
1368
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

PAPER Special Section on Knowledge-Based Software Engineering

A Graphical RDF-Based Meta-Model Management Tool

Takeshi MORITA†a), Noriaki IZUMI††, Nonmembers, Naoki FUKUTA†††,
and Takahira YAMAGUCHI†, Members

SUMMARY We propose a tool to manage several sorts of relationships
among RDF (Resource Description Framework) and RDFS (RDF Schema).
Our tool consists of three main functions: graphical editing of RDF de-
scriptions, graphical editing of RDFS descriptions, and meta-model man-
agement facilities. In this paper, we focus on the meta-model management,
a key concept which is defined as the appropriate management of the cor-
respondence between a model and its meta-model: especially, the class and
property in the meta-model, and the type of RDF resource and property
in the model. The above facilities are implemented based on the plug-in
system. We provide basic plug-in modules for checking the consistency
of RDFS classes and properties. The prototyping tool, called MR3 (Meta-
Model Management based on RDFs Revision Reflection), is implemented
by Java language. Through an experiment using MR3, we show how MR3

contributes to the Semantic Web paradigm from the standpoint of RDFs
description management.
key words: Semantic Web, RDF, RDFS, editor, meta-model management

1. Introduction

The Semantic Web, which is one of the most promising can-
didates for tomorrow’s Web, is based on RDF (Resource
Description Framework) [1] and RDFS (RDF Schema) [2]
recommended by the W3C (World Wide Web Consortium).
The purpose of the Semantic Web is to make data on the
Web available not only for human beings but also for auto-
mated processing, which would be specialized for the inte-
gration and reuse of data across various applications. For
the management of RDF and RDFS descriptions, a num-
ber of graphical editors have been provided, and their main
function is to display XML-based descriptions based on the
RDF data model of “Resource-Property-Value” semantics.
The graphical editors enable us to understand RDF descrip-
tions graphically and to easily handle RDF files, which can
be described as a complex XML resource. However, there
still remains the difficulty of looking at the whole struc-
ture of both RDF and RDFS descriptions. In order to re-
solve this difficulty, a number of model-based frameworks
for RDF descriptions have been proposed, such as N3 [3],
TRIPLE [4], and so on. They provide the reasoning frame-

Manuscript received June 30, 2005.
Manuscript revised October 11, 2005.
†The authors are with Keio University, Yokohama-shi, 223–

8522 Japan.
††The author is with the National Institute of Advanced Indus-

trial Science and Technology, Tokyo, 135–0064 Japan.
†††The author is with Shizuoka University, Hamamatsu-shi,

432–8011 Japan.
a) E-mail: t morita@ae.keio.ac.jp

DOI: 10.1093/ietisy/e89–d.4.1368

work for the RDF model but still remain a model-based
concept. A number of supporting environments have been
developed as tools adopted from traditional knowledge en-
gineering based on ontologies (e.g., [5], [6]). These prod-
ucts mainly concentrate on creating ontologies and manag-
ing ontology-based semantic markups.

As noted above, although several works on Semantic
Web technologies have been proposed, there has been no
focus on the practical issues of RDF and RDFS descrip-
tions. Detailed semantics is required to capture the semantic
correspondence between RDF and RDFS. Therefore, the se-
mantics of higher-order models have been investigated in the
field of computational logics. Furthermore, first-order for-
malization has been investigated to integrate meta-level con-
cepts into layered first-order theory. In order to integrate the
object-level and the meta-level concepts into the first-order
theory, constructive mathematics [7] and meta logics [8], [9]
provide the framework for the provability interpretation of
logical formulas. Therefore, the unified semantics of the
first-order framework and RDFs description management is
required.

From the standpoint of the information lifecycle of the
Semantic Web, an editing tool of RDF-based descriptions
is developed in this work for the management of the rela-
tionship between RDF and RDFS descriptions. In order to
maintain consistency among RDF descriptions, we adopt an
approach based on the following framework of the layered
first-order theory: reflection for meta-level reasoning [10].

The rest of this paper is structured as follows. Sec-
tion 2 describes our concept of meta-model management
and meta-model management scenarios. Section 3 describes
the design of management facilities for RDF and RDFS.
Section 4 presents an implementation of MR3. Section 5
shows evaluations of MR3. Then, we conclude and mention
future work in Sect. 6.

2. Meta-Model Management

2.1 Concept of Meta-Model Management

This section discusses our concept of a meta-model and
meta-model management. In this paper, meta-model is de-
fined as a model expressing the components of models, es-
pecially the type of an RDF resource and RDF property.
RDFS class is a model expressing the type of RDF resource.
RDFS property is a model expressing an RDF property.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

MORITA et al.: A GRAPHICAL RDF-BASED META-MODEL MANAGEMENT TOOL
1369

Fig. 1 Concept of meta-model management.

