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ABSTRACT:  

The effect of the presence of Ar on the isomerization reaction HCN ⇄ CNH  is 

investigated via machine learning. After the potential energy surface function is developed based 

on the CCSD(T)/aug-cc-pVQZ level ab initio calculations, classical trajectory simulations are 

performed. Subsequently, with the aim of extracting insights into the reaction dynamics, the 

obtained reactivity, that is, whether the reaction occurs or not from a given initial condition, is 

learned as a function of the initial positions and momenta of all the atoms in the system. The 

prediction accuracy of the trained model is greater than 95 %, indicating that the machine 

learning captures the features of the phase space that affect the reactivity. Machine learning 

models are shown to successfully reproduce reactivity boundaries without any prior knowledge 

on classical reaction dynamics theory. Subsequent analyses reveal that the Ar atom affects the 

reaction by displacing the effective saddle point. When the Ar atom is positioned close to the N 

atom (resp. C atom), the saddle point shifts to the CNH (HCN) region, which disfavors the 

forward (backward) reaction. The results imply that analyses aided by machine learning are 

promising tools for enhancing the understanding of reaction dynamics.  

 

INTRODUCTION 

Chemical reactions are dynamical processes in which atoms move from one configuration 

to another. Because the motion of atoms is governed by quantum mechanics, or its classical 

approximation, a chemical reaction can be understood as a solution to mechanical equations of 

motion. A molecular system may begin in a given initial state and its evolution over time is 

determined by the rules of mechanics. Studies in the field of reaction dynamics1 conducted over 
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the last few decades have realized precise state-to-state level understandings of chemical 

reactions. Examples of experimental evidences supporting the importance of dynamical 

viewpoints in studying chemical reactions include, but are not limited to, the control of reactions 

by selecting initial rotational and/or vibrational states of molecules,2–7 selectivity in biochemical 

synthesis,8 and reaction control via strong laser fields.9–16 

A notable finding achieved in the study of reaction dynamics is the existence of “reactivity 

boundaries”14–43 in the phase space that describes atomic motions. In classical mechanics, owing 

to the deterministic nature of the equations of motion, the initial positions and momenta of the 

atoms contained in a system uniquely determine whether the reaction will occur or not. 

Therefore, the phase space, an abstract space that is spanned by all the atomic positions and 

momenta as coordinates, is divided into two domains; one is the set of all “reactive” initial 

conditions that lead to reaction, and the other is the set of all “non-reactive” initial conditions. 

Between these two domains lies a boundary, which is called a reactivity boundary in this study. 

It is also worth mentioning that quantum mechanical versions of reactivity boundaries have also 

been developed through various studies.15,16,41 

 In this study, the reactivity in the isomerization reaction HCN⇄CNH is investigated in 

the phase space under the influence of one argon atom as a buffer gas. This isomerization 

reaction has long been drawing interest as one of the simplest isomerization reactions, as well as 

for applications in interstellar chemistry,44 and as a prototypical system for studying the phase 

space structures of chemical reactions.24,27,28 In gas-phase chemistry, the buffer atoms act as 

energy sources that activate target molecules through collisions. As the density of the system 

increases, they become solvent to influence the reaction by changing the potential energy 
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landscape experienced by the reacting molecules. The HCN-Ar cluster studied here may be 

regarded as a first-step model for investigating the solvent effect.  

Recently, machine learning (ML) has attracted substantial attention in various fields ranging 

from business to basic sciences, as studies have demonstrated that computers can solve pattern 

recognition problems, as humans do, via machine learning.45–48 Applications of machine learning 

to solve molecular problems are also being actively explored,49–51 in particular to the prediction 

of rate constants,52 and state-to-state cross sections.53,54 The performance of the machine learning, 

which is known to occasionally outperform human recognition, would contribute to the evolution 

of computational analyses to improve the current understanding of molecular phenomena. 

Importantly, in some cases, machine learning can be used to extract essential dominant factors 

from data55–58 without resorting to any prior knowledge of physical laws. 

In this study, a systematic method is presented for the analysis of the reaction dynamics to 

reveal the effects of the Ar atom, seen as a fundamental model for buffer gas or solvent, on the 

reactivity of HCN. The focus is given on the dynamics occurring in the vicinity of the saddle 

point lying on the potential energy surface between the reactant and product wells. The dynamics 

in this region is crucial in the branching of trajectories into the product and reactant wells. To 

explain it, the process of chemical reaction can be, for simplicity, viewed as three consecutive 

steps. First the system in the reactant well is excited and climb up the PES to reach the vicinity of 

the saddle point. Then, the dynamics in the region around the saddle point determines the 

bifurcation into the reactant or product well. Finally, the system falls into the product well (or 

back into the reactant well) and relaxes there. In the present work we focus on the second step, 

that is, the dynamics occurring in the vicinity of the saddle point determining the branching into 

product or reactant well. The saddle region dynamics has been extensively investigated from the 
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viewpoint of phase space geometry14–43 and, at least under certain conditions, it has been proved 

that there exist clear boundaries between reacting and non-reacting trajectories. The present work 

investigates how machine learning (ML) and accompanying analyses can extract such insights 

from trajectory data, without prior knowledge of the dynamics theory. RF classifiers learn the 

final state of the reaction, that is, whether the system ends in the HCN state or in the CNH state, 

as a function of the initial positions and momenta of the four atoms (H, C, N, and Ar). The 

method allows rational dimensional reductions to extract a small number of important 

coordinates whose values are essentially required to predict the reaction direction. After the 

dimensional reduction, molecular pictures are presented to interpret why those coordinates are 

important. 
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MATERIALS AND METHODS 

Potential Energy Surface and Trajectory Calculation 

 The system is described by classical equations of motion derived from the following 

Hamiltonian: 

 𝐻 = ∑ |𝒑𝑖|22𝑚𝑖𝑖 + 𝑉(𝒓H, 𝒓C, 𝒓N, 𝒓Ar), (1) 

where the index 𝑖 refers to the atoms in the system (H, C, N, and Ar). The position of an atom 

is described by a three-dimensional vector 𝒓𝑖 = (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) and its conjugate momentum is 

described by 𝒑𝑖 = (𝑝𝑥𝑖, 𝑝𝑦𝑖, 𝑝𝑧𝑖). The mass of each atom 𝑖 is denoted as 𝑚𝑖. For the potential 

energy 𝑉(𝒓H, 𝒓C, 𝒓N, 𝒓Ar), the following function is used in the present study. 

