in the overlying sediments indicates that the 3.74 m-thick portion was definitely the debris flow deposit.

Keywords: debris flow deposit, Izusan area, grain compositions, radiocesium, Sabo dam

2022年4月11日受付 2022年5月21日受理.

E-mail: kitamura.akihisa@shizuoka.ac.jp

Received: 11 April 2022 Accepted: 21 May 2022

¹静岡大学理学部地球科学教室, 422-8529 静岡県静岡市駿河区大谷836

²静岡大学防災総合センター,422-8529静岡県静岡市駿河区大谷836

³静岡大学理学部放射科学教育研究推進センター,422-8529 静岡市駿河区大谷836

⁴静岡大学大学院総合科学技術研究科, 422-8529 静岡県静岡市駿河区大谷836

⁵ふじのくに地球環境史ミュージアム,422-8017 静岡市駿河区大谷5762

⁶静岡大学技術部教育研究支援系教育研究第二部門, 422-8529 静岡市駿河区大谷836

¹Institute of Geosciences, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

²Center for Integrated Research and Education of Natural Hazards, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan
³Center for Radioscience Education and Research, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

⁴Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan

⁵Museum of Natural and Environmental History, Shizuoka, 5762 Ohya, Suruga-ku, Shizuoka City, Shizuoka Prefecture, 422-8017 Japan

⁶Division of Technical Service, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 Japan

はじめに

2021年7月3日午前10時30分頃,静岡県熱海市伊豆山 地区の逢初川沿いで,土石流が発生し,流下経路の家屋 を壊し,伊豆山港から相模湾へ流入した(図1).その後 の静岡県(2021a)の調査で,逢初川源頭部にあった盛 土のうち約55,500m³が崩壊したことが判明した.さらに, 静岡県(2021b)は,①盛土は黒色の土砂と褐色の土砂 の2つに大別され,②黒色の土砂が土石流堆積物の多く を占めること,③Ca含有率の相違から黒色の土砂は,他 所から搬入されたと推測した.さらに,静岡県(2021c) では,2009年に逢初川源頭部が埋め立てられ,崩壊箇所

図1 熱海市伊豆山地区の土石流の流路と試料採取地点と地質.北村(2022)を一部改変.a-d:土石流の流路と試料採取地点.e:地質図. b-dの数値は¹³⁷Csの測定値で,白色は本研究の測定で,赤色は静岡県(2021f)の測定である.No.1-8は静岡県(2021b)の試料採取 地点.画像は地理院地図(2021)を使用.地質図は及川・石塚(2011)の地質図と産業総合研究所地質調査総合センター(2021)の 地質図Naviのシームレス地質図v2に基づいて作成.

500 m

図2 土砂災害発生後の砂防堰堤.(a)下流から見た砂防堰堤.(b)砂防堰堤の空中写真とボーリングコア掘削地点.静岡県(2021e)から引用.(c)ボーリングコア掘削の現場写真.静岡県から提供.

における谷埋め盛土が始まっていたと報告している.

北村ほか(2022)は、未崩壊の盛土の黒色の土砂と褐 色の土砂ならびに土石流堆積物の砂粒子の鉱物種・岩石 種を分析した.その結果、黒色の土砂と土石流堆積物が 放散虫チャートの岩片を含むことを発見し、それが黒色 の土砂のトレーサー物質となるとした.

以上のように未崩壊の盛土と土石流堆積物の成分に関 するデータは得られたが,盛土の崩壊の原因究明には, 崩壊直後の土石流に含まれる堆積物の情報が必要である. なぜならば,その堆積物は,崩壊の引き金となった初期 崩壊物質の性状の推定に役立つからである.