Since RDF and RDFS descriptions are described with
the same RDF syntax, there is no clear distinction between
RDF and RDFS parts. This forces us to observe the type
of resources in order to pick up only an RDF part or only
an RDFS part. Although the recent trend of Semantic Web
languages, including Web Ontology Language (OWL) [11],
tries to capture the advanced concept of ontologies in a sin-
gle framework, there is no clear support to manage the cor-
respondence between RDF and RDFS.

Since RDF and RDFS can be regarded as the relation-
ship between a model and a meta-model, in the concept of
meta-model management, RDF and RDFS can be managed
separately and maintain their relationship automatically. In
some of the logical frameworks described above, the meta-
model concept seems to capture the above RDF and RDFS
relationship. Such a logical framework reminds us to distin-
guish RDF and RDFS clearly, and can be expected to bring
(semi-)automated support of the consistency between RDF
and RDFS.

As a key concept in this paper, we focus on the meta-
model management, which is defined as the appropriate
management of the correspondence between a model and
its meta-model: especially, the management of the RDFS
class and RDFS property in a meta-model, and the type of
an RDF resource and RDF property in a model. Figure 1
sketches the concept of meta-model management.

2.2 Meta-Model Management Scenarios

From our experience, we consider that the actual construc-
tion of meta-models and models in RDFS/OWL are per-
formed from two different views. Meta-models are con-
structed considering a conceptualization which is separated
from a real object world. On the other hand, models are
constructed considering a real object world. Some modifi-
cations in models will cause the modifications of the meta-
models, and vice versa. Moreover, in order to construct ap-
propriate meta-models and models, modelers need to mod-
ify models and meta-models repeatedly. In such situation,
since the modifications are made so often in both models and
meta-models, these refinement costs are quite expensive.
The graphical editing functions of MR3 will help modelers

Fig. 2 An example of meta-model management process.

manage the model and the meta-model from a panoramic
view. The meta-model management facilities will help mod-
elers concentrate on editing and evaluating models or meta-
models without frequently switching the editing modes be-
tween a model and a meta-model. The aim of our research is
to provide such functions and facilities that will reduce the
refinement cost of models and meta-models by the reflective
processes.

Figure 2 shows an example of meta-model manage-
ment process. The upper part of Fig. 2 shows a meta-model
modification process. The lower part of Fig. 2 shows a
model modification process. C1, C2, and C3 in the meta-
model depict RDFS classes. P1 in the meta-model depicts
an RDFS property. R1 and R2 in the model depict RDF re-
sources. C2 and C3 which are depicted the upper right of
RDF resources in the model depict type of RDF resources.
P1 in the model depicts an RDF property. In Fig. 2, at the
beginning, P1 in the meta-model is modified to P1’ by a
user. Along with that, corresponding the RDF property in
the model is also modified by a meta-model management
facility automatically. Next, C2 which is the type of RDF
resource R1 in the model is modified to C2’ by a user. Along
with that, corresponding the RDFS class in the meta-model
is also modified by a meta-model management facility semi-
automatically. The detail of meta-model management facil-
ities are described in Sect. 3.3.

3. Design of Management Facilities for RDFs

Figure 3 shows a functional outline of MR3. The goal of
MR3 is to represent complicated models in a form that is
as easy as possible for users to understand. MR3 provides
three main functions: (1) graphical editing of RDF descrip-
tions, (2) graphical editing of RDFS descriptions, and (3)
meta-model management facilities, allowing several types
of relationships in an RDF and RDFS description to be ma-
nipulated and managed. Here, the RDF elements considered
are the RDF resource, RDF property and RDF literal, and
the RDFS elements are the RDFS class and RDFS property.
In the definition of these functions, a data graph refers to
any visual expression of the data model.

1370
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Fig. 3 MR3 functions.

3.1 Graphical Editing of RDF Descriptions

Function (1) in Fig. 3, which represents the graphical edit-
ing of RDF descriptions, supports the manipulation of the
resource-property-value relation as defined by the seman-
tics of the RDF data model. This function consists of the
following sub-functions:

• Transformation of RDF resources into an RDF data
graph
• Transformation of an RDF data graph into RDF re-

sources

3.2 Graphical Editing of RDFS Descriptions

Function (2) in Fig. 3, which represents the graphical edit-
ing of RDFS descriptions, supports the manipulation of
the attributes of classes such as the class-subclass rela-
tion and the attributes of properties such as rdfs:domain,
rdfs:range, and the property-subproperty relation, as de-
fined by the semantics of the RDF Schema model. This
function consists of the following sub-functions:

• Transformation of RDFS resources into an RDFS data
graph
• Transformation of an RDFS data graph into RDFS re-

sources

3.3 Meta-Model Management Facilities

Function (3) in Fig. 3, which represents meta-model man-
agement facilities, is defined in this context as the checking
of the consistency of classes and properties. The consis-
tency checking mechanism consists of several facilities, as
detailed below.