 𝑉(𝒓H, 𝒓C, 𝒓N, 𝒓Ar) = 𝑉HCN(𝒓H, 𝒓C, 𝒓N) + 𝑉inter(𝒓H, 𝒓C, 𝒓N, 𝒓Ar), (2) 
where 𝑉HCN(𝒓H, 𝒓C, 𝒓N) is the intramolecular potential energy surface (PES) of HCN, for 

which the function constructed in Ref. 59, constructed by fitting to spectroscopic data, is used 

in the present study. The second term, 𝑉inter(𝒓H, 𝒓C, 𝒓N, 𝒓Ar), describes the intermolecular 

interaction between HCN and Ar. To obtain 𝑉inter, ab initio calculations were performed at 

CCSD(T)/aug-cc-pVQZ level, and the intermolecular energies were obtained with 

counterpoise correction. The calculation points are distributed in a range including the regions 

close to the HCN minimum, the CNH minimum, and the saddle point between them. The 

concrete positions of these points are explicitly given in the supplementary material to this 

paper. Data of 1,097 points with intermolecular energy less than 2 kJ mol−1 , which is 

regarded as the “typical” range of the Ar-HCN interaction considering the binding energy ≈136 cm−1 of the Ar-HCN complex, were least-squares fitted to the following analytical form: 
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 𝑉inter = ∑(𝐴𝑖𝑢𝑖2 − 𝐵𝑖𝑢𝑖)3
𝑖=1 + ∑ 𝐶𝑖𝑗𝑢𝑖𝑢𝑗 

𝑖≠𝑗 + ∑ ∑ 𝐹𝑖𝑘𝑢𝑖𝑠𝑘3
𝑘=1

3
𝑖=1 , (3) 

 𝑠1 = |𝒓H − 𝒓C|−1, (4) 

 𝑠2 = |𝒓N − 𝒓C|−1, (5) 

 𝑠3 = |𝒓H − 𝒓N|−1, (6) 

 𝑢1 = |𝒓Ar − 𝒓H|−6, (7) 

 𝑢2 = |𝒓Ar − 𝒓C|−6, (8) 

 𝑢3 = |𝒓Ar − 𝒓N|−6, (9) 

where coefficients 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖𝑗 , and 𝐹𝑖𝑘  are the fitting parameters. The resulting fitting 

coefficients, as well as the structure and energy at the data points used for the fitting, are 

available in the supplementary material to this paper. The data points are concentrated on the 

configurations with HCN adopting the HCN minimum structure, the CNH minimum structure, 

and the HCN-CNH saddle point structure. Points with displacement of cos 𝛾, where 𝛾 is the 

Jacobi angle (Fig. 2), by up to ±0.2 from these three points were also included to cover a 

region around the saddle point rather than the single point. The deviation of ±0.2 in cos 𝛾 

roughly corresponds to the region where the dynamics is investigated in the present study as 

will be expressed in Eqs. (14) and (15) below. The mean square residual error of the fitting 

was 0.18 kJ mol−1 , which is reasonably small compared to the range of the sampled 

intermolecular energy ( ∼ ±2 kJ mol−1 ) and the activation energy 146 kJ mol−1  for the HCN → CNH isomerization reaction. Figure 1 shows the contour plots of the PESs obtained 

in this study with respect to the position of the H atom for some fixed positions of the C, N, 

and Ar atoms.  
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It was previously pointed out60 that exponential functions, rather than Lennard-Jones type 

functions, are required to describe the inner repulsive wall accurately. This is probably 

because their interest is in the dissociation reactions that occur with high energy, while the 

present study focuses on the isomerization reaction. Based on the accuracy of the fitting, we 

consider that the present PES correctly describes at least the essential features of the influence 

of the Ar atom on the HCN isomerization reaction. A more detailed examination on the effect 

of the form of repulsion is left for future work. Additionally, since we fit the intermolecular 

component 𝑉inter separately from the intramolecular component 𝑉HCN, one can replace the 

latter with a more recent ab initio potential function for HCN,61 which gives a higher barrier 

height of 200 kJ mol−1  compared to 146 kJ mol−1  of Ref. 59, for further quantitative 

investigations in the future while using the same intermolecular potential of this work. In the 

present work, the focus is given on the dynamics in the saddle region, which is the pivotal 

stage governing the branching of trajectories into the reactant or product well. While the 

barrier height may certainly affect the motion climbing up the PES in the reactant well toward 

the saddle region, the saddle region dynamics is determined by the local morphology of the 

PES near the saddle point and its height relative to the reactant minimum not actually plays a 

significant role. As we fit the intermolecular potential with data points concentrated in the 

saddle region (see Fig. S2 in the supplementary material), we judge that the present treatment 

of the PES is sufficient for the purpose, while leaving a room for improvement in future 

investigation on the reactant excitation stage. 

From a given initial condition, the equations of motion were numerically integrated by 

fourth-order Runge–Kutta method with variable time steps.62 To monitor the reaction 

channels, Jacobi angle 𝛾 was defined as the angle between the vector connecting the C and N 
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atoms and that connecting the H atom from the CN mass center, as shown in Figure 2. The 

linear HCN structure corresponds to 𝛾 = 0, and CNH structure to 𝛾 = π. In the simulation, 

when the angle 𝛾 became larger than 1.5 rad, the system was judged to have fallen into the 

CNH product, and when the angle 𝛾 became smaller than 1.0 rad, the system was judged to 

have fallen into the HCN product.  

 

 

 

 

Figure 1. Contour plots of the PES for some chosen positions of C, N, and Ar atoms. The saddle 

point on each surface is marked by a cross symbol whose arms show the directions of the normal 
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modes at the saddle point. The top left panel shows the PES in the absence of Ar, and the dots 

depict the intrinsic reaction coordinate (IRC) 

 

Figure 2. Definition of Jacobi coordinates for the HCN system.  

