Study on structures and electronic states of sulfur-treated InAs(111) and InSb(001)surfaces.

1999

Sukenori Ichikawa

For InAs, InSb and their mixed crystal surfaces, the promising materials for optelectronic devices working in infrared region, reduction of the surface states is a problem which would be encountered in the device fabrication. In this study, surface structures, chemical states of surface atoms, and electronic states for sulfur-passivated InAs(111) and InSb(001) surfaces has been investigated thoroughly by using low-energy electron diffraction(LEED), Auger electron spectroscopy (AES), scanning tunneling microscopy(STM), photoemission and inverse photoemission spectroscopies (PES and IPES), and following results are obtained.

An InAs(111)A-(2x2)-S surface is found for the first time for sulfurized III-V compounds by an $(NH_4)_2S_x$ -treatment and annealing although the structure of $(NH_4)_2S_x$ -treated InAs(111)B surface is explained in the same fashion as used for the sulfurtreated GaAs(111)B surface so far. Unoccupied dangling bond states are decreased by the sulfur-treatment for the (111)A-(2x2)-S surface. A reliable structure model for the (2x2)-S surface is proposed by a kinematical calculation of the S 2s XPD patterns. The occupied band structures for the (2x2)-S surface are experimentally revealed by angle-resolved PES. For $(NH_4)_2S_x$ treated InSb(001) surface, a sulfide passivation layer as thick as 6-7 monolayers are formed as opposed to the other $(NH_4)_2S_x$ treated III-V compound surfaces where the sulfide layer is formed within a few atomic layer.

The results of the study for the sulfur-passivated InAs(111) and InSb(001) surface give a fundamental information for the fabrication of optelectronic devices and hetero-devices on (111) substrates.