Meta-model management facilities are categorized as
O→M or M→O. O→M is the facility to reflect the change
in an ontology (RDFS class and property) in a model (the
type of an RDF resource and RDF property). M→O is
the facility to reflect the change in a model in an ontology.
Manipulation of RDFS Class and Manipulation of
RDFS Property are O→M facilities. Replace the Type

of an RDF Resource and Replace RDF Property are
M→O facilities.

3.3.1 Manipulation of an RDFS Class

The manipulation function of an RDFS class is operated by
the meta-model management facility, and consists of replac-
ing and removing an RDFS class.

• Replace RDFS Class
When an RDFS class name is replaced, the type name
of the RDF resource, which refers to the replaced
RDFS class, is also replaced at the same time.
• Removal of RDFS Class

When an RDFS class is removed, MR3 shows the list
of RDF resources, which includes the removed RDFS
class as a type. The user can choose (or empty) other
RDFS classes as a type of RDF resource.

3.3.2 Manipulation of an RDFS Property

The manipulation function of an RDFS property is operated
by the meta-model management facility, and consists of re-
placing and removing an RDFS property.

• Replace RDFS Property
When an RDFS property name is replaced, the RDF
property, which refers to the replaced RDFS property,
is also replaced at the same time.
• Removal of RDFS Property

When an RDFS property is removed, MR3 shows the
list of the RDF properties which refer to the removed
RDFS property. A user can choose other RDFS prop-
erties (or the default property - mr3:nil) as a property
of the RDF resources.

3.3.3 Replacing the Type of an RDF Resource

When it is not clear which RDFS class corresponds to the
type of an RDF resource replaced by the user, the meta-
model management facility is applied. When the type of an
RDF resource replaced by the user is defined by the RDFS
class, MR3 matches the type of the RDF resource and the
RDFS class corresponding to the type of RDF resource. In
addition, if the class is not defined, the user can choose one
of the following:

• Replace the RDFS class name with that referred to be-
fore the user replaced the type of the RDF resource.
• Create a new RDFS class that has yet to be defined.

3.3.4 Replacing the RDF Property

When it is not clear which RDF property corresponds to the

MORITA et al.: A GRAPHICAL RDF-BASED META-MODEL MANAGEMENT TOOL
1371

RDFS property replaced by a user, the meta-model man-
agement facility is applied. When the RDF property which
the user replaced is defined by the RDFS property, MR3

matches the RDF property and the RDFS property corre-
sponding to the RDF property. If the property is not defined,
the user can choose one of the following:

• Replace the RDFS property name with that referred to
before the user replaced the RDF property.
• Create a new RDFS property that has yet to be defined.

3.3.5 Importing an RDF Document

When importing an RDF document, the type of RDF re-
source or an RDF property may not be defined as an RDFS
class or an RDFS property. In this case, in order to main-
tain consistency, a type of RDF resource which is not de-
fined as an RDFS class is created as a sub class of the
rdfs:Resource class. In the same way, an RDF property
which is not defined as an RDFS property is created.

Figure 4 shows an example of importing an RDF
document. The left side of Fig. 4 depicts the state be-
fore importing the RDF document. The right side of
Fig. 4 depicts the state after importing the RDF document.
ex:Book, with the type of ex:The Emotion Machine and
ex:The Society of Mind, is not defined as an RDFS
class. Also ex:author in the RDF model is not defined
as an RDFS property. In order to maintain consistency,
MR3 creates a ex:Book class and ex:author property in
the RDFS data graph automatically.

3.4 Other Functions

Keeping Element Names Unique

This function prevents RDF and RDFS from overlapping
other element names when a user renames and creates an
RDF or RDFS element. If duplication of an RDFS element
name is allowed, consistency cannot be maintained.

Setting a Meta Class and Property

A user can set meta classes and properties in MR3. This
function controls whether to consider a resource of a certain
type as a class or a property. For example, if a user sets

Fig. 4 An example of importing an RDF document.

owl:Class as a meta class and owl:ObjectProperty and
owl:DatatypeProperty as meta properties, MR3 can im-
port the class and property hierarchy in OWL. The default
meta class is rdfs:Class and the default meta property is
rdf:Property.

Validation

When constructing an RDF model, MR3 doesn’t check
rdfs:domain and rdfs:range in the RDFS properties.
However, MR3 can perform validation of an RDF model us-
ing vOWLidator [12]. This function indicates the resources
that don’t match the rdfs:domain and rdfs:range in the
RDFS properties.