逢初川の源頭部と集落の間には砂防堰堤があるが,そ れは、今回の土石流堆積物で埋積された(図2).静岡県 は、2021年8月下旬に、この砂防堰堤で長さ13.1mのボー リングコア試料を1本採取した(図2)(静岡県、2021d). 本論では、このコア試料に関して、放射性セシウム濃度 を測定し、粒子組成を調査した.その結果、2011年3月 11日に発生した東北地方太平洋沖地震に伴う巨大津波で 被災した福島第一原子力発電所から放出された放射性セ シウム¹³⁴Csと¹³⁷Csを検出し、2011年3月中旬の堆積面の 位置を認定できた.さらに、その上位の堆積物から、逢 初川周辺には分布しない泥岩や放散虫化石を含むチャー ト岩片を検出し、今回の土石流堆積物の層位を推定した. これらの結果をここに報告する.

調査地域

逢初川の上流域には、中期更新世の湯河原火山噴出物 が分布し、主に玄武岩、安山岩、デイサイトからなり、湖 成層・海成層は分布していない(及川・石塚, 2011)(図 1).国土地理院(2021)は、2009年と2019年の測量デー タを比較し、同期間に形成された源頭部の盛土の体積量 を約56,000m³と見積もっており、静岡県(2021a)はそ のうちの約55,500m³が崩壊したと試算している.

今回の調査地の砂防堰堤は、源頭部から約450m下流 にあり、竣工年度は1999年度で、堤高は10.0m、堤長は 43.0mである(静岡県、2021e)(図2).静岡県(2021e) は、砂防堰堤の源頭部側で、2020年と2021年7月5~ 6日の計測の比較から、土砂災害の前後で標高が1–10m 高くなったことを報告している.また、静岡県(2021f) は、熱海市伊豆山地区土砂災害現場の2地点(①と②)で 2021年8月20日に、土石流堆積物を採取し、¹³⁷Csは、そ れぞれ5.7Bq/kg乾土、11.6Bq/kg乾土であり、¹³⁴Csは両 地点とも検出限界未満であることを報告している(図1).

なお,静岡県(2021g)と熱海市(2021)が公開した 文書から,2021年7月3日以前に報告された逢初川の河 川水の異常な濁りについて表1にまとめた.これによる と,2007年4月25日と2009年10月8日に濁りが報告さ れている. 表1 2021年7月3日以前に報告された逢初川の河川水の異常な濁り.

日付	記述	文書の名称	
2007年 4月25日	逢初川を調査したところ,相当の濁り を確認。	盛土に関する調査経過報告について (市長経過報告発言要旨)11月10日 更新	https://www.city.atami.lg.jp/kurashi /bousai/sizusan/saigai/1011817.ht ml
2009年 10月8日	県熱海土木事務所は伊豆山の漁師から 連絡を受け,伊豆山港のにごりの状況 を確認.	1. 熱海市逢初川源頭部の盛土	http://www.pref.shizuoka.jp/kenset su/ke-520/r31018koubunnsho.html
2009年 10月9日	県熱海土木事務所は2009年10月8日の 伊豆山港及び逢初川河口部のにごり調 査をうけ,上流部を確認。	1. 熱海市逢初川源頭部の盛土	http://www.pref.shizuoka.jp/kenset su/ke-520/r31018koubunnsho.html

調査方法及び分析

静岡県により,2021年8月下旬に掘削した長さ13.1m, 直径5cmのボーリングコアを研究室で半裁後,堆積相を 記載し,断面を写真撮影した.

砂質・泥質堆積物試料を採取し,60°Cのオーブンで24 時間乾燥後,重量を測定した.その後,細粒砂~泥を主 体とする層準から試料を採取し,放射性セシウム濃度の 測定,泥質物の全有機炭素(TOC),全窒素(TN)およ び全硫黄(TS)の含有量の測定,砂粒子の粒子組成の分 析を行った.

