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Abstract: This paper pursued both the lower operating power limit and small area of on-chip rectifiers
for microwave wireless power transfer (MWPT). RF–DC charge pump rectifiers can operate in the fast
switching limit at a high frequency of 920 MHz even with a small stage capacitor Cin of 100 fF, which
contributes to an area reduction in the on-chip rectifiers. Circuit design starts with Cin determined as
small as possible, followed by the determination of switching transistors and the number of stages.
Even at an extremely low input power of 1 µW, wiring resistance in RF inputs is critical. Routing
of the RF inputs is designed in line with stage capacitors. Bonding pad structure also affects the
lower input power limit. Ground-shielded pad design can reduce the lower limit. Various types of
RF–DC charge pump rectifiers are fabricated in 65 nm CMOS. An ultra-low-power diode RF–DC
charge pump rectifier with 32 stages had a lower input power limit of −31.7 dBm at an output voltage
of 1.0 V. Its small silicon area of 0.011 mm2 allows RF–DC rectifiers to be integrated in sensor ICs.
More advanced technology providing MIM capacitors with higher capacitance density and placing
switching MOSFETs under the MIM capacitors will further reduce the area of RF–DC charge pump
rectifiers, allowing them to be integrated in sensor ICs.

Keywords: RF–DC; charge pump; converter; rectenna; microwave wireless power transfer; IoT;
energy harvesting

1. Introduction

In recent years, microwave wireless power transfer (MWPT) has attracted much
attention as a method of powering sensor ICs of IoT devices [1]. Using 1 trillion sensor ICs
per year is predicted in the near future by development of 5G and Artificial Intelligence [2].
If each of these devices is equipped with batteries, a large number of sensor ICs will need
to be maintained for the battery with a significant cost increase. MWPT can reduce this cost,
and ultimately, reduce this to zero. In addition, because MWPT uses electromagnetic (EM)
waves for the power source, a wireless communication network can be built in the same
time to receive and transmit sensed data. A MWPT system mainly consists of a transmitter
for radiating EM waves and a receiver with a receiving antenna and a rectifier for capturing
the radiated EM waves. This combination of receiving antenna and rectifier is called a
rectenna [3]. Figure 1 shows a block diagram of a rectenna.

This research aims at extending the transmission distance focused on the rectifier part
of rectenna circuit for low power application, or at reducing the lower operating power
limit of rectennas, with a rectifier circuit area small enough to be integrated in sensor ICs.
According to Friis’s formula, transmission distance is inversely proportional to received
power squared [4]. By extending the transmission distance, powering to increased sensor
ICs in a wide range such as factories is enabled with only one transmitter.
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under a 1 V output condition for a capacitive load. In [15], it is reported that high sensi-
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Research on MWPT techniques has been conducted on a wide range of topics, in-
cluding optimal rectenna design methodology and improving the performance of rectifier
circuits. In [5], it was reported that a circuit topology of minimizing the junction capacitance
of diodes to achieve higher conversion efficiency under the condition of constant antenna
impedance was used. The most significant parameter for conversion efficiency was ana-
lyzed in [6], and the circuit topology proposed in [5] in accordance with this analysis. In [7],
the optimal rectenna design is conducted on considering parasitic elements generated by
integration for combination of specific antenna and specific on-chip rectifier. The authors
of [8] proposed the design methodology for selecting the optimum rectifier from multiple
types for specific antenna types to explore a larger design space than in [5–7]. Furthermore,
the authors of [9] proposed a methodology to select the best combination of multiple types
of antennas and rectifiers by using the model calculation. The analysis covering a wider
range of design conditions can be conducted in a shorter time than in [8]. These works
focused on the optimum rectenna design. In [10], a circuit topology was proposed to cancel
the threshold voltage by connecting the gates of NMOS and PMOS in each stage of the
rectifier unit to the output and input terminals, respectively, because threshold voltage
has a great effect on the conversion efficiency of on-chip rectifier. However, under the
high-power operation condition, there is a disadvantage—reverse leakage current becomes
large because of the gate bias is excessive. The authors of [11] added a second rectifying
path to store excessive charges in a storage capacitor when the input power is extremely
large. When the input power is not sufficient, sensor ICs are operated with the energy in
the storage capacitor stored in advance. This method realized −29.0 dBm sensitivity under
a 0.44 V/1.9 µA output condition. However, it is necessary to input −15.4 dBm or higher
beforehand. In [12], a LC-oscillator-driven rectifier is proposed to increase the output
voltage even with very low input power. A −34.5 dBm sensitivity under a 1.6 V/0.89 µA
instantaneous output condition by supplying additional low DC voltage of 0.3 V is reported
in this work. In [13], sensitivity was improved by using an RF–DC charge pump (CP) with
50 stages of the simplest diode-connected transistors. This work reported that a low input
power of −32.1 dBm is required to obtain the output voltage 1 V for a capacitive load. The
authors of [14] reported high sensitivity can be achieved with only six rectification stages
by applying self-bias to the gates of rectifying transistors. Although the number of stages
are not many, the area becomes large because more transistors and capacitors are needed
in the bias circuit. A −30.0 dBm sensitivity is reported in this work under a 1 V output
condition for a capacitive load. In [15], it is reported that high sensitivity and tolerance
against temperature fluctuation and process corner variations are achieved by connecting
five stages of a voltage doubler with two types of rectifying diodes. This work reports that
an input power of −33.0 dBm is required to obtain the output voltage 1 V for a 1 GΩ load.
Another design approach is adopting an on-chip transformer together with an on-chip
rectifier [16]. With the proposed design procedure, the input impedance of the on-chip
transformer can be matched with that of the antenna.