 

 

Initial Condition Sampling 

 Data sets for machine learning were generated by sampling 200,000 initial conditions 

and simulating the trajectory to assign the reaction channel to each initial condition. The 

trajectory simulation was performed for the planar condition, wherein all the atoms were 

assumed to remain in the same plane for simplicity. Without loss of generality, the C and N 

atoms were initially placed on the 𝑥-axis, with their mass center at the origin (Figure 3) and 

having zero velocity. The molecular plane was identified with the 𝑥𝑦-plane. In the form of 

equations, the initial positions and momenta of H, C, N, and Ar atoms were sampled as 

follows: 
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 𝒓H = (𝑥H, 𝑦H, 0), 𝒑H = (𝑝𝑥H, 𝑝𝑦H, 0), (10) 

 𝒓C = (− 𝑚N𝑚C 𝑥N, 0, 0), 𝒑C = (−𝑝𝑥N, −𝑝𝑦N, 0), (11) 

 𝒓N = (𝑥N, 0, 0), 𝒑N = (𝑝𝑥N, 𝑝𝑦N, 0), (12) 

 𝒓Ar = (𝑥Ar, 𝑦Ar, 0), 𝒑Ar = (𝑝𝑥Ar, 𝑝𝑦Ar, 0), (13) 

where each variable was independently and uniformly sampled in the following ranges: 

 𝑥H 10−10 m⁄ ∈ [−0.65, −0.29], (14) 

 𝑦H 10−10 m⁄ ∈ [0.93, 1.29], (15) 

 𝑥N 10−10 m⁄ ∈ [0.48, 0.56], (16) 

 𝑥Ar 10−10 m⁄ ∈ [−2.5, 2.0], (17) 

 𝑦Ar 10−10 m⁄ ∈ [2.89, 3.56], (18) 

 𝑝𝑥H 10−24 kg m s−1⁄ ∈ [−21, 21], (19) 

 𝑝𝑦H 10−24 kg m s−1⁄ ∈ [−21, 21], (20) 

 𝑝𝑥N 10−24 kg m s−1⁄ ∈ [−46, 46], (21) 

 𝑝𝑦N 10−24 kg m s−1⁄ ∈ [−46, 46], (22) 

 𝑝𝑥Ar 10−24 kg m s−1⁄ ∈ [−100, 100], (23) 

 𝑝𝑦Ar 10−24 kg m s−1⁄ ∈ [−100, 100]. (24) 

 The structure of the HCN molecule was sampled in a neighborhood of the saddle point 

(𝛾 ≈ 1.2 rad ≈ 70°) for the isomerization. The Ar atom position was then sampled in a region 

near the HCN molecule. This simulated a situation in which the Ar atom collided with the 

HCN molecule in the middle of isomerization reaction and affected the outcome of the 
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proceeding reaction. Both forward and backward time propagations were calculated from each 

initial condition, and the reactant and product states were assigned. Consequently, there are 

four possible types of trajectories: forward reaction ( HCN → CNH ), backward reaction 

(CNH → HCN), no reaction from HCN (HCN → HCN), and no reaction from CNH (CNH →CNH). The type of trajectory was regarded as a function of the initial condition specified by 

the eleven variables (𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥N, 𝑝𝑥N, 𝑝𝑦N, 𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, and 𝑝𝑦Ar) as described 

above and was used as the input to the machine learning. 

 In the sampling explained above, the center of mass of the 4-atom system is not 

necessarily at the origin, and also can have non-vanishing momentum. The sampling was 

performed uniformly in the rectangular region as described above. This sampling method 

makes the explanatory variables independently distributed. This makes the interpretation of 

the role of each variable more accessible from the analyses described in the RESULTS AND 

DISCUSSION section. As an example of correlated sampling, results of microcanonical 

sampling are presented in APPENDIX A. 

In addition to the full-dimensional sampling, trajectory calculations on the points sampled 

with fixed Ar positions and momenta were also performed with the aim of providing further 

analyses on the effect of the Ar atom on the reaction. Eight Ar positions were selected by 

seeking “representative” positions that illustrated the effect of the Ar atom as revealed by the 

machine learning results of the full-dimensional sample. For each Ar position, 200,000 

trajectory data were generated. 
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Figure 3. Schematic illustration of the variables that parameterize the initial condition. 

Conjugate momenta are omitted to keep the figure simple. 
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Machine Learning 

In this study, we used a random forest (RF) classifier. RF is an ensemble learning method 

that constructs multiple decision trees using training data and classifies the input data based 

on majority voting.63 The RF classifier was trained by using 180,000 data points, and 20,000 

data points were used for the prediction test. All the RF calculations were conducted by using 

the scikit-learn library (ver. 0.23.2) with the following default hyperparameters:64 number of 

trees (n_estimators) is 100, maximum depth of each tree (max_depth) is ‘none’ (unlimited 

depth), minimum number of samples required to split an internal node (min_samples_split) is 

2, minimum number of samples required to be at a leaf node (min_samples_leaf) is 1, and 

maximum number of features to consider for each split (max_features) is ‘auto’ (square root 

of number of features)). Before the test calculation, we checked the generalization 

performance of the trained model by using the five-fold cross-validation technique.65 In the 

test calculation, we utilize “accuracy” to see the Random Forest model's ability to correctly 

predict the reactivity of the HCN isomerization reaction in the presence of Ar based on the 

given initial conditions. Accuracy is a performance metric commonly used in machine 

learning to assess the model's predictive ability. It measures the proportion of correctly 

predicted outcomes over the total number of predictions.  

To evaluate the importance of the features in the prediction test, we employed permutation 

importance,63 which quantifies the reduction in predictive performance resulting from the 

random shuffling of a specific feature. Specifically, for each feature, we randomly permuted 

its values across the dataset and measured the resulting decrease in prediction accuracy. This 

allowed us to assess the individual impact of each feature on the model's performance. 
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In addition to the permutation importance, we utilized the SHapley Additive exPlanation 

(SHAP) analysis, which is a game-theoretic method widely utilized for interpreting machine 

learning models.66,67 The SHAP analysis assigns a numerical value, known as the SHAP value, 

to each feature, representing its contribution to the prediction for a particular sample. The 

SHAP values provide insights into the direction and magnitude of the feature's impact on the 

predicted reactivity for the HCN isomerization reaction in the presence of Ar. Positive SHAP 

values indicate that the feature positively contributes to the predicted reactivity, meaning that 

higher values of the feature are associated with an increased likelihood of the reaction 

occurring. Conversely, negative SHAP values indicate a negative contribution, indicating that 

lower values of the feature are associated with a higher likelihood of the reaction. 

 

RESULTS AND DISCUSSION 

Full Dimensional Learning and Dimension Reduction 

 Each sample point, specified with the eleven variables (𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑟CN, 𝑝𝑥N, 𝑝𝑦N, 𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, 𝑝𝑦Ar), was assigned one of the four reaction channels (HCN → CNH, CNH →HCN, HCN → HCN, CNH → CNH) from the forward and backward trajectory calculation as 

explained in the last section. RF machine learning was then applied to predict the reaction 

channels from the values of the eleven variables. The results are shown in the first row of 

Table 1. When all the eleven variables are used, the accuracy is as high as 0.95. This indicates 

that the present eleven-dimensional (11D) RF model can correctly predict the reaction 

channels of the HCN reaction for 95 % of the initial conditions. 
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Table 1. Accuracy of the machine learning results in the reaction channel assignment for the 

HCN reaction under the presence of Ar. 