試料から28-86gを分取し、U8容器に封入し、静岡 大学理学部放射科学教育研究推進センターの所有する 高純度ゲルマニウム半導体検出器(SEIKO EG&G社 GMX25P4-70およびMCA-7a)を用いたy線スペクトロ メトリーにより、¹³⁴Csと¹³⁷Csを定量した。¹³⁴Csと¹³⁷Cs の値は、2011年3月11日の東北日本太平洋沖地震に伴う 巨大津波による福島第一原子力発電所の事故で大気中に 放射性セシウムが放出されたとされる2011年3月15日 (Adachi *et al.*, 2013)を基準に減衰補正を行った。

試料から約2gを分取し,ふるいにかけて63µm以下の粒 径のサブ試料を得て,メノウ乳鉢で粉末化した.この粉 末試料を,ふじのくに地球環境史ミュージアムのCHNS 分析装置 (Flash 2000, Thermo Fisher Scientific 社製)で 全有機炭素 (TOC),全窒素 (TN)および全硫黄 (TS) の含有量を分析した.さらに,各試料について,ふるい で0.35-0.50mmの粒子を抽出し,約60℃で24時間乾燥 させ,樹脂に包埋し,薄片を作成し,300-500個の粒子 の組成を偏光顕微鏡で同定した.

これらの分析に加えて、後述する¹³⁴Csと¹³⁷Csが検 出された深度3.88-3.85mとその上位の試料については、 粒度分析を行った. 試料から3-8gを分取し、16,000µm (16mm)以下の粒子について目開き32,63,90,125, 180,250,355,500,710,1,000,2,000,4,000,8,000µm のふるいで水洗し、残渣の乾燥重量を測定した.

さらに、北村・池田(2021)の記載した地点A5(伊豆 山港)の土石流堆積物,北村(2022)の記載した地点B1 (源頭部の黒色の土砂)とB2(源頭部の褐色の土砂)と B3(集落の直ぐ山側の土石流堆積物)の¹³⁴Csと¹³⁷Csも, 上記と同様の方法で測定した.なお,北村・池田(2021) の地点A1,A2,A3,A4に関しては、地点A2にて土石 流堆積物を採取していたものの、北村ほか(2022)です べての試料を分析で使用しており放射性セシウム¹³⁴Csと ¹³⁷Csは測定していない.ただし、地点A2の30m東の地点 で採取した土石流堆積物を静岡県が測定している(図1).

結果

盛土と土石流堆積物

未崩壊の盛土の¹³⁷Csは, 黒色の土砂は1.8±0.6Bq/kg 乾土で,褐色の土砂は9.5±0.8Bq/kg乾土である.一方, 土石流堆積物の¹³⁷Csは地点B3で4.8±0.7Bq/kg乾土,地 点A5で4.8±0.7Bq/kg乾土である(表2).また,静岡県 の測定値は地点①が5.7Bq/kg乾土で,地点②が11.6Bq/ kg乾土である(図1).すべての試料に関して,¹³⁴Csは検 出限界未満である.

表2 盛土と土石流堆積物の¹³⁴Cs, ¹³⁷Cs. NDは検出限界未満. カッコ内は検出限界値.

地点		Cs-137(Bq/kg乾土) (2011/03/15補正値)	Cs-134(Bq/kg乾土) (2011/03/15補正値)			
B1	黒色の土砂	1.8 ± 0.6	ND (< 60)			
B2	褐色の土砂	9.5 ± 0.8	ND (< 61)			
B3	土石流堆積物	4.8 ± 0.7	ND (< 59)			
A5	伊豆山港	4.8 ± 1.1	ND (< 101)			

ボーリングコア試料

ボーリングコア試料は基底部に相当する深度13.10-10.58mは火山岩であり,基盤岩の可能性がある.深度 10.58-10.00mは不淘汰な礫層である.深度10.00-3.74m までは含礫褐色粘土層であり,深度3.74-0.20mまでは含 礫黒色粘土層であり,最上部の厚さ0.20mは含礫褐色粘 土層である(図3).