In this research, both a small rectifier circuit and high sensitivity are prioritized. The
design starts with an initial assumption of a sufficiently small capacitor per stage of RF–DC
CP but sufficiently large so as not to be affected by parasitic capacitance such as junction
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capacitance and wring capacitance. The rest design parameters are determined one by one
under the condition that the input power required to generate 1 V at the output terminal of
the RF–DC CP is minimized. Section 2 shows the characteristics and schematics of rectifiers
composing each stage to be optimized. Section 3 explains the optimization flow of the
rectifier unit and determined optimum circuit parameters. Section 4 presents fabricated
circuits and measurement results. Section 5 shows the comparison result of previous works
with this work from both perspectives of area and input sensitivity. Section 6 summarizes
this research.

2. Rectifying Circuits

This section explains the rectifier candidates consisting of each stage of RF–DC CP.
Table 1 summarizes the circuit parameters of the rectifier. The gate width of PMOSFET is
set to be twice as wide as that of NMOSFET.

Table 1. Description of parameters.

Parameter Description Parameter Description

f Frequency of input power n f Number of fingers of each switching transistor
Vout Output voltage of RF–DC CP Cin Input capacitance per stage

l Gate length of switching transistors N Number of stages
w Gate width of NMOSFET

Figure 2 illustrates three rectifier types considered in this research: (a) a single-diode
rectifier [13], (b) a CMOS latch or cross-coupled rectifier [17], and (c) an ultra-low-power
diode (ULPD) [18]. Charge pump operation is performed as follows. With CLK high
and CLKB low in Figure 2a, the charges stored in the left-hand-side capacitor Cin are
transferred to the right-hand-side Cin. With CLK low and CLKB high, the charges stored in
the right-hand-side capacitor Cin are transferred to the next capacitor. Thus, the charges
are transferred from one to the next every half cycle. As a result, the output voltage can
be increased.

The portions enclosed by dashed lines represent one stage of the rectifiers. The CP
capacitor Cin usually occupies a majority part of the circuit area. To have a squeezed
circuit, Cin must be minimal. Cin of 100 fF is commonly assumed in this study, which is
sufficiently large to disregard the impact of the parasitic capacitance such as the PN junction
of switching transistors and wiring on charge transfer efficiency under low input power
but sufficiently small to integrated in sensor ICs.

The single-diode rectifier has one NMOS transistor per stage, with an isolated P-
well and N-well enclosing the isolated P-well connected with its source terminal together.
Because of the NMOSFETs, with drain terminals that are connected with their own gate
terminals in Figure 2a, a threshold voltage drop occurs per stage, which reduces the
maximum attainable output voltage. To eliminate such a voltage drop at the switching
MOSFETs, cross-coupled CMOS latch rectifiers were introduced. As shown in Figure 2b,
the NMOSFET in the top path strongly turns on with CLK high and CLKB low, whereas the
PMOSFET in the top path strongly turns off. Thus, the top capacitor is charged from the
previous stage. Conversely, the NMOSFET in the bottom path strongly turns off with CLK
high and CLKB low, whereas the PMOSFET in the bottom path strongly turns on. Thus,
the bottom capacitor is discharged to the next stage. As a result, to turn on, the MOSFETs
can operate in the linear region to eliminate the threshold voltage drop. Therefore, the
CMOS latch-type rectifier is expected to have high conversion efficiency, especially in sub-
threshold region operation with boosted gate voltages. The isolated P-well of NMOSFET is
enclosed by the N-well of PMOSFET. Thus, those four transistors share the same N-well. A
disadvantage of this rectifier type is that more transistors are needed per stage. The parasitic
capacitance can be larger than the single-diode rectifier. A ULPD has one NMOSFET and
one PMOSFET connected serially per stage. The PMOS gate is connected to the output
terminal and the NMOS gate is connected to the input terminal, which can suppress the



