THE INEQUALITY $\mathfrak{b}>\aleph_{1}$ CAN BE CONSIDERED AS AN ANALOGUE OF SUSLIN'S HYPOTHESIS

TERUYUKI YORIOKA

Abstract

In [3], the author introduced a new chain condition, called the anti-rectangle refining property, of forcing notions and the statement $\neg \mathcal{C}$ (arec) that every forcing notion with the anti-rectangle refining property has an uncountable antichain. We show that every forcing notion with the anti-rectangle refining property has an uncountable antichain. Since a typical example of a forcing notion with the anti-rectangle refining property is an Aronszajn tree, $\neg \mathcal{C}$ (arec) is a generalization of Suslin's Hypothesis. We show that $\neg \mathcal{C}$ (arec) implies that the bounding number is larger than \aleph_{1}, that is, this statement can be considered as an analogue of Suslin's Hypothesis.

1. Introduction

The author investigated several fragments of Martin's Axiom in [3]. Fragments of Martin's Axiom were studied mainly by Stevo Todorčević in 1980's, and many applications are discovered (see [2] and his many other articles). In this manuscript, we give a proof of one question in this area as follows.

We explain some notions in [3]. A forcing notion \mathbb{P} has the anti-rectangle refining property if for any uncountable subset I and J of \mathbb{P}, there exists uncountable subsets I^{\prime} and J^{\prime} of I and J respectively such that for every $p \in I^{\prime}$ and $q \in J^{\prime}, p$ and q are incompatible in $\mathbb{P} . \neg \mathcal{C}(\operatorname{arec})$ is the statement that every forcing notion with the antirectangle refining property has an uncountable antichain. Since an Aronszajn tree has the anti-rectangle refining property, $\neg \mathcal{C}(\operatorname{arec})$ can be considered a generalization of Suslin's Hypothesis. In fact, $\neg \mathcal{C}(\operatorname{arec})$ implies Suslin's Hypothesis and that every $\left(\omega_{1}, \omega_{1}\right)$-gaps are indestructible. The author would like to find other examples of a generalization of Suslin's Hypothesis, that is, other statements about combinatorics on ω_{1} which is deduced from $\neg \mathcal{C}(\operatorname{arec})$. One candidate is the statement that the bounding number \mathfrak{b} is larger than \aleph_{1}.

We had already known that $\mathcal{K}_{2}(\mathrm{rec})$, which is a weak fragments of Martin's Axiom and implies $\neg \mathcal{C}($ arec $)$, implies that $\mathfrak{b}>\aleph_{1}$. So it is naturally arisen a question that $\neg \mathcal{C}(\operatorname{arec})$ implies $\mathfrak{b}>\aleph_{1}$. In this manuscript, we show a positive answer of this question, that is $\neg \mathcal{C}($ arec $)$ implies that $\mathfrak{b}>\aleph_{1}$ in section 3 .

A proof of the theorem is self contained in this manuscript, however I omit some proofs of well known results in section 2. All of them are written in [3] or [1].

[^0]
2. A REASON Why we will prove as below

At first, we will see a proof that $\mathcal{K}_{2}($ rec $)$ implies $\mathfrak{b}>\aleph_{1}$. A partition $\left[\omega_{1}\right]^{2}=$ $K_{0} \cup K_{1}$ has the rectangle refining property if for any uncountable subset I and J of ω_{1}, there exist uncountable subsets I^{\prime} and J^{\prime} of I and J respectively such that for every $\alpha \in I^{\prime}$ and $\beta \in J^{\prime}$, if $\alpha<\beta$, then $\{\alpha, \beta\} \in K_{0}$. We note that the rectangle refining property is a strong property than the countable chain condition. $\mathcal{K}_{2}(\mathrm{rec})$ is the statement that every partition $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ with the rectangle refining property has an uncountable K_{0}-homogeneous set. We note that \mathcal{K}_{2} (rec) is deduced from Martin's Axiom for \aleph_{1}-dense sets, and \mathcal{K}_{2} (rec) implies $\neg \mathcal{C}$ (arec).