¹³⁴Csは,深度3.88-3.85mで179.5±19.6Bq/kg乾土,深

度 3.82–3.78m で 52.3 ± 14.7Bq/kg 乾土の値をとり,他の 部分は検出限界未満である.¹³⁷Cs は,深度 11.55–3.95m は深度 5.00–5.05m(3.5 ± 1.0Bq/kg 乾土)を除くと,検 出限界未満であるが,深度 3.88–3.85m で 184.5 ± 1.7Bq/ kg 乾土に急増し,深度 3.82–3.78m で 51.8 ± 0.8Bq/kg 乾 土へ減少し,それ以浅では 7.7 ± 0.9Bq/kg から検出限界 未満の範囲をとる(図 3)(表 3).

TOC・TN含有量は、深度11.55-3.88mまでは上方に

図3 砂防堰堤の埋積土のボーリングコアの柱状図と¹³⁴Cs,¹³⁷Cs,全硫黄量,粒子組成,粒度組成の層位変化.

表3 砂防堰堤の埋積土の¹³⁴Cs, ¹³⁷Cs, 各試料の泥質物の全有機炭素(TOC), 全窒素(TN), 全硫黄(TS) 濃度, 粒径0.35–0.50mmの 粒子の組成. NDは検出限界未満. カッコ内は検出限界値.

河市()	Cs-137(Bq/kg乾土)	Cs-134(Bq/kg乾土)	全有機	全窒素	全硫黄	団粒	岩片	石英	長石	輝石	その他	不明
深度(m)	(2011/03/15補正値)	(2011/03/15補正値)	炭素(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
0.00-0.05	ND (< 1.6)	ND (< 73)	1.74	0.08	0.18	47.0	21.4	5.6	4.6	3.8	3.0	0.6
0.35-0.40	5.9 ± 0.7	ND (< 50)	2.31	0.12	0.14	56.0	22.8	2.4	1.8	2.0	2.0	0.2
0.90-0.95	ND (< 1.8)	ND (< 59)	1.81	0.09	0.13	70.8	17.0	2.6	4.4	4.4	0.8	0.0
1.00-1.05	3.7 ± 0.7	ND (< 59)	1.80	0.08	0.16	67.6	18.6	4.6	3.4	3.2	2.4	0.2
1.20-1.25	6.6 ± 0.9	ND (< 75)	2.39	0.13	0.13	61.0	15.2	2.6	1.6	2.0	3.6	0.2
2.95-3.00	6.7 ± 0.8	ND (< 60)	2.22	0.11	0.19	75.0	13.8	3.0	3.4	2.6	2.0	0.2
3.00-3.05	$7.5\ \pm 0.9$	ND (< 73)	2.41	0.16	0.16	64.8	19.0	3.6	4.8	3.0	4.0	0.8
3.63-3.67	4.3 ± 1.2	ND (< 112)	2.01	0.10	0.39	46.8	28.6	7.8	5.8	5.8	4.8	0.4
3.67-3.70	7.7 ± 0.9	ND (< 101)	2.40	0.17	0.12	50.2	16.6	2.2	2.8	4.2	2.6	0.2
3.70-3.74	7.5 ± 0.8	ND (< 68)	1.55	0.11	0.07	52.8	9.8	3.2	4.0	2.4	1.6	0.0
3.74-3.78	2.6 ± 0.3	ND (<31)	1.34	0.10	0.05	80.4	7.6	0.0	1.0	0.4	2.6	0.2
3.78-3.82	51.8 ± 0.8	52.3 ± 14.7	3.33	0.23	0.04	86.2	4.8	1.6	2.6	2.0	2.8	0.0
3.85-3.88	184.5 ± 1.7	179.5 ± 19.6	3.82	0.26	0.03	80.6	7.6	2.0	2.0	2.0	5.6	0.2
3.95-4.00	ND (< 2.7)	ND (< 83)	1.15	0.05	0.01	92.8	1.6	0.0	0.6	2.4	2.6	0.0
4.80-4.85	ND (< 3.3)	ND (< 103)	1.40	0.07	0.01	93.0	2.6	0.0	1.4	1.0	2.0	0.0
4.95-5.00	ND (< 4.2)	ND (< 126)	1.09	0.07	0.01	74.4	3.8	0.0	0.2	0.4	1.0	0.2
5.00-5.05	3.5 ± 1.0	ND (< 93)	0.92	0.05	0.00	71.0	25.6	1.0	0.0	1.0	1.2	0.2
5.50-5.55	ND (< 2.9)	ND (< 92)	0.58	0.02	0.01	66.4	25.8	0.4	0.8	4.6	0.8	0.0
5.95-6.00	ND (< 3.1)	ND (< 99)	0.97	0.04	0.01	83.6	13.6	0.8	0.2	0.6	1.2	0.0
6.50-6.55	ND (< 3.2)	ND (< 96)	0.84	0.03	0.02	93.6	5.4	0.4	0.2	0.0	0.4	0.0
7.00-7.05	ND (< 3.6)	ND (< 130)	0.73	0.03	0.01	73.2	21.6	0.8	0.8	3.2	0.4	0.0
7.55-7.60	ND (< 4.0)	ND (< 125)	0.68	0.03	0.00	76.4	17.0	0.8	1.6	3.0	1.2	0.0
8.00-8.05	ND (< 2.9)	ND (< 80)	0.37	0.00	0.00	73.4	23.8	0.4	0.4	0.2	1.4	0.4
8.67-8.74	ND (< 3.2)	ND (< 99)	0.32	0.00	0.00	44.0	52.6	0.6	0.4	2.2	0.2	0.0
10.50-10.55	ND (< 2.3)	ND (< 81)	0.08	0.00	0.00	52.2	29.6	0.0	0.0	0.2	0.0	0.0
11.50-11.55	ND (< 1.8)	ND(< 62)	0.07	0.00	0.00	62.4	35.8	0.8	0.8	0.2	0.0	0.0