Electronics 2023, 12, 1400 4 of 14

reverse bias current while the forward bias current is comparable to that of the single-diode
rectifier [19]. The isolated P-well of NMOSFET is enclosed by the N-well of PMOSFET.
Thus, those two transistors share the same N-well.
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3. Optimization of Circuit Parameters and Layout Design

In this section, rectifier design parameters are determined in such a way that the input
power required to generate 1 V at the output terminal of the RF–DC CP is minimized
with 65 nm CMOS. The sensitivity of the rectifier is defined by the input power to achieve
100 pW at Vout of 1 V and f of 920 MHz in this paper. This results in Pin − Pout curves with
different parameter conditions at Vout of 1 V, as shown in Figure 3. In this example, we will
call “Condition 1” optimum because its sensitivity is the lowest among the three conditions.
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To obtain a squeezed circuit, Cin must be minimal. Cin of 100 fF is commonly assumed
in this study, which is sufficiently large to disregard the impact of the parasitic capacitance
of an order of 1 fF such as the PN junction of switching transistors and wires on charge
transfer efficiency under low input power, but is sufficiently small to integrate in sensor
ICs. Then, circuit parameters to be optimized in terms of the following: (1) transistor type,
(2) threshold voltage, (3) gate width, (4) gate length, and (5) number of stages. Figure 4
illustrates a setup for SPICE simulation. The input signal source is assumed to be an ideal
sinusoid with zero impedance to focus on the rectifier without antenna. The input voltage
amplitude Vamp is swept to vary Pin. Vout is forced to DC of 1 V. Pout is measured per Pin to
draw such a graph as Figure 3.
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Figure 4. Schematic for SPICE simulation.

After several simulation trials, a CMOS latch-type rectifier with the optimum parame-
ters of Table 2 is determined to have the highest sensitivity. Table 2 also includes trial values.
The 65 nm CMOS provides 1 V and 2.5 V transistors. Low, standard and high VTH are
available for 1 V CMOS, each of which is shown by lvt, std and hvt in Table 2, respectively.
When the total gate width is varied as 1.2, 10 and 20 µm, three different combinations of
W and nf are used, as shown by (1), (2) and (3) in Table 2. When one of the parameters
is varied, the remaining parameters are set with those of the optimum values of Table 2.
Pin − Pout curves for each parameter variation are shown in Figure 5. In Figure 5a, Lmin
of 280 nm is used for 2.5 V CMOS. Figure 5 indicates that Pout is affected by CMOS, VTH
and W more significantly than L, Cin and N, suggesting a low W/L and small Cin are key to
achieving higher sensitivity under low input power as far as N is as many as 24 or 32.

Table 2. Optimum circuit parameters.

Parameters Trial Values Optimum Value

Transistor type 1 V, 2.5 V 1 V CMOS
Threshold voltage lvt, std, hvt lvt

l [nm] 60, 120, 240 60
w [µm] (1) 1.2, (2) 5, (3) 5 1.2

n f (1) 1, (2) 2, (3) 4 1
Cin [fF] 100, 500, 1000 100

N 16, 24, 32, 48 32

To compare the performance of RF–DC converters with different switching circuits,
single diodes and ULPDs are also designed with the same design parameters, as shown in
Table 2. SPICE results for Pin − Pout are shown in Figure 6.

Figure 7a shows the one-stage layout of the CMOS latch rectifier. Two NMOSFETs
share a common isolated P-well and four CMOS transistors share a common N-well. In
this design, stage capacitors are placed outside of the transistor region. RF signal lines, as
shown by CLK and CLKB, are routed with top metal over the stage capacitors to minimize
the parasitic capacitance against silicon substrate. CLK/CLKB lines need to be wide enough
to have sufficiently small wiring resistance. Even with careful layout design, a slight shift
in the sensitivity remained, as shown by Figure 7b. Note that the impact of the parasitic
elements on the sensitivity increases as Pin decreases.
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Figure 7. Stage layout of CMOS latch rectifier (a) and Pin − Pout with and without parasitic elements
of CLK/CLKB wires (b).

