Structure of Atomically Clean Si, GaP and GaAs Surfaces and Epitaxy of Ag Thin Films

Morifumi Ohno

March, 1986

Atomistic and crystallographic studies on the metal-semiconductor interface are very important because of the influence on the performance of a semiconductor device. In this study, atomically clean surfaces of Si, GaP and GaAs single crystals were prepared by the heat-treatment in ultra-high vacuum of $\sim 2 \times 10^{-10}$ Torr.

Structural changes in the early stages of the growth of Ag films evaporated onto these clean surfaces were observed in-situ by a new reflection electron diffraction method using a micro channel plate. The Si (1 1 1) clean surface consisted of 7×7 superstructure. Ag thin films evaporated onto the surface at room temperatures showed preferential orientation with the [1 1 1] axis normal to the substrate surface, and Si (1 1 1) $\sqrt{3} \times \sqrt{3} R$ -30° -Ag reconstructed structure at the substrate temperature above $200^{\circ}C$. The GaP (1 1 1), $(\bar{1}\ \bar{1}\ \bar{1})$, $(0\ 1\ 1)$ and $(0\ 0\ 1)$ clean surfaces showed 1×1 , 1×1 , 1×1 , and 2×1 structures, respectively, and the GaAs $(0\ 0\ 1)$ clean surface indicated $c(8\times 2)$ superstructure. The GaP $(1\ 1\ 1)$, $(\bar{1}\ \bar{1}\ \bar{1})$ and $(0\ 0\ 1)$ surface heat-treated above about $650^{\circ}C$ were rough and composed of $\{1\ 1\ 0\}$ facets, while the GaP $(0\ 1\ 1)$ surface was relatively flat compared to the other three surfaces.

Ag thin films evaporated onto the GaP (1 1 1) and (1 1 1) surfaces at room temperature were polycrystalline, and showed epitaxial growth above 200°C. Those evaporated onto the Ga (0 0 1); (0 1 1) and the GaAs (0 0 1) at room temperature composed of one dimensional lattice along the [1 1 0] direction of substrate, and showed epitaxial growth at about 250°C. It was suggested that the formation of such 1D lattice of Ag atoms are due to the disorder of substrate surface lattice.