Let $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ be a set of strictly increasing functions from ω into ω such that for every ξ and η in ω_{1}, if $\xi<\eta$, then $f_{\xi} \leq^{*} f_{\eta}$, i.e. there exists $m \in \omega$ such that for all $n \geq m, f_{\xi}(n) \leq f_{\eta}(n)$. For this family, we define a partition $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ by letting $\{\xi, \eta\} \in K_{0}$ iff there exists m and n in ω such that $f_{\xi}(m)<f_{\eta}(m)$ and $f_{\eta}(n)<f_{\xi}(n)$. We call that F is unbounded when for every function g in ω^{ω}, there exists $f \in F$ such that $f \not \mathbb{Z}^{*} g$. We note that if F is unbounded, then this partition has the rectangle refining property. (This follows from Lemma 3.2 below.) However, in [1, Lemma 16], if F is unbounded, since an uncountable subset of F is also unbounded, for every uncountable subset F^{\prime} of F, there are two functions f and g in F such that g dominates f everywhere, i.e., for every $n \in \omega, f(n) \leq g(n)$. Therefore, $\mathcal{K}_{2}($ rec $)$ implies $\mathfrak{b}>\aleph_{1}$.

So to try to prove that $\neg \mathcal{C}($ arec $)$ implies $\mathfrak{b}>\aleph_{1}$, it seems to be natural to modify the argument above. Let \mathbb{P}^{\prime} be a forcing notion which consists of finite subsets σ of ω_{1} such that the set $\left\{f_{\xi} ; \xi \in \sigma\right\}$ is totally ordered by the dominance everywhere, i.e., for every $\xi \in \sigma$ and $n \in \omega$, $\max \left\{f_{\zeta}(n) ; \zeta \in \sigma \cap \xi\right\} \leq f_{\xi}(n)$, ordered by the reverse inclusion. As the above partition has the rectangle refining property, we note that \mathbb{P}^{\prime} has the anti-rectangle refining property if F is unbounded. So if we show that \mathbb{P}^{\prime} is ccc whenever F is unbounded, we conclude that F doesn't have to be unbounded. However, unfortunately, in general, \mathbb{P}^{\prime} does not have the ccc even if F is unbounded. For example, if the set $\left\{\left\{\xi_{\zeta}, \eta_{\zeta}\right\} ; \zeta \in \omega_{1}\right\}$ is a subset of \mathbb{P}^{\prime} such that

- for any $\zeta<\zeta^{\prime}$ in $\omega_{1}, \xi_{\zeta}<\eta_{\zeta}<\xi_{\zeta^{\prime}}$, and
- for any $\zeta \in \omega_{1}, f_{\xi_{\zeta}}(0)=0$ and $f_{\eta_{\zeta}}(1)=1$,
then it is an uncountable antichain in \mathbb{P}^{\prime}.
In section 3, we define a forcing notion \mathbb{P} which is a modification of \mathbb{P}^{\prime} and show that (Lemma 3.2) \mathbb{P} has the anti-rectangle refining property whenever F is unbounded, and (Lemma 3.3) \mathbb{P} has the countable chain condition whenever F is unbounded. This completes the proof of our theorem.

3. A Proof

Throughout this section, let $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ be a set of strictly increasing functions from ω into ω such that for every ξ and η in ω_{1}, if $\xi<\eta$, then $f_{\xi} \leq^{*} f_{\eta}$. We define a forcing notion \mathbb{P} which consists of finite subsets σ of ω_{1} such that for every $\xi \in \sigma$ and $n \in \omega$, either $\max \left\{f_{\zeta}(n) ; \zeta \in \sigma \cap \xi\right\} \leq f_{\xi}(n)$ or $f_{\xi}(n) \in$ $\left\{f_{\zeta}(n) ; \zeta \in \sigma \cap \xi\right\}$, ordered by the reverse inclusion.

Proposition 3.1. Suppose that $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ is unbounded. Then there exists $e \in \omega$ such that for every $n \in \omega \backslash e$ and $k \in \omega$, the set $\left\{\xi \in \omega_{1} ; f_{\xi}(n) \geq k\right\}$ is uncountable.