Variables Dimension Acc Cross_max Cross_min 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥N, 𝑝𝑥N, 𝑝𝑦N, 𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, 𝑝𝑦Ar 

11 0.952 0.953 0.948 

𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥N, 𝑝𝑥N,  𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, 𝑝𝑦Ar 

10 0.860 0.860 0.859 

𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑝𝑦N,  𝑥Ar, 𝑦Ar 

7 0.947 0.949 0.944 

𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥Ar, 𝑦Ar 
6 0.858 0.857 0.856 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑝𝑦N  
5 0.927 0.926 0.924 

Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and 

minimum values of the cross-validation results, respectively.  
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 With the aim of using the machine learning results to obtain molecular-level insights into 

the chemical reaction, it is here intended to eliminate some unimportant variables and predict 

the reaction channel by using as few variables as possible to obtain a simpler picture on the 

reactivity. Firstly, we conducted a permutation analysis63 to evaluate the importance of the 

variables (called “features” in the machine learning field). Briefly, the values of a variable 

were randomly permuted in the samples, and the prediction accuracy was then computed for 

these samples. The decrease in accuracy because of this permutation is regarded as indicating 

the importance of that variable for the prediction. The results shown in Figure 4 reveal that 

the 𝑥-coordinate and its conjugate momentum of the H atom are the most important variables 

required for determining the reactivity. This is intuitively understandable because the title 

reaction HCN ⇄ CNH can be approximately regarded as the migration of the H atom from the 

C side to the N side owing to the smaller mass of H compared to those of C and N. Next to the 

H variables, the most important variable required for the prediction is 𝑝𝑦N , which 

approximately represent the bending motion of the HCN molecule. In fact, the elimination of 

this variable from the RF model decreases the accuracy of prediction by 10 % (10D model, 

the second row in Table 1). Note that the 10D model was trained by using the same full-

dimensional data as those used for the 11D learning. This implies that the variable 𝑝𝑦N has a 

non-negligible contribution to predicting the reactivity in the full-dimensional sample. By 

contrast, the decrease in the accuracy induced by the elimination of 𝑥N, 𝑝𝑥N, 𝑝𝑥Ar, and 𝑝𝑦Ar is 

negligible; the 7D model (third row in Table 1) shows a prediction accuracy of ~95 %. This 

result is consistent with the permutation importance results shown in Figure 4, which 

demonstrates that the importance of 𝑥N, 𝑝𝑥N, 𝑝𝑥Ar, and 𝑝𝑦Ar is negligible. The elimination of 𝑝𝑦N from the 7D model results in a 6D model. The fourth row in Table 1 shows that this 
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model decreases the prediction accuracy to 86 %, as can be expected from the results of the 

10D model. The Ar positions 𝑥Ar  and 𝑦Ar , contribute to the prediction to some extent, 

whereas the contributions of the Ar momenta 𝑝𝑥Ar  and 𝑝𝑦Ar , are found negligible. The 

elimination of the Ar coordinates decreases the prediction accuracy by 2 % (5D model, the 

last row in Table 1). Figure 4 also shows that although the importance of the Ar position 

coordinates is not as high as that of 𝑝𝑦N, it is not negligible. 

 

 

 

Figure 4 Contribution of each variable to the prediction of reactivity in the full-dimensional 

model as evaluated via permutation importance.  
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Molecular Interpretation of the Full Dimensional Results 

 Figure 1(a) shows contours of the potential energy experienced by the H atom. The 

saddle point for the isomerization reaction and IRC are also shown. Near the saddle point, the 

direction of the IRC is approximately parallel to the 𝑥-direction, that is, the direction of the 

CN axis. Therefore, in this region, the chemical reaction almost corresponds to the movement 

of the H atom along the 𝑥-direction. This explains the high importance of 𝑥H and 𝑝𝑥H as well 

as the low importance of 𝑦H and 𝑝𝑦H. 

To elucidate more concretely how 𝑥H and 𝑝𝑥H affect the occurrence of the reaction, the 

reactivity boundaries in a section of phase space are shown in Figure 5. For visualization, a 

two-dimensional plane spanned by 𝑥H and 𝑝𝑥H is selected, with the other variables fixed at the 

following values: 𝑦H = 1.112 Å , 𝑥N = 0.526 Å , 𝑥Ar = −2.50 Å , 𝑦Ar = 3.56 Å , and 𝑝𝑦H =𝑝𝑥N = 𝑝𝑦N = 𝑝𝑥Ar = 𝑝𝑦Ar = 0. As can be observed, the plane is divided into four domains in 

terms of the reaction channels: two reactive channels (HCN → CNH and CNH → HCN) and 

two non-reactive channels (HCN → HCN and CNH → CNH). The boundaries of these four 

regions are called the “reactivity boundaries.” In the calculation, the plane was divided into 200 × 200 grid points and the boundaries were detected by assigning a reaction channel to 

each grid point. Reaction-channel assignment was performed both by the trajectory 

simulations and by the RF prediction, and their results are compared in the figure. It is seen 

that the RF prediction satisfactorily reproduces the reactivity boundaries obtained from 

trajectory simulations. 

The positioning of the four regions and their boundaries shown in Figure 5 is essentially 

the same as that found in previous studies conducted on dynamical chemical reaction theory, 
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14–43 A large positive (negative) 𝑝𝑥H implies that the H atom has sufficiently high energy to 

overcome the reaction barrier from the C side to the N side (from the N side to the C side, 

resp.). On the other hand, 𝑥H , the position of the H atom along the 𝑥 -direction, mainly 

distinguishes the two non-reactive channels (HCN → HCN and CNH → CNH) for small |𝑝𝑥H|, 
whence the kinetic energy is low and the system is confined within either the HCN or the 

CNH potential well. 