4. Implementation

4.1 Implementation Architecture of MR3

Figure 5 shows the system architecture of MR3 from the as-
pect of system implementation. MR3 is implemented in Java
language, using the Java Swing user interface. MR3 uses
JGraph [13] for RDF(S) graph visualization, and Jena - A
Semantic Web Framework [14] for enabling the use of Se-
mantic Web standards such as RDF, N3, N-triple, RDFS,
and OWL. The Parser and Generator in MR3 are imple-
mented using Jena APIs. By using these libraries, MR3 is
implemented as an environment for graphical representation
of Semantic Web descriptions. Additionally, MR3 also has a
plug-in facility to extend its functionality. At present, MR3

offers two kinds of APIs for plug-in development: one for
changing the MR3 data graph into a model object of Jena,
and one for changing the model object of Jena into a MR3

data graph. In the future, MR3 will also offer APIs for creat-
ing a greater variety of plug-ins, such as an API for manag-
ing the consistency between RDF and RDFS more strictly.

4.2 System Overview of MR3

Figure 6 shows a system overview of MR3. MR3 consists
of the Parser module, Generator module, Meta-Model Man-
agement module, Plug-ins, and User Interface. The user
edits the RDFs description visually via the User Interface,
which also includes the Graphical Modeler and Plug-in in-
terfaces. The Graphical Modeler provides access to the ba-
sic functions of MR3, while the Plug-in Interface provides
access to the functions of the plug-ins. The input and out-
put of MR3 are RDFs documents. The Parser analyzes input

Fig. 5 Implementation architecture of MR3.

1372
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Fig. 6 System overview of MR3.

RDFs documents and makes further operations possible by
transforming the RDFs document into a Jena model. Then,
the Parser changes the Jena model into an internal data ex-
pression, and meta-model management is performed. Plug-
ins are built using APIs provided by MR3. The Generator
changes the internal data expression into a Jena model. Fi-
nally, the Jena model is changed into an RDFs document.

4.3 Detailed Implementation of MR3

Figure 7 shows a typical screen showing the Graphical Mod-
eler interface of MR3. The Graphical Modeler consists of
five main windows; RDF Editor, Class Editor, Property Ed-
itor, Attribute Dialog, and Namespace Table. The RDF
Editor allows the user to express the relationship between
an RDF resource, RDF property, and RDF literal using a
directed graph, and also allows the attributes of each ele-
ment to be edited. The attributes of an RDF resource con-
sist of a URI, the URI type, and the RDF resource type.
The RDF resource type can be chosen using the Class Ed-
itor. The URI type can be chosen from either a URI or
can be set as anonymous. The Class Editor allows the user
to express the relationship between RDFS classes, if one
exists, and edit the attributes of an RDFS class. The at-
tributes of an RDFS class consist of a URI, rdfs:label,
and rdfs:comment. The user can refer to a super class of
the selected class and the list of RDF resources that consider
the class. The attributes of an RDFS property consist of
a URI, rdfs:label, rdfs:comment, rdfs:domain, and
rdfs:range. Through the Property Editor also, the user
can express the relationship between RDFS properties, if
one exists, and edit the attribute of an RDFS property. The
parameters rdfs:domain and rdfs:range can be chosen
from the Class Editor. The user can refer to a super prop-
erty of the selected property and the list of RDF resources
that have the property. The attribute of each element can be
displayed and edited via the Attribute Dialog, and the user
can replace a namespace with a prefix via the Namespace
Table. In order to support the graphical display of the RDF
model, the JGraph [13] library is linked into the User Inter-
face module.

Fig. 7 Typical screen with Graphical Modeler interface of MR3.

5. Evaluation

5.1 Comparison with Other Related Tools

In this section, we clarify our study and the differences in
other related studies. Recently, numerous commercial and
open-source ontology development tools have become avail-
able along with the standardization of Semantic Web tech-
nologies (e.g., RDF, RDFS, OWL). In [15], the survey re-
sults of 94 ontology editors currently available to the ontol-
ogy building community are presented. An early version of
the MR3 is also introduced in the survey results. We selected
5 major related tools from the survey results and compared
them with our tool.

Table 1 shows a comparison of our study (MR3) with
other related studies. The functions which are shown in Ta-
ble 1 are necessary to achieve our aim to reduce the refine-
ment cost of models and meta-models by the reflective pro-
cesses. The necessity of all these functions depends on the
complexity of problem structure and the conceptualization
by human experts in advance. Each item in Table 1 is evalu-
ated subjectively from our experience. Since there are many
methods to realize each function in Table 1, only the tools
which have the functions to achieve our aim are checked.

The benefit of MR3 is having the graphical facilities
with RDF models and meta-model management facilities.
The tools in Table 1 are categorized as RDF-based tools
or ontology-based tools. IsaViz [16], RDFAuthor [17], and
MR3 are categorized as RDF-based tools, and they concen-
trate on constructing RDF models. Therefore, they have the
enhanced graphical facilities with RDF models. KAON OI-
modeler [18], OntoEdit [5], and Protégé OWL Plugin [6] are
categorized as ontology-based tools, and they concentrate
on constructing and managing ontologies. Therefore, they
either have partial graphical facilities with RDF models or
they don’t have any. IsaViz and KAON OI-modeler mix and
display RDF and RDFS models. Since it is difficult for the

MORITA et al.: A GRAPHICAL RDF-BASED META-MODEL MANAGEMENT TOOL
1373

Table 1 A comparison of MR3 with other related studies.