向かって増加し, 深度3.85-3.88mで最大値をとり(そ れぞれ, 3.82%, 0.26%), 深度3.82mより上位は深度 3.95mより下位に比べて2倍の含有率で, TOC含有量は 1.80-3.33%, TN含有量は0.10-0.23%である(表3). TS 含有量は, 深度11.55-3.67mまでは上方に向かって増加 し, 深度3.67-3.63mで最大値(0.39%)をとり, それよ り上位は下位に比べて10倍の含有率(0.13-0.19%)であ る(図3,表3).

石英,長石粒子の占有率は,深度3.74mを境に,下位 の値(石英は0-2.0%,長石は0-2.6%)よりも上位の値 (石英は2.2-7.8%以下,長石は1.6-5.8%以下)が多くな る.深度3.74-3.70mの試料からは海綿の骨子を含む堆積 岩片が検出され,深度3.70-3.67mの試料からは有孔虫殻 を含む堆積岩片が検出され,深度3.67-3.63mの試料から は放散虫を含むチャート岩片が検出された(図4).

¹³⁴Csと¹³⁷Csが検出された深度3.88–3.85mとその上位の 堆積物の粒度組成は,多くの試料が多峰性を示し,不淘 汰である(図3,表4).

考察

2011年3月11日の東北日本太平洋沖地震に伴う巨大津 波による福島第一原子力発電所の事故で,¹³⁴Csと¹³⁷Cs が放出された(Momoshima *et al.*, 2012).放出された ¹³⁴Cs/¹³⁷Cs比はほぼ1である(東京電力福島原子力発電所 事故調査委員会, 2012).

本研究により、¹³⁴Csと¹³⁷Csが検出された深度3.88-

3.85m と 3.82–3.78m の 134 Cs/ 137 Cs 比は, それぞれ 0.97 と 1.01 で,ほぼ1 である.また,深度 3.88–3.85m の 134 Cs と 137 Cs はそれぞれ 179.5±19.6Bq/kg 乾土と 184.5±1.7Bq/kg 乾土であり,これらの値は神奈川県川崎市の土壌の 134 Cs (137±7Bq/kg 乾土)と 137 Cs (198±4Bq/kg 乾土) に近 い値である(越智ほか, 2017).なお,越智ほか (2017) は,減衰補正を行っていない.