Proof. Assume not, i.e. there exists an infinite set Z of natural numbers such that for every $n \in Z$, there exists $k_{n} \in \omega$ such that the set $\left\{\xi \in \omega_{1} ; f_{\xi}(n) \geq k_{n}\right\}$ is countable. Let $\delta \in \omega_{1}$ be such that for all $n \in Z,\left\{\xi \in \omega_{1} ; f_{\xi}(n) \geq k_{n}\right\}$ is a subset of δ. Let $\left\{n_{i} ; i \in \omega\right\}$ be an increasing enumeration of Z, and we define a function g on ω by

$$
g(m):=\max \left(\left\{f_{\delta}(m)\right\} \cup\left\{k_{n_{i}} ; i \in m+1\right\} \cup\{g(i)+1 ; i \in m\}\right)
$$

for each $m \in \omega$. We notice that for each $\xi \in \delta, f_{\xi} \leq^{*} g$. Moreover for each $\xi \in \omega_{1} \backslash \delta$ and $m \in \omega$, since $m \leq n_{m}$,

$$
f_{\xi}(m) \leq f_{\xi}\left(n_{m}\right)<k_{n_{m}} \leq g(m) .
$$

So F is bounded by g, which is a contradiction.
Lemma 3.2. If $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ is unbounded, then \mathbb{P} has the anti-rectangle refining property.
Proof. Let I and J be uncountable subsets of \mathbb{P}. By shrinking I and J if necessary, we may assume that

- I forms a Δ-system with a root μ, and J also forms a Δ-system with a root ν,
- all members of I has the same size, and all members of J also has the same size,
- for any $\sigma \in I$ and $\tau \in J$,
$\max (\mu \cup \nu)<\min (\sigma \backslash \mu), \quad \max (\mu \cup \nu)<\min (\tau \backslash \nu), \quad(\sigma \backslash \mu) \cap(\tau \backslash \nu)=\emptyset$,
- there exists $e \in \omega$, such that for every $\sigma \in I$ and $\tau \in J$ and $n \geq e$,

$$
\max \left(\left\{f_{\zeta}(n) ; \zeta \in \mu \cup \nu\right\}\right)<\min \left(\left\{f_{\xi}(n) ; \xi \in \sigma \backslash \mu\right\}\right)
$$

and

$$
\max \left(\left\{f_{\zeta}(n) ; \zeta \in \mu \cup \nu\right\}\right)<\min \left(\left\{f_{\eta}(n) ; \eta \in \tau \backslash \nu\right\}\right)
$$

We notice that for every $A \in\left[\omega_{1}\right]^{\aleph_{1}}$, the set $\left\{f_{\xi} ; \xi \in A\right\}$ is unbounded. So by the previous lemma, there exists $e_{0} \geq e$ such that for every $k \in \omega$, the set

$$
\left\{\sigma \in I ; \min \left(\left\{f_{\xi}\left(e_{0}\right) ; \xi \in \sigma \backslash \mu\right\}\right) \geq k\right\}
$$

is uncountable. Let J^{\prime} be uncountable subset of J and $k_{0} \in \omega$ such that for every $\tau \in J^{\prime}$,

$$
\max \left(\left\{f_{\eta}\left(e_{0}\right) ; \eta \in \tau\right\}\right) \leq k_{0}
$$

and then we take an uncountable subset I^{\prime} of I such that for every $\sigma \in I^{\prime}$,

$$
\min \left(\left\{f_{\xi}\left(e_{0}\right) ; \xi \in \sigma \backslash \mu\right\}\right)>k_{0}
$$

Then we notice that for any $\sigma \in I^{\prime}$ and $\tau \in J^{\prime}$, since $e_{0} \geq e$, if $\tau \nsubseteq \max (\sigma)+1$, then σ and τ are incompatible in \mathbb{P}.