Name Source Graphical Facil-
ities with RDF
Models

Meta-Model
Management
Facilities

Easy to Define RDF
Properties

Import/Export/Edit

O→M M→O RDF RDFS

IsaViz W3C 1 � � �
RDF RDFAuthor Demian Steer � � � 4

based MR3 Keio University,
Shizuoka University,
and AIST

� � � � � �

KAON OI-
modeler

FZI Research Cen-
ter and AIFB Insti-
tute, University of
Karlsruhe

1 � 3 �

Ontology OntoEdit Ontoprise GmbH 2 � 3 �
based Protégé OWL

Plugin
Stanford Medical In-
formatics, Stanford
University

� 3 �

1 These tools do not support displaying an ontology and a model separately. 2 OntoEdit does not support editing RDF elements while displaying the whole
RDF model. 3 These tools do not support treating anonymous resources. 4 RDFAuthor does not support editing and exporting RDFS models.

user to distinguish RDF elements and RDFS elements, the
burden of the user in RDF model construction is substan-
tial. RDFAuthor, MR3, and OntoEdit can display an ontol-
ogy and a model separately. The graphical facilities with
RDF models are demonstrated in Sect. 5.3.

O→M and M→O in Table 1 are the sub facilities for
meta-model management. O→M is the facility to reflect
the change in an ontology (RDFS class and property) in a
model (the type of RDF resource and RDF property). M→O
is the facility to reflect the change in a model in an on-
tology. IsaViz and RDFAuthor don’t have the meta-model
management facility. Ontology-based tools have the facility
of O→M. However, they don’t have the facility of M→O.
The benefit of MR3 is having an RDF-based tool and the
meta-model management facilities. In particular, M→O is
an original facility of MR3.

Easy to Define RDF Properties in Table 1 means
whether the tool can define RDF properties (a relation-
ship between RDF resources) without defining the values of
rdfs:domain and rdfs:range. In ontology-based tools,
it is necessary to define the values of rdfs:domain and
rdfs:range beforehand in order to define the RDF prop-
erties. RDF-based tools can define RDF properties with-
out defining the values of rdfs:domain and rdfs:range.
For RDF model construction, it is considered that the user
should be able to define RDF properties freely.

There are two methods of constructing RDF models.
One is the method to construct RDF models using pre-
defined ontologies. The other is the method to construct
RDF models without referring to ontologies. A user can
construct RDF models by the latter method using the facil-
ity of M→O and Easy to Define RDF Properties. Thanks
to the M→O facilities, when a user chooses classes or prop-
erties which are not defined in ontologies in order to con-
struct RDF models, the classes or properties are defined in
the ontologies automatically.

Import/Export/Edit in Table 1 shows the functions of

import, export, and edit for RDF and RDFS descriptions.
In these functions, the handling of an RDF is the main dif-
ference between RDF-based tools and ontology-based tools.
Ontology-based tools do not support treating RDF models,
including anonymous resources. Anonymous resources are
often used to describe groups of things. Since most of the
existing RDF descriptions (e.g., RSS [19]) include anony-
mous resources, treating anonymous resources is important
for constructing RDF models. RDF-based tools can treat
anonymous resources. The tools in Table 1 can treat RDFS
models. RDFAuthor can import RDFS descriptions. How-
ever, RDFAuthor does not support the editing and exporting
of RDFS models.

5.2 The Effectiveness of Meta-Model Management Facil-
ities

In order to evaluate the effectiveness of the meta-model
management facilities, two kinds of experiments were con-
ducted. In the experiments, the user is knowledgeable about
RDF, RDFS, and the usage of MR3; however, the user does
not have enough domain knowledge about ontologies and
models to construct them in these experiments (The user
is not a domain expert). In experiment1, the user con-
structs an ontology and a model for a car sales domain using
MR3, which has meta-model management facilities. The
user refers to the workflow of car sales, which includes 862
words in Japanese. In experiment2, the user constructs an
ontology and a model for a mail-order fruits domain using a
modified version of MR3 which has none of the facilities of
meta-model management. The user refers to the workflow
of mail-order fruits, which includes 1245 words in Japanese.
To observe the user’s actual operations during the experi-
ments, we added an operation logging function to both ver-
sions of MR3.

Tables 2 through 6 show the results of these experi-
ments. Table 2 shows a comparison of the number of con-

1374
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Table 2 Comparison of the number of constructed statements in experi-
ment1 and experiment2.