Another focus was a pad structure. With an original design [9], as shown in Figure 8a,
SPICE simulation for the rectifiers with Cpad − Rsub parasitic elements included showed a
significant impact of Rsub of 6 Ω on the sensitivity, where Cpad is pad capacitance and Rsub
is substrate resistance between the portion under the pad and a ground terminal. In this
design, a pad structure, as shown in Figure 8b, was used. To shield the pad with ground,
M1 and M2 were assigned to ground lines. To reduce the pad capacitance, M3 and M4 were
left floating as dummies. As a result, the sensitivity was improved by approximately 7 dB,
as shown in Figure 8b.
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An additional simulation was performed to investigate which parameter of Cpad and
Rsub was critical, as shown in Figure 9. Opt. 1 is the case where Cpad is as low as the proposed
pad whereas Rsub is as high as the conventional one, and Opt. 2 is the case where Cpad
is as high as the revised pad whereas Rsub is as low as the conventional one, as shown
in Figure 9a. Because Opt. 2 was well matched with the case with the revised pad, it is
concluded that Rsub is more critical than Cpad.
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4. Measurement Result

Five rectifiers, as shown in Table 3, were fabricated in 65 nm CMOS. Figure 10 shows
a die photo. The single-diode rectifier, the CMOS latch-type rectifier and the ULPD-type
rectifier had an area of 240, 440 and 340 µm2 per stage, respectively. If transistors and MIM
capacitors were stuck, the stage area could be smaller than 200 µm2. because capacitor area
determines circuit area and the capacitor size is common to those three.

Table 3. Fabricated rectifiers.

Rectifier Name Rectifier Type Number of Stages

L32 Latch 32
L24 Latch 24
L48 Latch 48
S32 Single diode 32
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in Figure 12. Unlike SPICE results that showed that the sensitivity of latch rectifiers is the 
highest, measured results showed that of ULPD rectifiers is the highest. 

Figure 10. Die photo.

Figure 11a shows a block diagram of the measurement setup. Figure 11b shows its
photo. The input power to the rectifier Pin is calculated based on the output power of RF
generator (PRF), the reflection power (Pref), and loss of each of the connectors and cables [9].
Balanced–unbalanced transformation is placed on microstrip-line for rectifiers because the
signal from the RF generator is an unbalanced signal.
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The sensitivity was measured for each rectifier at a load resistance of 10 GΩ, as shown
in Figure 12. Unlike SPICE results that showed that the sensitivity of latch rectifiers is the
highest, measured results showed that of ULPD rectifiers is the highest.
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Figure 12. Sensitivity at different Vout with a load resistance of 10 GΩ.

To investigate the discrepancy, a more detailed netlist including parasitic elements in
microstrip lines and bonding wires, as shown in Figure 13, was run. The fabricated rectifiers
were measured and compared with the SPICE simulation results.

Lms and Cms represent the parasitic inductance and parasitic capacitance of microstrip-
line, respectively. SPICE simulation was conducted with different values for Lms and Cms
depending on the length of microstrip-line because of the length of microstrip-line on
evaluation board is varied by rectifier. The parasitic inductance of bonding wire LBW is
estimated as 8 nH and the parasitic capacitance of bonding pad Cpad is 200 fF. In this SPICE
simulation, the effects of wiring parasitic capacitance, parasitic resistance and well parasitic
diodes of transistor were considered. Figure 14a–d compare Pout vs. Pin and η vs. Pin is
under the condition of output voltage Vout = 1 V.
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of L24, L32 and L48, (c) Pin − Pout of S32 and U32, and (d) Pin − η of S32 and U32.

Measured and simulated results are in good agreement for Pin > 100 µW or Pout > 10 µW.
On the other hand, the starting points at which Pout − Pin slopes become steeper are different
between measured and simulated, especially in latch-type and single-diode rectifiers. We
were not able to identify the root cause of the degradation. Its investigation will be needed
in the future to reduce the lower bound of the input power. Table 4 summarizes the
sensitivity of each rectifier. A sensitivity of −31.7 dBm was achieved with 0.011 mm2 U32.
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Table 4. Measurement result of the sensitivity of each rectifier.

