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Abstract. In [3], the author introduced a new chain condition, called the

anti-rectangle refining property, of forcing notions and the statement ¬C(arec)
that every forcing notion with the anti-rectangle refining property has an un-
countable antichain. We show that every forcing notion with the anti-rectangle

refining property has an uncountable antichain. Since a typical example of a
forcing notion with the anti-rectangle refining property is an Aronszajn tree,
¬C(arec) is a generalization of Suslin’s Hypothesis. We show that ¬C(arec)
implies that the bounding number is larger than ℵ1, that is, this statement

can be considered as an analogue of Suslin’s Hypothesis.

1. Introduction

The author investigated several fragments of Martin’s Axiom in [3]. Fragments
of Martin’s Axiom were studied mainly by Stevo Todorčević in 1980’s, and many
applications are discovered (see [2] and his many other articles). In this manuscript,
we give a proof of one question in this area as follows.

We explain some notions in [3]. A forcing notion P has the anti-rectangle refining
property if for any uncountable subset I and J of P, there exists uncountable subsets
I ′ and J ′ of I and J respectively such that for every p ∈ I ′ and q ∈ J ′, p and q are
incompatible in P. ¬C(arec) is the statement that every forcing notion with the anti-
rectangle refining property has an uncountable antichain. Since an Aronszajn tree
has the anti-rectangle refining property, ¬C(arec) can be considered a generalization
of Suslin’s Hypothesis. In fact, ¬C(arec) implies Suslin’s Hypothesis and that every
(ω1, ω1)-gaps are indestructible. The author would like to find other examples of a
generalization of Suslin’s Hypothesis, that is, other statements about combinatorics
on ω1 which is deduced from ¬C(arec). One candidate is the statement that the
bounding number b is larger than ℵ1.

We had already known that K2(rec), which is a weak fragments of Martin’s
Axiom and implies ¬C(arec), implies that b > ℵ1. So it is naturally arisen a
question that ¬C(arec) implies b > ℵ1. In this manuscript, we show a positive
answer of this question, that is ¬C(arec) implies that b > ℵ1 in section 3.

A proof of the theorem is self contained in this manuscript, however I omit some
proofs of well known results in section 2. All of them are written in [3] or [1].

Supported by Grant-in-Aid for JSPS Fellow, No. 18840022, Ministry of Education, Culture,
Sports, Science and Technology.

1



2 TERUYUKI YORIOKA

2. A reason why we will prove as below

At first, we will see a proof that K2(rec) implies b > ℵ1. A partition [ω1]2 =
K0 ∪ K1 has the rectangle refining property if for any uncountable subset I and
J of ω1, there exist uncountable subsets I ′ and J ′ of I and J respectively such
that for every α ∈ I ′ and β ∈ J ′, if α < β, then {α, β} ∈ K0. We note that the
rectangle refining property is a strong property than the countable chain condition.
K2(rec) is the statement that every partition [ω1]2 = K0 ∪ K1 with the rectangle
refining property has an uncountable K0-homogeneous set. We note that K2(rec)
is deduced from Martin’s Axiom for ℵ1-dense sets, and K2(rec) implies ¬C(arec).

Let F = {fξ; ξ ∈ ω1} be a set of strictly increasing functions from ω into ω such
that for every ξ and η in ω1, if ξ < η, then fξ ≤∗ fη, i.e. there exists m ∈ ω
such that for all n ≥ m, fξ(n) ≤ fη(n). For this family, we define a partition
[ω1]2 = K0 ∪ K1 by letting {ξ, η} ∈ K0 iff there exists m and n in ω such that
fξ(m) < fη(m) and fη(n) < fξ(n). We call that F is unbounded when for every
function g in ωω, there exists f ∈ F such that f 6≤∗ g. We note that if F is
unbounded, then this partition has the rectangle refining property. (This follows
from Lemma 3.2 below.) However, in [1, Lemma 16], if F is unbounded, since an
uncountable subset of F is also unbounded, for every uncountable subset F ′ of F ,
there are two functions f and g in F such that g dominates f everywhere, i.e., for
every n ∈ ω, f(n) ≤ g(n). Therefore, K2(rec) implies b > ℵ1.