 

 

 

Figure 5 Reactivity boundaries are illustrated in the two-dimensional section spanned by 𝑥H 

and 𝑝𝑥H. Boundaries calculated by trajectory simulations (thick blue lines) and RF predictions 

(thin red lines) are compared. 
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 A schematic is shown in Figure 6 to interpret the importance of 𝑝𝑦N. Suppose a case with 

small H atom momentum. If CN does not move, the H atom is reflected by the reaction barrier 

and falls back into the HCN potential well (panel (a)). If the N atom has some positive 

momentum along the 𝑦  direction, the CN axis rotates counterclockwise, as shown in the 

figure (panel (b)). The N atom then approaches the moving H atom. Finally, the H atom is 

caught by the N atom, thereby forming the CNH product. To verify this interpretation 

quantitatively, the reactivity boundaries in Figure 7. The figure shows a two-dimensional 

section of the phase space spanned by 𝑝𝑦N and 𝑝𝑥H , with the other variables fixed at the 

following values: 𝑥H = −0.574 Å , 𝑦H = 1.112 Å , 𝑥N = 0.526 Å , 𝑥Ar = 𝑦Ar = 100 Å , and 𝑝𝑦H = 𝑝𝑥N = 𝑝𝑥Ar = 𝑝𝑦Ar = 0 . As observed in Figure 5, the RF prediction satisfactorily 

reproduces the reactivity boundaries obtained via the trajectory simulations. It is noted that 

the boundaries slant downward as 𝑝𝑦N  increases, enlarging the region of the HCN → CNH 

reaction. This indicates that for positive 𝑝𝑦N, the HCN → CNH reaction occurs more easily, 

which confirms the interpretation illustrated in Figure 6. 

 The mechanical picture obtained here as shown in Figure 6 is intuitively reasonable and 

is computationally confirmed by plotting the reactivity boundaries as in Figure 7. This plot is, 

however, possible only after one has chosen the coordinates (in this case, 𝑝𝑦N and 𝑝𝑥H) to plot 

the boundaries in the phase space. The machine learning helped to choose the coordinates for 

the plot by identifying the coordinates that have significant influence on the reaction outcome 

as done by inspecting the permutational importance in Figure 4.   
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By contrast, 𝑥N and 𝑝𝑥N, which approximately represent the CN stretching motion, are 

not important for predicting the reaction. This implies that the isomerization reaction is 

dynamically independent of the CN stretching motion. 

 

 

Figure 6 Illustrations to elucidate the role of the N atom motion in determining the reactivity. (a) 

Consider the case where the H atom initially has a small momentum. It is reflected back into the 

reactant (HCN) region by the reaction barrier. (b) For the same initial momentum of H, if the N 

atom is initially moving upward in the figure, the H atom can easily be captured by the N atom to 

form the CNH product. 
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Figure 7 Reactivity boundaries are illustrated in a two-dimensional section spanned by 𝑝𝑦N 

and 𝑝𝑥H. Boundaries calculated by trajectory simulations (thick blue lines) and RF predictions 

(thin red lines) are compared. The region of HCN → CNH reactive initial conditions expands 

with increasing 𝑝𝑦N, which implies that the motion of the N atom in the positive 𝑦-direction 

assists the HCN → CNH reaction. 
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The Effect of Ar Atom Position Analyzed by SHAP 

 The machine learning and the subsequent analyses via permutation importance have 

revealed that the presence of Ar affected the reactivity of the HCN system. To obtain further 

insights into the role of the Ar atom, the SHAP values66,67 of the variables 𝑥Ar and 𝑦Ar were 

evaluated for the 7D model here. Briefly, the SHAP value of a variable approximately 

describes the extent of contribution of the variable in making a prediction. Figure 8 shows the 

SHAP values of 𝑥Ar  and 𝑦Ar  plotted against the two-dimensional plane of (𝑥Ar, 𝑦Ar). For 

example, it is observed from the top right panel of Figure 8 that the variable 𝑥Ar makes a 

large positive contribution in predicting that the given initial condition corresponds to the CNH → CNH channel when the Ar atom is located at the points (𝑥Ar, 𝑦Ar) ≈ (−1.0 Å, 2.9 Å).  

 Eight regions can be roughly recognized in the (𝑥Ar, 𝑦Ar)-plane from the plots of SHAP 

values in Figure 8. To clarify, the top right panel of Figure 8 is reproduced in the left panel 

of Figure 9, wherein the right panel shows the division of the left-panel figure into eight 

regions. Regions (F) and (G) are characterized by the greatest effect of the Ar atom position (𝑥Ar, 𝑦Ar) on the reactivity. These two regions also show the most contrasting SHAP values 

because the effect of the Ar-atom positions experienced in region (F) is in the opposite 

direction to that experienced in region (G). For example, for the CNH → CNH channel, the 

variable 𝑥Ar has a large positive effect in region (F), whereas it has a large negative effect in 

region (G). Compared to regions (F) and (G), the effect of the Ar-atom position is weaker in 

regions (A)–(E) and (H), and the contrast between these regions is not necessarily clear. In the 

molecular picture, these regions correspond to the configuration wherein the Ar atom is 
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located rather far from the HCN molecule; therefore, they may exhibit weaker intermolecular 

interactions.  

 

 

 

Figure 8 The contributions of the variables 𝑥Ar and 𝑦Ar are evaluated by using SHAP values. 

The SHAP value is calculated for each point in the learning data set. Each point is then plotted 

by its (𝑥Ar, 𝑦Ar) values. The color indicates the SHAP value of 𝑥Ar (top panel) or 𝑦Ar (bottom 

panel) for each point. 
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Figure 9 The left panel reproduces the right top panel of Figure 8. As shown in the right panel, 

eight regions can be recognized according to the direction and extent of the effect of Ar on the 

reaction. 

 

 

Machine Learning with Single Initial Ar Position 

 To obtain further insights into the effect of the Ar-atom position, one representative point 

was chosen from each of the eight regions identified in the previous subsection, as shown in 

Figure 9. Hereafter, these points are denoted by 𝐚, 𝐛, … , 𝐡 in bold Roman letters. Machine 

learning was performed on datasets in each of which the initial position of the Ar atom was 

set at each of the points 𝐚–𝐡 and the remaining variables were randomly sampled in the region 

described in the Materials and Methods section. The learning results obtained for different Ar-

atom positions were compared to assess the influence of the Ar-atom position on the reaction. 

In the sampling, the initial momentum of the Ar atom was fixed at zero because the initial 

momentum of the Ar atom (𝑝𝑥Ar, 𝑝𝑦Ar) was found to have negligible effects on reactivity in 
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the full-dimensional learning. Based on the high performance of  the “7D model” with the 

input (𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑝𝑦N, 𝑥Ar, 𝑦Ar) found for the full-dimensional data, machine learning 

here was applied with respect to five variables 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, and 𝑝𝑦N, since 𝑥Ar and 𝑦Ar 

were not used as variables in this analysis. In addition, machine learning was also performed 

for the configuration in which the Ar atom was placed sufficiently distant from the HCN 

molecule so that the intermolecular interaction between them was negligible. This condition is 

denoted as “Ar∞.” 