Rectifier Pattern Number of Stages Rectifier Type
Sensitivity [dBm]

SPICE Measurement

L32 32 Latch −32.5 −23.6
L24 24 Latch −33.2 −22.0
L48 48 Latch −32.9 −25.8
S32 32 Single diode −29.1 −21.8
U32 32 ULPD −25.8 −31.7

One potential cause on the discrepancy in Pin − Pout curves in the low-power region
is as follows. The input impedance of the rectifiers is widely varied over input power, as
shown in Figure 15. RR and CR are equivalent input resistance and capacitance, respectively,
when the input impedance is expressed by a parallel RC circuit. In the high-input-power
region, Zin becomes low because CR becomes large and RR becomes low. In contrast, in
the low-input-power region, Zin becomes high because CR becomes large and RR becomes
high. Thus, when Pin is swept in a wide power range, the input impedance of the rectifier
largely varies. As a result, Pin − Pout curves were measured without any matching circuit
rather than replacing the matching circuit by Pin repeatedly.
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Figure 15. Input power dependence of RR and CR of L32.

Under a low-input-power condition, Zin is far from the characteristic impedance of
the coaxial cables, resulting in large reflection of power. Figure 16 explains that the ratio
of the input power into the rectifier Pin to the output power of the RF power generator
Pin-ic depends on the reflection power Pref-ic. As mismatch in the impedance at the interface
between the connector and the rectifier increases, especially in the low-power region,
Pin/Pin-ic decreases significantly.

Table 5 shows the relationship between Pin−ic, Pre f−ic and Pin of the cases, as shown
in Figure 16. Because the power resolution of the spectrum analyzer used in this research
is 0.1 dB, the loss parameters extracted should have a resolution of 0.1 dB. Therefore, the
discrepancy between SPICE simulation and measurement results in the low-power region
can occur, as shown in Figure 14. An expected sensitivity of −31.7 dBm can be reduced to
−29.6 dBm when all the loss parameters are at the worst case.
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Table 5. Value of Pin−ic and Pre f−ic for each Pin.

Pin [µW] 100 1

Pin−ic [dBm] −7.0 −17.0

Pre f−ic [dBm] −10.0 −17.2

5. Comparison with Previous Works

This section compares the performance of the fabricated circuit with previous works
in 920 MHz band. U32 achieved the highest sensitivity among the fabricated rectifiers.
Comparison of this work with previous works is shown in Table 6. The comparison targets
of previous works were those reported under continuous operation condition, not with
intermittent operation where the ICs are driven and not driven at different times.

Table 6. Comparison with previous works.

Designs Technology
[nm]

Number of
Stages Rectifier Type Input Signal Type Load Condition Area

[mm2]
Sensitivity

[dBm]

This work 65 32 ULPD Balanced 10 GΩ/1 V 0.011 −31.7
[7] 90 5 Latch Balanced Cap.load/1 V 0.029 −27.0

[13] 130 50 SD Unbalanced Cap.load/1 V 0.080 −32.1
[14] 130 6 Gate biasing Balanced Cap.load/1 V 0.064 −20.4
[15] 130 5 Gate biasing Unbalanced 1 GΩ/1 V 0.02 −33.0
[16] 65 5 Latch Balanced Cap.load/1 V 0.28 −17.8
[19] 90 17 SD Balanced Cap.load/1 V 0.019 −24.0
[20] 250 36 SD Balanced N.A. 0.4 −22.6
[21] 300 6 SD Unbalanced 1.5 V/0.4 µA 0.104 −14.0

Those values of area and sensitivity are plotted in Figure 17. This work achieved the
smallest rectifier area and a sensitivity as close as the best candidates [15].
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6. Conclusions

In this work, a 32-stage ULPD rectifier in 65 nm CMOS achieved the minimum area of
0.011 mm2 and a sensitivity of −31.7 dBm comparable to previous works. Design started
with determining capacitance of a stage capacitor as small as 100 fF for a small circuit
area but large enough against a parasitic capacitance of an order of 1 fF. To improve the
sensitivity, the following two layout design considerations were made: (1) wide metal
wires to wide boosting MIM capacitors reduced parasitic resistance in RF signal lines,
and (2) a ground-shielding pad structure reduced parasitic capacitance and resistance.
A CMOS latch or cross-couple rectifier was expected to be the rectifier with the highest
sensitivity with SPICE, whereas a ULPD rectifier was the best one with measurement.
The root cause of this discrepancy will need to be investigated in future work. More
advanced technology providing MIM capacitors with a higher capacitance density and
placing switching MOSFETs under MIM capacitors will further reduce the area of RF–DC
charge pump rectifiers, allowing them to be integrated in sensor ICs.
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