So to try to prove that ¬C(arec) implies b > ℵ1, it seems to be natural to modify
the argument above. Let P′ be a forcing notion which consists of finite subsets σ
of ω1 such that the set {fξ; ξ ∈ σ} is totally ordered by the dominance everywhere,
i.e., for every ξ ∈ σ and n ∈ ω, max {fζ(n); ζ ∈ σ ∩ ξ} ≤ fξ(n), ordered by the
reverse inclusion. As the above partition has the rectangle refining property, we
note that P′ has the anti-rectangle refining property if F is unbounded. So if we
show that P′ is ccc whenever F is unbounded, we conclude that F doesn’t have to
be unbounded. However, unfortunately, in general, P′ does not have the ccc even
if F is unbounded. For example, if the set {{ξζ , ηζ} ; ζ ∈ ω1} is a subset of P′ such
that

• for any ζ < ζ ′ in ω1, ξζ < ηζ < ξζ′ , and
• for any ζ ∈ ω1, fξζ

(0) = 0 and fηζ
(1) = 1,

then it is an uncountable antichain in P′.

In section 3, we define a forcing notion P which is a modification of P′ and
show that (Lemma 3.2) P has the anti-rectangle refining property whenever F is
unbounded, and (Lemma 3.3) P has the countable chain condition whenever F is
unbounded. This completes the proof of our theorem.

3. A proof

Throughout this section, let F = {fξ; ξ ∈ ω1} be a set of strictly increasing
functions from ω into ω such that for every ξ and η in ω1, if ξ < η, then fξ ≤∗ fη.
We define a forcing notion P which consists of finite subsets σ of ω1 such that
for every ξ ∈ σ and n ∈ ω, either max {fζ(n); ζ ∈ σ ∩ ξ} ≤ fξ(n) or fξ(n) ∈
{fζ(n); ζ ∈ σ ∩ ξ}, ordered by the reverse inclusion.
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Proposition 3.1. Suppose that F = {fξ; ξ ∈ ω1} is unbounded. Then there exists
e ∈ ω such that for every n ∈ ω \ e and k ∈ ω, the set {ξ ∈ ω1; fξ(n) ≥ k} is
uncountable.

Proof. Assume not, i.e. there exists an infinite set Z of natural numbers such that
for every n ∈ Z, there exists kn ∈ ω such that the set {ξ ∈ ω1; fξ(n) ≥ kn} is
countable. Let δ ∈ ω1 be such that for all n ∈ Z, {ξ ∈ ω1; fξ(n) ≥ kn} is a subset
of δ. Let {ni; i ∈ ω} be an increasing enumeration of Z, and we define a function g
on ω by

g(m) := max ({fδ(m)} ∪ {kni ; i ∈ m + 1} ∪ {g(i) + 1; i ∈ m})

for each m ∈ ω. We notice that for each ξ ∈ δ, fξ ≤∗ g. Moreover for each ξ ∈ ω1\δ
and m ∈ ω, since m ≤ nm,

fξ(m) ≤ fξ(nm) < knm ≤ g(m).

So F is bounded by g, which is a contradiction. ¤

Lemma 3.2. If F = {fξ; ξ ∈ ω1} is unbounded, then P has the anti-rectangle re-
fining property.

Proof. Let I and J be uncountable subsets of P. By shrinking I and J if necessary,
we may assume that

• I forms a ∆-system with a root µ, and J also forms a ∆-system with a root
ν,

• all members of I has the same size, and all members of J also has the same
size,

• for any σ ∈ I and τ ∈ J ,

max(µ ∪ ν) < min(σ \ µ), max(µ ∪ ν) < min(τ \ ν), (σ \ µ) ∩ (τ \ ν) = ∅,

• there exists e ∈ ω, such that for every σ ∈ I and τ ∈ J and n ≥ e,

max ({fζ(n); ζ ∈ µ ∪ ν}) < min ({fξ(n); ξ ∈ σ \ µ})

and

max ({fζ(n); ζ ∈ µ ∪ ν}) < min ({fη(n); η ∈ τ \ ν}) .

We notice that for every A ∈ [ω1]ℵ1 , the set {fξ; ξ ∈ A} is unbounded. So by the
previous lemma, there exists e0 ≥ e such that for every k ∈ ω, the set

{σ ∈ I;min ({fξ(e0); ξ ∈ σ \ µ}) ≥ k}

is uncountable. Let J ′ be uncountable subset of J and k0 ∈ ω such that for every
τ ∈ J ′,

max ({fη(e0); η ∈ τ}) ≤ k0,

and then we take an uncountable subset I ′ of I such that for every σ ∈ I ′,

min ({fξ(e0); ξ ∈ σ \ µ}) > k0.

Then we notice that for any σ ∈ I ′ and τ ∈ J ′, since e0 ≥ e, if τ 6⊆ max(σ) + 1,
then σ and τ are incompatible in P.