 

 

Table 2. Accuracy of the results of machine learning performed on the HCN reaction with a 

single Ar initial position. 

 𝑥Ar / Å 𝑦Ar / Å Acc Cross_max Cross_min 𝐚 -2.5 3.56 0.963 0.962 0.958 𝐛 -1.2 3.56 0.962 0.961 0.960 𝐜 0.3 3.56 0.959 0.962 0.960 𝐝 2.0 3.56 0.960 0.961 0.958 𝐞 -2.5 2.89 0.963 0.961 0.958 𝐟 -1.2 2.89 0.968 0.970 0.967 𝐠 0.3 2.89 0.947 0.949 0.945 𝐡 2.0 2.89 0.960 0.960 0.959 

Ar∞ 100 0 0.961 0.960 0.959 

Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and 

minimum values of the cross-validation results, respectively.  
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Figure 10 Contribution of each variable to the prediction of reactivity is evaluated via 

permutation importance. The result is shown for each Ar-atom position defined in Figure 9. 
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 As shown in Table 2, the machine learning results exhibit approximately 95 % or higher 

prediction accuracy for every case, while the Ar-position dependence of accuracy is negligible. 

This demonstrates consistent performance and effectiveness of the model in predicting the 

reactivity for each Ar position. Moreover, the permutation-importance results shown in 

Figure 10 indicates high similarity between results achieved for 𝐚–𝐞, 𝐡, and Ar∞. This 

further supports the molecular view that regions (A)–(E) and (H) are characterized by weak 

intermolecular interactions and the reactions there are almost the same as the isolated HCN 

without Ar buffer gas. By contrast, the permutation-importance results obtained for points 𝐠 

and 𝐡 show the increased importance of the motions of the hydrogen atom in the 𝑦-direction, 

parametrized by 𝑦H and 𝑝𝑦H.  

 

Cross Tests 

 To further demonstrate the distinction between the points 𝐟, 𝐠 and the other cases, results 

of “cross tests” were examined. A cross test means that the result of learning in one case is 

used to predict the reaction channel in another case, and the prediction accuracy is evaluated. 

As shown in Table 3, the result of learning by using the data set Ar∞ can predict the reaction 

outcome for points 𝐚–𝐞, and 𝐡 with almost perfect accuracy, further supporting the view that 

reactions that occur in the regions (A)–(E) and (H) are essentially similar to the unimolecular 

reaction of isolated HCN. By contrast, the learning result obtained for the unimolecular 

reaction shows a low performance in the prediction of reaction outcomes for 𝐟 and 𝐠, and the 

cross-test results between 𝐟 and 𝐠 exhibit the worst performance. 
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 Interestingly, the permutation importance evaluated for the prediction of 𝐟 by the learning 

of 𝐠 and vice versa (Figure 11) shows negative values for 𝑥H and 𝑝𝑦H. This implies that the 

information on 𝑥H or 𝑝𝑦H worsens the prediction accuracy if the reactivity at 𝐟 is predicted by 

using the learning results obtained for 𝐠. In other words, the roles played by 𝑥H and 𝑝𝑦H in 

determining the reaction channels are likely to be opposite in direction between regions (F) 

and (G).  

 

 

Table 3. Accuracy of the random forest evaluated in the cross-prediction tests. Machine learning 

is performed on one data set (denoted as “Training”) and then the result is applied to the 

prediction in another data set (denoted as “Test”). 

Training Ar∞ a b c d e f g h 
Test          
Ar∞ 0.961 0.960 0.961 0.960 0.961 0.960 0.616 0.772 0.961 

a 0.961 0.963 0.958 0.961 0.961 0.960 0.619 0.780 0.961 
b 0.960 0.960 0.962 0.958 0.959 0.961 0.632 0.765 0.959 
c 0.959 0.959 0.957 0.959 0.960 0.958 0.622 0.773 0.959 
d 0.960 0.962 0.959 0.959 0.960 0.961 0.624 0.773 0.960 
e 0.962 0.961 0.963 0.960 0.962 0.963 0.622 0.762 0.960 
f 0.617 0.616 0.624 0.613 0.619 0.622 0.968 0.479 0.616 
g 0.773 0.774 0.764 0.776 0.769 0.765 0.479 0.947 0.773 
h 0.961 0.960 0.959 0.959 0.960 0.959 0.613 0.768 0.960 
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Figure 11 Contribution of each variable is evaluated via the permutation importance when the 

result of learning the data set at 𝐟 (𝐠) is applied to predict the reaction channels at 𝐠 (f, resp.). 

Negative contribution from a variable implies that a use of the variable likely leads to a wrong 

prediction. In other words, the effect of the variable on the reaction is opposite in direction for 

the points 𝐟 and 𝐠. 
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Figure 12 Reactivity boundaries are illustrated in a two-dimensional section spanned by 𝑥H and 𝑝𝑥H. Left panel: the Ar atom is initially positioned at the point 𝐟. Right panel: the Ar atom is 

initially positioned at the point 𝐠. 

 

 

Molecular Interpretation for the Effect of the Ar Position 

 Figure 1 (b) and (d) show the potential energy contours experienced by the H atom for 

the Ar-atom positions corresponding to points 𝐟  and 𝐠 , respectively. The saddle point is 

marked by a cross symbol whose arms shows the accompanying normal directions. As can be 

observed, the position of the saddle point shifts along the 𝑥-direction, mainly because of the 

repulsive interaction with the Ar atom. Qualitatively, a saddle point on the PES divides the 

space into the “reactant” and “product” regions (at least approximately for sufficiently low 

energies). Therefore, the initial conditions wherein 𝑝𝑥H  is so low that the reaction barrier 
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cannot be overcome is classified into the HCN → HCN (CNH → CNH) channel if 𝑥H < 𝑥sdl 
(𝑥H > 𝑥sdl, resp.). Here, 𝑥sdl denotes the 𝑥-coordinate of the saddle point. Because the value 

of 𝑥sdl  changes significantly between the points 𝐟  and 𝐠 , classifying the trajectories via 

learning on one of the points results in significant errors when applied to the other point. The 

error may be so large that it is better not to use the information of 𝑥H at all. This explains the 

negative importance found in the cross-test results obtained for 𝐟 and 𝐠. This interpretation 

can be confirmed by plotting the reactivity boundaries, as shown in Figure 12, for the Ar-

atom positions 𝐟 and 𝐠. The topological positioning of the four regions is similar to that shown 

in Figure 5, which is drawn with the Ar atom located at 𝐚 and by using the learning results for 

full-dimensional data. A comparison of the two panels in Figure 12 with each other and with 

Figure 5 reveals the shift of the reactivity boundaries in the direction of 𝑥H in accordance 

with the saddle point. 