Experiment1 Experiment2

RDFS Classes 18 21
RDFS Properties 16 16
Statements (RDFS Part) 65 79
Statements (RDF Part) 31 26
Statements (All) 96 105

Table 3 Comparison of the elapsed time for a user to complete a task in
each experiment.

Experiment1 Experiment2

1660 sec 2520 sec

Table 4 Comparison of the number of executed operations in experi-
ment1 with the number of executed operations in experiment2.

Experiment1 Experiment2

Operations for Model 83 69
Operations for Ontology 49 96
Total Operations 132 165

Table 5 Number of operations using meta-model management facilities
in experiment1.

Meta-Model Management Facilities #
Type Name

O→M Replace RDFS class 0
Replace RDFS property 2
Replace type of RDF resource (create) 4

M→O Replace type of RDF resource (rename) 2
Replace RDF property (create) 15
Replace RDF property (rename) 0

Table 6 Comparison of the number of switching the editing modes in
experiment1 and experiment2.

Experiment1 Experiment2

switching from the model edit-
ing mode to the meta-model editing
mode

13 34

switching from the meta-model
editing mode to the model editing
mode

12 34

total switching editing modes 25 68

structed statements in experiment1 and experiment2. Ta-
ble 3 shows a comparison of the elapsed time for the user
to complete the task in each experiment. Table 4 shows a
comparison of the number of executed operations in exper-
iment1 with the number of executed operations in experi-
ment2. The operations in Table 4 include insertion, editing,
and deletion of RDF resources, RDFS classes, and RDFS
properties. Since the operations for O→M are performed
automatically, we do not count the operations for O→M in
Table 4. But, the operations for M→O are performed semi-
automatically; therefore, we count the operations for M→O
in Table 4. Table 5 shows the number of operations using the
meta-model management facilities in experiment1. Table 6
shows a comparison of the number of switching the editing

Fig. 8 An example of using a meta-model management in experiment1.

modes in experiment1 and experiment2.
According to Table 2, the size of the ontologies and

models constructed in experiment1 was approximately the
same size in experiment2. According to Table 3, the user
could construct models and ontologies in a shorter time us-
ing the meta-model management facilities. According to
Table 4, the meta-model management facilities reduced the
number of operations to construct the models and ontolo-
gies. According to Table 6, the meta-model management fa-
cilities reduced the number of switching the editing modes
between the model and the meta-model.

Figure 8 shows an example of using a meta-model
management facility in experiment1. The upper part of
Fig. 8 shows an RDFS model and the lower part of Fig. 8
shows an RDF model. The RDF and RDFS models in Fig. 8
are extracted a part related to use situation of a meta-model
management facility from the whole constructed RDF and
RDFS models in experiment1. Rectangles in the RDFS
model depict RDFS classes. Ellipses in the RDFS model
depict RDFS properties. Ellipses in the RDF model depict
RDF resources. Labeled arcs in the RDF model depict RDF
properties. The upper right of RDF resources depicts the
type of RDF resources. In this example, the RDF property
make which was the relation between person A resource
and request E resource was modified to get by the user.
At that time, since RDFS property get was not defined in
RDFS model, MR3 asked the user whether renaming RDFS
property make or creating get. Here, since the user would
like to keep the relation make between person A resource
and clientInformation A resource, the user select cre-
ating get property. As a result, get property was created
in the RDFS model by a meta-model management facility
semi-automatically.

Since ontology design is a creative process and no
two ontologies designed by different people would be the
same [20], evaluation of the ontology and model develop-
ment tools is difficult. The experimental results depend on
the user’s skills, such as domain knowledge and proficiency
using the tools. There is little statistical data on constructing
existing ontologies and models at the operation level. More-
over, it is difficult to evaluate the quality of a constructed
model and ontology. However, with these experiments, the
effectiveness of meta-model management facilities can be

MORITA et al.: A GRAPHICAL RDF-BASED META-MODEL MANAGEMENT TOOL
1375

seen from the viewpoint of reducing the time for construc-
tion, the number of operations, and the number of switching
the editing modes between the model and the meta-model.

5.3 Graphical Facilities with RDF Models

Here, we show the differences of the graphical facilities of
each tool in Table 1 with respect to RDF models. As experi-
mental data, we use the schema of the RDF Site Summary †,
RDFS description of the RDF vocabulary ††, and RSS data
of the Web content in our laboratory. Table 7 shows the
number of resources, literals, and statements in the experi-
mental data. Table 8 shows the number of classes and prop-
erties in the experimental data. The above data with inter-
mingled RDF and RDFS descriptions were imported into the
tools in Table 1. Protégé OWL Plugin didn’t have the graph-
ical facilities with RDF models; therefore, we didn’t test
Protégé OWL Plugin in this experiment. Since anonymous
resources were included in the experimental data, KAON
OI-modeler and OntoEdit could not import the data. In the
following, we compare the graphical facilities with RDF
models in IsaViz, RDFAuthor, and MR3.