Conversely, by the previous lemma, there exists $e_{1}>e_{0}$ such that for every $k \in \omega$, the set

$$
\left\{\tau \in J^{\prime} ; \min \left(\left\{f_{\eta}\left(e_{1}\right) ; \eta \in \tau \backslash \nu\right\}\right) \geq k\right\}
$$

is uncountable. Let $I^{\prime \prime}$ be uncountable subset of I^{\prime} and $k_{1} \in \omega$ such that for every $\sigma \in I^{\prime \prime}$,

$$
\max \left(\left\{f_{\xi}\left(e_{1}\right) ; \xi \in \sigma\right\}\right) \leq k_{1}
$$

and then we take an uncountable subset $J^{\prime \prime}$ of J^{\prime} such that for every $\tau \in J^{\prime \prime}$,

$$
\min \left(\left\{f_{\eta}\left(e_{1}\right) ; \eta \in \tau \backslash \nu\right\}\right)>k_{1}
$$

Then we notice that, since $e_{1} \geq e$, for any $\sigma \in I^{\prime \prime}$ and $\tau \in J^{\prime \prime}$, if $\sigma \nsubseteq \max (\tau)+1$, then σ and τ are incompatible in \mathbb{P}.

By shrinking $I^{\prime \prime}$ and $J^{\prime \prime}$ if necessary, we may assume that for any $\sigma \in I^{\prime \prime}$ and $\tau \in J^{\prime \prime}$, either $\tau \nsubseteq \max (\sigma)+1$ or $\sigma \nsubseteq \max (\tau)+1$. Then for every $\sigma \in I^{\prime \prime}$ and $\tau \in J^{\prime \prime}, \sigma$ and τ are incompatible in \mathbb{P}.

Lemma 3.3. If $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ is unbounded, then \mathbb{P} has the countable chain condition.

Proof. Here, for each $\sigma \in \mathbb{P}$, letting $\left\langle\xi_{i} ; i \in\right| \sigma\rangle$ be an increasing enumeration of σ, we denote

$$
\vec{\sigma}:=\left\langle f_{\xi_{i}} ; i \in\right| \sigma| \rangle,
$$

which is a member of the set $\left(\omega^{\omega}\right)^{|\sigma|}$. Let I be an uncountable subset of \mathbb{P}. Without loss of generality, we may assume that

- I forms a Δ-system with a root μ,
- for every σ and τ in I, either $\max (\sigma)<\min (\tau \backslash \mu)$ or $\max (\tau)<\min (\sigma \backslash \mu)$,
- there exists $n_{0} \in \omega$ such that for every $n \geq n_{0}, \sigma \in I$ and $\xi \in \sigma \backslash \mu$,

$$
\max \left\{f_{\zeta}(n) ; \zeta \in \mu\right\}<f_{\xi}(n)
$$

- there exists $k \in \omega$ such that for every $\sigma \in I,|\sigma|=k$,
- for every σ and τ in $I, \vec{\sigma} \upharpoonright n_{0}=\vec{\tau} \upharpoonright n_{0}$, i.e. for each $j \in k$, the initial segment of the j-th element of $\vec{\sigma}$ of length n_{0} is equal to the initial segment of the j-th element of $\vec{\tau}$ of length n_{0}.
Then there exists $\gamma \in \omega_{1}$ such that the set $\left\{\vec{\sigma} ; \sigma \in I \cap[\gamma]^{<\aleph_{0}}\right\}$ is dense in the set $\{\vec{\sigma} ; \sigma \in I\}$ as a subspace of the space $\left(\omega^{\omega}\right)^{k}$. We fix some (any) $\nu \in I \backslash[\gamma]^{<\aleph_{0}}$. For each $\sigma \in I$, we define two functions g_{σ} and h_{σ} on ω as follows: For each $n \in \omega$,

$$
g_{\sigma}(n):=\max \left\{f_{\xi}(n) ; \xi \in \sigma\right\} \quad\left(=\max \left\{f_{\xi}(n) ; \xi \in \sigma \backslash \mu\right\}\right),
$$

and

$$
h_{\sigma}(n):=\min \left\{f_{\xi}(n) ; \xi \in \sigma \backslash \mu\right\} .
$$