 As can be observed in Figure 1 (b) and (d), the direction of the reaction coordinate (by 

normal mode approximation at the saddle) has a small 𝑦 -component for points 𝐟  and 𝐠 , 

whereas it is nearly parallel to the 𝑥-direction in the absence of the Ar atom. This highlights 

the importance of 𝑝𝑦H in determining the reactivity for points 𝐟 and 𝐠. Moreover, the sign of 

the 𝑦-component of the reaction coordinate direction for 𝐟 is opposite to that for 𝐠. This 

implies that the contributions of 𝑝𝑦H to the reactivity are opposite in direction at points 𝐟 and 𝐠, explaining the negative importance of 𝑝𝑦H found in the cross tests. 
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SUMMARY AND OUTLOOK 

 In the present study, the reaction dynamics of the isomerization reaction HCN ⇄ CNH 

was investigated under the effect of an Ar atom as the buffer gas. Reaction trajectories were 

simulated on the potential energy function newly constructed with CCSD(T)/aug-cc-pVQZ 

level ab initio calculations. The four reaction channels (HCN → HCN, HCN → CNH, CNH →CNH, CNH → HCN) assigned by the trajectory simulation were regarded as a function of the 

initial positions and momenta of all the atoms in the system. Machine learning by the RF 

method was performed on the data obtained by the trajectory simulation. Its prediction 

accuracy was ~95%, which indicated that the RF model captured the features of the phase 

space affecting the reactivity. Subsequent analyses of the contributions of the variables via 

permutation importance and SHAP values enabled the extraction of variables essential to 

determine reactivity. Corresponding molecular pictures of the roles played by these variables 

were provided. The primary importance of the position and momentum of the H atom along 

the 𝑥-direction, where the 𝑥-axis is taken parallel to the CN bond, can be understood from the 

fact that the reaction is essentially the motion of the H atom because of its small mass, and 

that the IRC is nearly parallel to the 𝑥-axis near the saddle point. Machine learning results 

revealed that 𝑝𝑦N is also important in predicting reactivity, which corresponds to the initial 

rotation of the CN. This is interpreted as the motion of the H and N atoms towards each other 

facilitates the formation of the HN bond. Central to the interest of the present study, the effect 

of the Ar atom was also elucidated through the analyses of the machine-learning results, and it 

was successfully interpreted in terms of the displacement of the saddle point by the repulsive 

interaction between the H and Ar atoms. 
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 It is noted that the machine learning found out those variables essential to the dynamics 

of the reaction without any pre-knowledge of this reaction. The data used for the learning 

were only the trajectory simulation results obtained for the sampled initial conditions. Starting 

from the set of all the variables in the system, the machine learning and subsequent analyses 

extracted a reduced number of variables regarded as important for the reaction. While the 

molecular interpretations provided for the roles played by these variables are clear after the 

extraction of the variables, it was not a priori trivial that only those variables were of essential 

importance before the machine learning analyses. The present results imply that a thorough 

statistical analyses provided by machine learning can further advance the fundamental 

understanding of polyatomic reaction dynamics. It is known in many reactions that difference 

in initial conditions leads to significant difference in reaction dynamics.68–73 It would be 

interesting to apply the machine learning analysis of the present study to elucidate the 

mechanism of such chemical reactions. 

 In this present study, we have chosen a relatively simple system of the short-time passage 

over an isomerization saddle and focused on the applicability of the machine learning to 

extract insights into the dynamics. For the purpose of machine learning, the initial condition 

was sampled uniformly in the rectangular region with planar geometry of the four-atom 

system. In fact, it is shown in Appendix A that uniform sampling is more efficient for the 

purpose of evaluating the importance of each variable than microcanonical sampling, which 

holds the total energy of the system constant. Concerning the planarity, a partial investigation 

on the effect of the out-of-plane motions is presented in Appendix B. In the range investigated, 

the results do not change the main conclusion of this study. Moreover, complete picture of a 

chemical reaction, beyond the passage over the saddle, will include excitation in the reactants 
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basin before entering the saddle region, and relaxation in the product basin after the passage 

over the saddle. Indeed, in the case of the HCN isomerization considered in the present study, 

the system will keep passing back and forth between the HCN and CNH wells if relaxation 

does not occur in the well after the passage over the saddle. More complicated behaviors like 

fractal dependence on initial conditions may arise in those dynamics in the well, or when one 

proceeds to analyze larger molecular systems with the methods presented in this work. Those 

problems would present intriguing challenges on the technical aspects of machine learning in 

future investigations. Technical developments on the machine learning combined with the 

analyses methods proposed in our current study would open the way to elucidate the 

dynamics of such complicated systems. For example, the use of curvilinear coordinates in 

contrast to the cartesian coordinates as have been used in the present study may offer 

advantages in terms of interpretability. In this respect, it is encouraging that the machine 

learning can handle analytical formulas,56 which may enable to find best curvilinear 

coordinates to describe the reaction dynamics. It is also noteworthy that the concept of 

mapping the initial phase space by analyzing the minimum dynamic path (MDP), as proposed 

by Unke et al.,74 holds promise for enabling efficient sampling of reactive trajectories, which 

can further enhance the effectiveness of our machine learning-based analysis. However, the 

precise relationship between the MDP analysis and the present ML-based analysis is not yet 

clear and warrants further investigation as an intriguing topic for future research from a 

physical viewpoint. Since the reaction path is necessarily curvilinear, it would be interesting 

to compare the results of the machine learning using curvilinear coordinates with their 

findings in future investigations.  
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 Another interesting future direction may be to validate the present results by experiments, 

e.g. with scattering experiments with molecular beam.1 The energy and direction of the 

collision can be controlled by aligned molecular beams.1,68,75 The initial state of the molecule 

can be prepared by laser excitation. With the precise control of the initial state by these 

experimental techniques, the reaction outcome can be controlled by selecting the reactive or 

non-reactive initial conditions revealed by the present study. While the present study 

primarily focused on the saddle region dynamics rather than the entire reaction process 

including the initial excitation, the obtained insights already carry some implications for 

experimental investigations. For instance, it was found that the position of the Ar atom affects 

the branching of trajectories in the saddle region directing them into the reactant or product 

well. This suggests that for the same given excitation method (e.g. laser irradiation), 

isomerization can be promoted by colliding the Ar atom from the C side rather than the N side 

of the HCN molecule (see Fig. 12). This direction would open an interesting avenue for 

controlling chemical reactions based on clear molecular insights. 