Figure 9 shows a screenshot of IsaViz while importing
the experimental data. It is difficult to understand the hierar-
chical relationships between RDFS elements from the RDF
graph produced by IsaViz. Since RDF and RDFS elements
are displayed in the same color of ellipse or as rectangle
nodes in IsaViz, the user needs to search for resources that
have the property of rdf:typewith values of rdfs:Class

Table 7 Number of RDF and RDFS elements in the experimental data.

Resource # Literal # Statement

RDF Part 15 35 59
RDFS Part 34 46 131

Total 49 81 190

Table 8 Number of classes and properties in the experimental data.

Class # Property

13 19

Fig. 9 RDF representation by IsaViz.

or rdf:Property in order to differentiate the RDFS ele-
ments. Figure 10 and Figure 11 show screenshots of RD-
FAuthor and MR3, respectively, while importing the exper-
imental data. RDFAuthor and MR3 display RDF elements
and RDFS elements separately, making it easier for the user
to distinguish RDF elements from RDFS elements. RDFAu-
thor shows the list of RDFS classes and properties in each
namespace. However, RDFAuthor does not support show-
ing hierarchical relationships in the RDFS classes and prop-
erties. In addition, RDFAuthor does not support editing the
RDFS classes and properties. In contrast, MR3 can show hi-
erarchical relationships in the RDFS classes and properties
and edit them.

The comparisons among IsaViz, RDFAuthor, and MR3

show that the graph of RDFAuthor and MR3 is much eas-
ier to understand than that of IsaViz. One reason for this
improvement is the separation of the RDF and RDFS ele-
ments. Especially, MR3 hides unnecessary elements from
the user, which also assists in understanding the graph. For
example, in MR3, the attributes of the RDF resources, such

Fig. 10 RDF representation by RDFAuthor.

Fig. 11 RDF representation by MR3.

†http://web.resource.org/rss/1.0/schema.rdf
††http://www.w3.org/TR/rdf-schema/rdfs-namespace

1376
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

as rdfs:label, rdfs:commentwhich are mainly provided
for human beings, are hidden but can be edited via the
Attribute Dialog. In a similar manner, the attributes
of the RDFS classes and properties, such as rdfs:label,
rdfs:comment, rdfs:domain, and rdfs:range, are hid-
den. By hiding unnecessary elements, the burden of infor-
mation on the user when many RDF resources refer to the
RDFS class as a type is reduced, allowing the user to con-
centrate on the most relevant resources.

5.4 MR3 as an Open Source

In order to open our technology to the Semantic Web com-
munity, the MR3 system and its source code are provided
via our Web site [21]. At present, there are about 300 user
registrations. Some users have provided comments about
MR3. Some users selected MR3 since MR3 is compli-
ant with RDFS-guided annotation and is not strictly frame-
oriented. Some users requested the capability to treat reifi-
cation and several thousand classes. We would like to re-
flect these comments in our future work. In addition, some
users developed a plug-in to handle a container model (e.g.
rdf:Bag) and to connect Sesame [22].

6. Conclusions

From the standpoint of meta-model management, we have
developed an RDFs description management tool: MR3

(Meta-Model Management based on RDFs Revision Reflec-
tion). Since RDF and RDFS can be regarded as the relation-
ship between a model and a meta-model, MR3 enables us
to manage RDF and RDFS separately and to maintain their
relationship automatically.

We have focused on meta-model management as the
key concept in this paper. Meta-model management is de-
fined as the appropriate management of the correspondence
between a model and its meta-model: especially, the man-
agement of the class and property in the meta-model, and
the type of an RDF resource and a property in the model. At
the same time, we have developed a prototyping system of
MR3 using Java language and evaluated it in an experimen-
tal study by a comparison of other related tools. Through the
case study of the use of MR3, we have confirmed that our
proposed tool contributes to the Semantic Web paradigm,
which is focused on the technological basis of RDFs.

Finally, we are developing an additional plug-in mod-
ule for MR3 corresponding to our other work [23]. In [23],
we propose a domain ontology development environment
called DODDLE-OWL (Domain Ontology rapiD DeveL-
opment Environment - OWL extension). DODDLE-OWL
generates a domain ontology semi-automatically in OWL
format. At present, MR3 supports OWL partially (only the
class and property hierarchies). In the future, we’d like to
support OWL Lite level ontologies and its model by inte-
grating MR3 and DODDLE-OWL.

References

[1] O. Lassila and R.R. Swick, “Resource Description Frame-
work(RDF) Model and Syntax Specification,” 1999,
http://www.w3.org/RDF/

[2] D. Brickley and R. Guha, “RDF Vocabulary Description Language
1.0: Rdf Schema,”
http://www.w3.org/TR/rdf-schema/

[3] T. Berners-Lee, “Notation 3: Ideas aboutweb architecture - yet an-
other notation,” 2001,
http://www.w3.org/DesignIssues/Notation3

[4] D. Beckett and A. Barstow, “N-triples,” 2001,
http://www.w3.org/2001/sw/RDFCore/ntriples/

[5] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke,
“Ontoedit: Collaborative ontology engineering for the semantic
web,” The First International Semantic Web Conference, vol.2342
of LNCS, pp.221–235, 2002.