We notice that for σ and τ in I, if $\max (\sigma)<\min (\tau \backslash \mu)$, then $g_{\sigma} \leq^{*} h_{\tau}$. So we can find $n_{1} \geq n_{0}$ and $I^{\prime} \in\left[I \backslash[\gamma]^{<\aleph_{0}}\right]^{\aleph_{1}}$ such that for every $\tau \in I^{\prime}$ and $n \geq n_{1}$, $g_{\nu}(n) \leq h_{\tau}(n)$, and for every τ and τ^{\prime} in $I^{\prime}, \vec{\tau} \upharpoonright n_{1}=\overrightarrow{\tau^{\prime}} \upharpoonright n_{1}$. Since F is unbounded and I^{\prime} is uncountable, the set $\left\{h_{\tau} ; \tau \in I^{\prime}\right\}$ is unbounded. Hence there exists $n \geq n_{1}$ such that the set $\left\{h_{\tau}(n) ; \tau \in I^{\prime}\right\}$ is infinite. Let

$$
n_{2}:=\min \left\{n \in\left[n_{1}, \omega\right) ;\left\{h_{\tau}(n) ; \tau \in I^{\prime}\right\} \text { is infinite }\right\} .
$$

By the minimality of n_{2}, we can take $\vec{t} \in\left(\omega^{n_{2}}\right)^{k}$ and infinite $I^{\prime \prime} \subseteq I^{\prime}$ such that

- for all $\tau \in I^{\prime \prime}, \vec{t} \subseteq \vec{\tau}$, i.e. for every $j \in k$, the j-th member of \vec{t} is an initial segment of the j-th member of $\vec{\tau}$,
- the set $\left\{h_{\tau}\left(n_{2}\right) ; \tau \in I^{\prime \prime}\right\}$ is infinite.

By our assumption, there exists $\sigma \in I \cap[\gamma]^{<\aleph_{0}}$ such that $\vec{t} \subseteq \vec{\sigma}$. Then there is $n_{3} \geq n_{2}$ such that for every $n \geq n_{3}, g_{\sigma}(n) \leq g_{\nu}(n)$, and take $\tau \in I^{\prime \prime}$ such that $g_{\nu}\left(n_{3}\right)<h_{\tau}\left(n_{2}\right)$.

We will show that for every $n \geq n_{2}, g_{\sigma}(n) \leq h_{\tau}(n)$ holds. If $n_{2} \leq n<n_{3}$, then

$$
g_{\sigma}(n)<g_{\sigma}\left(n_{3}\right) \leq g_{\nu}\left(n_{3}\right)<h_{\tau}\left(n_{2}\right) \leq h_{\tau}(n),
$$

so it is ok. If $n \geq n_{3}$, then since $n \geq n_{3} \geq n_{1}$ and $\tau \in I^{\prime \prime} \subseteq I^{\prime}$,

$$
g_{\sigma}(n) \leq g_{\nu}(n) \leq h_{\tau}(n)
$$

We recall that $\vec{t} \in\left(\omega^{n_{2}}\right)^{k}$ is an initial segment of both $\vec{\sigma}$ and $\vec{\tau}$, for every $n \geq n_{2}$, $g_{\sigma}(n) \leq h_{\tau}(n)$, and both σ and τ are members of \mathbb{P}. Therefore $\sigma \cup \tau$ is also a condition of \mathbb{P}, i.e. σ and τ are compatible in \mathbb{P}.

4. Acknowledgment

I would like to thank Stevo Todorčević for a discussion on the question in this manuscript during the international conference of Topology in 2007 December at Kyoto.

References

[1] S. Todorčević. Remarks on cellularity in products, Compositio Math. 57 (1986), no. 3, 357372.
[2] S. Todorčević. Partition Problems in Topology, volume 84 of Contemporary mathematics, American Mathematical Society, Providence, Rhode Island, 1989.
[3] T. Yorioka. Some weak fragments of Martin's Axiom related to the rectangle refining property, to appear in Arch. Math. Logic.

Department of Mathematics, Shizuoka University, Ohya 836, Shizuoka, 422-8529, JAPAN
E-mail address: styorio@ipc.shizuoka.ac.jp

[^0]: Supported by Grant-in-Aid for JSPS Fellow, No. 18840022, Ministry of Education, Culture, Sports, Science and Technology.