以上のことから,深度5.00-5.05mの¹³⁷Csは1950年 代以降の大気圏核実験に由来し,深度3.88-3.85mと 3.82-3.78mの¹³⁴Csと¹³⁷Csは福島第一原子力発電所の事 故で放出されたものであると推定される.よって,2011 年3月中旬の地表面は深度3.95-3.85mの範囲内にあり, 2021年7月3日の土石流堆積物の基底面は深度3.85mより 上位にある.そして,深度3.74mで埋積土が褐色から黒色 に変化し,その直上の深度3.74-3.70mの試料から海綿の 骨針を含む泥岩岩片が検出されたことから,盛土の黒色 の土砂に由来する粒子の堆積は深度3.74mから始まった と推定される.つまり,今回の土石流で標高が3.74m高 くなったということで,この値は上記の静岡県(2021h) の報告と符合する.

深度3,85–3.74mの褐色泥層が土石流堆積物か否かは決 定できないので、砂防堰堤に最初に到達した土石流堆積 物が盛土の褐色の土砂か黒色の土砂かは分からない。し かし、初期の土石流堆積物の主要な供給源は黒色の土砂 であることは確実である。このことは、木村(2021)が 提示した2021年7月3日の崩落崖が、褐色の土砂とそれ を覆う黒色の土砂の境界付近にあたるとする解釈と調和

図4 砂防堰堤の埋積土の深度4.00-3.63mの¹³⁴Cs, ¹³⁷Cs, 全硫黄量, 粒子組成の層位変化, 含化石岩片の写真. スケールバーは1mm.

深度(m) 粒径(µm)	0.00-0.05	0.30-0.35	0.90-0.95	1.00-1.05	1.20-1.25	2.95-3.00	3.00-3.05	3.63-3.67	3.70-3.74	3.74-3.78	3.78-3.82	3.85-3.88
16000-8000	0.0	21.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8000-4000	0.0	2.6	2.1	1.9	21.5	11.8	3.6	1.1	0.1	4.5	0.0	1.8
4000-2000	7.5	4.1	12.9	5.3	13.5	7.8	4.4	6.1	5.1	4.4	4.9	1.1
2000-1410	2.9	3.0	5.1	3.6	1.9	4.0	5.0	3.0	2.4	2.8	3.0	1.9
1410-1000	3.9	3.7	3.7	4.6	2.5	2.9	4.6	3.2	3.6	3.1	4.4	3.3
1000-710	4.6	3.5	4.4	4.4	2.5	4.3	4.7	3.8	3.7	4.1	5.3	5.2
710-500	5.8	6.2	5.3	5.3	2.5	5.2	6.6	5.6	4.6	5.9	6.1	6.1
500-350	9.4	8.8	7.2	5.9	3.1	5.9	9.2	6.4	6.7	7.5	8.1	9.6
350-250	12.6	10.0	8.3	7.0	3.8	7.3	13.2	8.9	8.3	10.0	10.4	11.4
250-180	10.9	10.3	8.2	7.8	4.4	8.6	10.3	12.4	10.3	10.7	11.2	11.6
180-125	10.0	8.2	8.2	7.1	5.0	9.0	9.9	15.6	9.8	11.9	11.9	9.5
125-90	8.4	5.4	6.4	6.8	4.6	6.9	9.0	10.5	8.4	10.3	9.6	10.2
90-63	5.9	4.2	4.5	5.3	4.2	5.4	6.2	7.2	6.6	8.5	8.1	6.8
63-32	5.8	4.3	5.5	8.1	6.6	6.2	6.3	8.0	7.7	8.3	8.2	7.7
<32	12.4	4.1	18.4	27.0	23.9	14.9	7.0	8.2	22.7	8.0	9.0	13.8

表4 深度3.88-3.85m とその上位の堆積物の各粒度の占有率(%).

的である.