[6] H. Knublauch, R.W. Fergerson, N.F. Noy, and M.A. Musen, “The
protégé owl plugin: An open development environment for semantic
web applications,” Third International Semantic Web Conference,
pp.229–243, 2004.

[7] M. Beeson, Foundations of constructive mathematics, Springer-
Verlag, 1985.

[8] N. Davies, “A first order logic of truth, knowledge and belief,”
LNAI-478, pp.170–179, 1980.

[9] R. Turner, Truth and modality for knowledge representation, MIT
Press, 1991.

[10] G. Attardi and M. Simi, “Reflections about reflection,” in Principles
of Knowledge Representation and Reasoning (KR-91), pp.22–31,
Morgan Kaufmann, 1991.

[11] M.K. Smith, C. Welty, and D.L. McGuinness, “Owl Web Ontology
Language Guide,” http://www.w3.org/TR/owl-guide/

[12] BBN, “vowlidator,” http://owl.bbn.com/validator/
[13] G. Alder, “Jgraph,” http://www.jgraph.com
[14] HP Labs, “Jena Semantic Web Framework,”

http://jena.sourceforge.net/downloads.html
[15] M. Denny, “Ontology tools survey, revisited,”

http://www.xml.com/pub/a/2004/07/14/onto.html
[16] E. Pietriga, “Isaviz, a visual environment for browsing and authoring

rdf models,” Eleventh International World Wide Web Conference
Developers Day, 2002, http://www.w3.org/2001/11/IsaViz/

[17] D. Steer, L. Miller, and D. Brickley, “Rdfauthor: Enabling everyone
to author rdf,” Eleventh International World Wide Web Conference
Developers Day, 2002, http://rdfweb.org/people/damian/RDFAuthor/

[18] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz, “An
infrastructure for searching, reusing and evolving distributed on-
tologies,” Proc. 12th Int. World Wide Web Conference (WWW’03),
pp.439–448, ACM Press, 2003.

[19] R.S.S..S.W. Group, “Rdf site summary (rss) 1.0,” 2001,
http://web.resource.org/rss/1.0/spec

[20] N.F. Noy and D.L. McGuinness, “Ontology development 101: A
guide to creating your first ontology,” Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical In-
formatics Technical Report SMI-2001-0880, 2001.

[21] “Web site mr3,” http://mmm.semanticweb.org/mr3/
[22] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame:

A generic architecture for storing and querying rdf and rdf
schema,” The First International Semantic Web Conference,
http://www.openrdf.org/

[23] T. Morita, Y. Shigeta, N. Sugiura, N. Fukuta, N. Izumi, and
T. Yamaguchi, “Doddle-owl: Owl-based semi-automatic ontology
development environment,” Evaluation of Ontology-based Tools,
2004, http://mmm.semanticweb.org/doddle/

MORITA et al.: A GRAPHICAL RDF-BASED META-MODEL MANAGEMENT TOOL
1377

Takeshi Morita is a graduate student at the
school of Science and Technology at Keio Uni-
versity. He received B.E. and M.E. degrees in
Computer Science from Shizuoka University in
2003 and 2005. His research interests include
Ontology Engineering and Semantic Web.

Noriaki Izumi is a researcher at the Na-
tional Institute of Advanced Industrial Science
and Technology. He received B.E. and M.E. de-
grees from Osaka Prefecture University in 1992
and 1994. He received a Ph.D. degree from Keio
University. His research interests include Intel-
ligent Systems, Knowledge Modeling, Seman-
tic Web, and Web Services. He is a member of
JSSST, IPSJ, and JSAI.

Naoki Fukuta is a research associate at the
Faculty of Informatics at Shizuoka University.
He received B.E., M.E., and Ph.D. degrees from
Nagoya Institute of Technology in 1997, 1999,
and 2002, respectively. His research interests in-
clude Software Engineering, Semantic Web, and
WWW-based Intelligent Systems. He is a mem-
ber of IEEE-CS, ACM, JSAI, IPSJ, and JSSST.

Takahira Yamaguchi is a professor at the
Faculty of Science and Technology at Keio Uni-
versity. He received his B.E., M.E., and Ph.D.
degrees in telecommunication engineering from
Osaka University in 1979, 1981, and 1984, re-
spectively. His research interests include Ontol-
ogy Engineering, KBSE, Advanced Knowledge
Systems, and Machine Learning. He is a mem-
ber of IPSJ, JSAI, JSFTS, JCSS, AAAI, IEEE-
CS, and ACM.