Conversely, by the previous lemma, there exists e1 > e0 such that for every
k ∈ ω, the set

{τ ∈ J ′;min ({fη(e1); η ∈ τ \ ν}) ≥ k}
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is uncountable. Let I ′′ be uncountable subset of I ′ and k1 ∈ ω such that for every
σ ∈ I ′′,

max ({fξ(e1); ξ ∈ σ}) ≤ k1,

and then we take an uncountable subset J ′′ of J ′ such that for every τ ∈ J ′′,

min ({fη(e1); η ∈ τ \ ν}) > k1.

Then we notice that, since e1 ≥ e, for any σ ∈ I ′′ and τ ∈ J ′′, if σ 6⊆ max(τ) + 1,
then σ and τ are incompatible in P.

By shrinking I ′′ and J ′′ if necessary, we may assume that for any σ ∈ I ′′ and
τ ∈ J ′′, either τ 6⊆ max(σ) + 1 or σ 6⊆ max(τ) + 1. Then for every σ ∈ I ′′ and
τ ∈ J ′′, σ and τ are incompatible in P. ¤

Lemma 3.3. If F = {fξ; ξ ∈ ω1} is unbounded, then P has the countable chain
condition.

Proof. Here, for each σ ∈ P, letting 〈ξi; i ∈ |σ|〉 be an increasing enumeration of σ,
we denote

~σ := 〈fξi ; i ∈ |σ|〉 ,

which is a member of the set (ωω)|σ|. Let I be an uncountable subset of P. Without
loss of generality, we may assume that

• I forms a ∆-system with a root µ,
• for every σ and τ in I, either max(σ) < min(τ \µ) or max(τ) < min(σ \µ),
• there exists n0 ∈ ω such that for every n ≥ n0, σ ∈ I and ξ ∈ σ \ µ,

max {fζ(n); ζ ∈ µ} < fξ(n),

• there exists k ∈ ω such that for every σ ∈ I, |σ| = k,
• for every σ and τ in I, ~σ ¹n0 = ~τ ¹n0, i.e. for each j ∈ k, the initial segment

of the j-th element of ~σ of length n0 is equal to the initial segment of the
j-th element of ~τ of length n0.

Then there exists γ ∈ ω1 such that the set
{
~σ; σ ∈ I ∩ [γ]<ℵ0

}
is dense in the set

{~σ; σ ∈ I} as a subspace of the space (ωω)k. We fix some (any) ν ∈ I \ [γ]<ℵ0 . For
each σ ∈ I, we define two functions gσ and hσ on ω as follows: For each n ∈ ω,

gσ(n) := max {fξ(n); ξ ∈ σ} (= max {fξ(n); ξ ∈ σ \ µ}) ,

and
hσ(n) := min {fξ(n); ξ ∈ σ \ µ} .

We notice that for σ and τ in I, if max(σ) < min(τ \ µ), then gσ ≤∗ hτ . So we

can find n1 ≥ n0 and I ′ ∈
[
I \ [γ]<ℵ0

]ℵ1

such that for every τ ∈ I ′ and n ≥ n1,

gν(n) ≤ hτ (n), and for every τ and τ ′ in I ′, ~τ ¹n1 = ~τ ′ ¹n1. Since F is unbounded
and I ′ is uncountable, the set {hτ ; τ ∈ I ′} is unbounded. Hence there exists n ≥ n1

such that the set {hτ (n); τ ∈ I ′} is infinite. Let

n2 := min {n ∈ [n1, ω); {hτ (n); τ ∈ I ′} is infinite} .

By the minimality of n2, we can take ~t ∈ (ωn2)k and infinite I ′′ ⊆ I ′ such that
• for all τ ∈ I ′′, ~t ⊆ ~τ , i.e. for every j ∈ k, the j-th member of ~t is an initial

segment of the j-th member of ~τ ,
• the set {hτ (n2); τ ∈ I ′′} is infinite.
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By our assumption, there exists σ ∈ I ∩ [γ]<ℵ0 such that ~t ⊆ ~σ. Then there is
n3 ≥ n2 such that for every n ≥ n3, gσ(n) ≤ gν(n), and take τ ∈ I ′′ such that
gν(n3) < hτ (n2).

We will show that for every n ≥ n2, gσ(n) ≤ hτ (n) holds. If n2 ≤ n < n3, then

gσ(n) < gσ(n3) ≤ gν(n3) < hτ (n2) ≤ hτ (n),

so it is ok. If n ≥ n3, then since n ≥ n3 ≥ n1 and τ ∈ I ′′ ⊆ I ′,

gσ(n) ≤ gν(n) ≤ hτ (n).

We recall that ~t ∈ (ωn2)k is an initial segment of both ~σ and ~τ , for every n ≥ n2,
gσ(n) ≤ hτ (n), and both σ and τ are members of P. Therefore σ ∪ τ is also a
condition of P, i.e. σ and τ are compatible in P. ¤
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