また,埋積土の最上部が褐色泥層であることは,埋積 土の土石流堆積物に関しては,主要成分が黒色の土砂か ら褐色の土砂に変わったことを意味する.なお,静岡県 (2021g)と熱海市(2021)が公開した文書では(表1), 2007年と2009年に伊豆山港まで濁った水が流下したこ とが報告されている.深度3.85mより下位の含礫褐色粘 土の一部は,これらの時期に砂防堰堤に流入した堆積物 の可能性がある.

逢初川の源頭部の盛土は2007年には持ち込まれている (静岡県, 2021c).一方,北村(2022)は黒色の土砂に含 まれる二枚貝の¹⁴C年代値から,その供給源の一部が海 成堆積物であり,さらに現世堆積物と中部完新統の2つ の供給源があることを明らかにした.本研究では,埋積 土の多くの試料と未崩壊の盛土の黒色の土砂と褐色の土 砂については,¹³⁷Csが検出され,¹³⁴Csが検出限界未満で あることが明らかになった.これらのことから,供給源 において,黒色の土砂は1950年代から2009年までの期 間に堆積していたものと推定される.

一方,埋積土の一部の試料は¹³⁷Csと¹³⁴Csが検出限界 未満なので,1950年代以前の堆積物の存在を示唆する. また,埋積土の黒色泥層から検出された微化石を含む泥 岩岩片は,北村ほか(2022)で分析した黒色の土砂や土 石流堆積物からは検出されていないが,微化石を含む泥 岩は,逢初川周辺には分布していない.これらのことは, 黒色の土砂ではあるが,北村ほか(2022)の報告した土 砂とは異なる供給源があることを示唆する.

まとめ

静岡県熱海市伊豆山地区の逢初川沿いで,2021年7月 3日午前10時30分頃に発生した土石流は,流路にあっ た砂防堰堤を埋積後,砂防堰堤を超え,相模湾へ流入し た.本研究では,砂防堰堤の埋積物から得たボーリング コア試料について,放射性セシウム濃度と粒子組成の層 位変化を調査した.その結果,2011年3月の福島第一原 子力発電所の事故で放出された放射性セシウムを検出し た.さらに,盛土の黒色の土砂に由来する土石流堆積物 の基底の層準範囲を特定するとともに,初期の土石流堆 積物の主要な供給源が黒色の土砂である可能性が高いこ とが判明した.

追記

静岡県(2021f)は, 逢初川下流域の家屋に到達した土 石流を第1波と定義している. そのため,本研究で判明 した砂防堰堤内の土石流堆積物を運搬した土石流を第0 波と命名する.

謝辞

静岡県からはボーリングコア試料と写真を提供いただ き,感謝申し上げる.静岡大学の延原尊美教授とJulien Legrand博士による査読コメントによって,本稿は改善 された.本研究の経費は静岡大学防災総合センターと未 来社会デザイン機構の予算を使用した.

引用文献

- Adachi, K., Kajino, M., Zaizen, Y. & Igarashi, Y. (2013), Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. *Scientific Report*, 3, 2554.
- 熱海市(2021),盛土に関する調査経過報告について (市長経過報告発言要旨)11月10日更新.https:// www.city.atami.lg.jp/kurashi/bousai/sizusan/ saigai/1011817.html 2022年3月24日引用.
- 地理院地図 (2021), https://www.gsi.go.jp/tizu-kutyu.html 2021年7月4日引用.
- 木村克己 (2021), 熱海市の逢初川土石流災害の地形・地 質的背景. 深田地質研究所年報, No. 22, 185–202.
- 北村晃寿(2022),静岡県熱海市伊豆山地区の土砂災害現 場の盛土の崩壊斜面と土石流堆積物から見つかっ た海生二枚貝の貝殻.第四紀研究,**61**(印刷中), doi:10.4116/jaqua.61.2114.
- 北村晃寿・池田昌之(2021),2021年7月3日に静岡県熱 海市伊豆山地区で発生した土石流の速報.静岡大 学地球科学研究報告,48,63-71.
- 北村晃寿・岡嵜颯太・近藤 満・渡邊隆広・中西利典・ 堀 利栄・池田昌之・市村康治・中川友紀・森 英樹(2022),静岡県熱海市伊豆山地区の土砂災 害現場の盛土と土石流堆積物の地球化学・粒子組 成分析.静岡大学地球科学研究報告,49,73-86.
- 国土地理院 (2021), 崩壊地等分布図及び土砂堆積範 囲図 (7月6日第3報公開) https://www.gsi.go.jp/ BOUSAI/R3_0701_heavyrain. html#4 2021年7月 8日にダウンロード
- Momoshima, N., Sugihara, S., Ichikawa, R. & Tokoyama, H. (2012), Atmospheric radionuclides transported to Fukuoka, Japan remote from the Fukushima Daiichi nuclear power complex following the nuclear accident. *Journal of Environmental Radioactivity*, 111, 28–32.
- 越智康太郎・藤井健悟・萩原健太・大渕敦司・小池裕 也(2017),関東甲信越における土壌中放射性セ シウムの化学形態モニタリング.分析化学,66, 175-180.
- 及川輝樹・石塚 治(2011),熱海地域の地質.地域地 質研究報告(5万分の1 地質図幅).産総研地質 調査総合センター,61p.
- 産業技術総合研究所地質調査総合センター(2021),地 質図Navi. https://gbank.gsj.jp/geonavi/#disclaimer 2021年10月6日引用.
- 静岡県(2021a),難波副知事記者会見 令和3年7月8日 https://www.youtube.com/watch?v=ihq8hpwGA0w 2021年7月9日引用.
- 静岡県 (2021b), 熱海市伊豆山地区土石流土質調査結果(速報) https://www.pref.shizuoka.jp/kensetsu/ke-

350/documents/kisyateikyou_doshitucyousakekka. pdf 2021年9月9日引用.

- 静岡県(2021c),逢初川土石流の発生原因調査に関する 盛土履歴調査http://www.pref.shizuoka.jp/kensetsu/ ke-350/sabouka/documents/morido_cyousa.pdf 2022年3月24日引用.
- 静岡県 (2021d), 逢初川土石流の発生原因調査に関する 地質調査 (ボーリング) 実施状況 http://www. pref.shizuoka.jp/kensetsu/ke-350/sabouka/ documents/chishitucyousakekka.pdf 2022年3月 24日引用.
- 静岡県(2021e),逢初川土石流災害対策検討委員会. http://www.pref.shizuoka.jp/kensetsu/ke-350/ sabouka/documents/iinnkaishiryou.pdf 2022年3 月24日引用.
- 静岡県(2021f),熱海市伊豆山地区土砂災害現場の土壌 の放射能調査結果.https://www.pref.shizuoka.jp/ kinkyu/genshiryoku/atamishiizusanhousyasen.html 2022年3月24日引用

- 静岡県(2021g), 1. 熱海市逢初川源頭部の盛土. http:// www.pref.shizuoka.jp/kensetsu/ke-520/r31018 koubunnsho.html 2022年3月24日引用
- 静岡県(2021h),第2回逢初川土石流災害対策検討委員 会 http://www.pref.shizuoka.jp/kensetsu/ke-350/ sabouka/documents/iinnkaishiryou2.pdf 2022年5 月26日引用.
- 東京電力福島原子力発電所事故調査委員会(2012),東 京電力福島原子力発電所事故調査委員会 報告書. https://www.mhmjapan.com/content/files/00001736/ naiic_honpen2_0.pdf

著者貢献

北村晃寿:試料採取,砂粒子の鉱物種・岩石種の同定, 全体総括,論文執筆を担当.矢永誠人:放射性セシウム 濃度の測定,論文執筆を担当.岡嵜颯太・片桐 悟:泥 粒子のCNS分析を担当.中西利典:泥粒子のCNS分析 を担当.森 英樹:薄片作成を担当.