 

SUPPLEMENTARY MATERIAL 

See supplementary material for the data of the electronic state calculation and the potential 

energy surface fitting, machine learning results for microcanonical sampling, and 

computational results for sample with variation in the 𝑧-direction.  
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APPENDIX A. Machine Learning Results for Microcanonical Sampling 

In the main text, the machine learning was performed on data points uniformly sampled 

in the rectangular region of initial conditions (Eqs. (14)-(24)). In this sampling, all the 

explanatory variables are independent of each other. One may consider more chemically 

“natural” ways of sampling such as the microcanonical ensemble, where the energy 

conservation is taken into account, sampling with constant energy and angular momentum, or 

even a quasi-classical sampling where all the quantum numbers are held constant in the initial 

condition. As a primary investigation for such sampling, here we report the results of machine 

learning on the microcanonical sampling.  

To obtain sample points with a constant energy, a 60 ns-long trajectory simulation of 

HCN was performed and the coordinates and momenta were extracted every 60 fs. Then 5000 

points with 1.0 < 𝛾 < 1.5 were randomly selected. The energy of the trajectory was set at 69.4 kJ mol−1  above the saddle point, which roughly allows excitation of the vibrational 

mode orthogonal to the reaction coordinate with one quantum number, considering that the 

highest-frequency normal mode at the saddle point has the frequency 3100 cm−1 ≈35 kJ mol−1. The total angular momentum was set to zero. The momenta were re-sampled 

every 20 fs during the trajectory. After the microcanonical sample of HCN was obtained, the 

Ar atom was put at random positions in the region −1.24 < 𝑥Ar 10−10 m⁄ < 0.27 and 2.89 <𝑦Ar 10−10 m⁄ < 3.56 , and the momenta 𝑝𝑥Ar  and 𝑝𝑦Ar  were sampled by the normal 

distribution with standard deviation 2.0 × 10−23 kg m s−1. 

The results of the machine learning on the microcanonical sample are summarized in 

Table 4, corresponding to Table 1 in the main text, and the values of permutation importance 
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are shown in Fig. 13, corresponding to Fig. 4 in the main text. Somewhat counter-intuitively, 

a non-negligible contribution of 𝑦H is found. This is in contrast to what was found on the 

rectangular sampling shown in the main text (Fig. 4), and is counterintuitive from the fact that 

the reaction coordinate is nearly parallel to the 𝑥 -direction and the motion along 𝑦  is a 

vibrational mode orthogonal to the reaction direction (Fig. 1). This can be interpreted as 

follows. As the vibration along the  𝑦-direction is excited, energy available to the reaction 

direction is reduced due to the constancy of the total energy. Hence, the magnitude of 𝑝𝑥H is 

inversely correlated with 𝑦H in the sample, and a higher value of 𝑦H implies a smaller |𝑝𝑥H|, 
which makes the initial condition less likely to be reactive. From this interpretation, the 

reactivity itself is directly affected by the value of 𝑝𝑥H, but due to the correlation between 𝑦H 

and |𝑝𝑥H|  existing in the sample, machine simply finds correlation between 𝑦H  and the 

reactivity. Therefore, for the purpose of obtaining molecular insights from the results of 

machine learning, it is recommendable to prepare rectangular sample points so that the 

explanatory variables are independently distributed. Nevertheless, it would be interesting for 

future work to devise methodologies to extract sensible interpretations even from correlated 

samples. 
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Table 4. Accuracy of the machine learning results in the reaction channel assignment for the 

HCN reaction with microcanonically sampled initial conditions.  

Variables Dimension Acc Cross_max Cross_min 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑝𝑥C, 𝑝𝑦C, 𝑥N, 𝑝𝑥N, 𝑝𝑦N, 𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, 𝑝𝑦Ar 

13 0.943 0.944 0.936 

𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑝𝑥C, 𝑝𝑦C, 𝑥N, 𝑝𝑥N,  𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, 𝑝𝑦Ar 

12 0.936 0.940 0.932 

𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥Ar, 𝑦Ar, 𝑝𝑥Ar, 𝑝𝑦Ar 
8 0.928 0.926 0.919 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥N, 𝑥Ar, 𝑦Ar 
7 0.933 0.931 0.926 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H, 𝑥Ar, 𝑦Ar 6 0.933 0.933 0.926 𝑥H, 𝑦H, 𝑝𝑥H, 𝑝𝑦H 4 0.919 0.917 0.912 

Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and 

minimum values of the cross-validation results, respectively.  
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Figure 13 Contribution of each variable to the prediction of reactivity in the microcanonical 

sample as evaluated via permutation importance.  
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APPENDIX B. Effects of the 𝒛-direction 

In the main text, the sampling was performed with all four atoms in the 𝑥 -𝑦  plane 

(Eqs.(10)–(13)), because it is expected that the effect of the Ar atom can be best observed 

when it is on the same plane with HCN. In this paragraph, we show some preliminary results 

for the effect of displacing the Ar atom in the 𝑧-direction. Figure 14 shows plots of the 

reactivity boundaries in the 𝑥H-𝑝𝑥H plane as in Figure 12 in the main text. In the left panel, the 

Ar atom is given initial momenta 𝑝𝑧Ar = 1.0 × 10−22 kg m s−1 , which is the same as the 

maximum value given to 𝑝𝑥Ar and 𝑝𝑦Ar in the sampling conducted in the main text (Eq. (23)–

(24)). It is seen that the effect of the initial 𝑝𝑧Ar on the reactivity boundaries is negligible. In 

the right panel of the same figure, the Ar atom is initially displaced off the HCN plane with 𝑧Ar = 1.0 Å. Here, the reactivity boundaries for f and g approach with each other and becomes 

more similar to that shown in Figure 5 which was drawn for the case a where the Ar effect is 

weak. This suggests that the effect of the Ar atom diminishes as it moves away from the HCN 

in the z-direction. Therefore, in either case the effect of the 𝑧 -direction is easily 

understandable. We consider that this provides a good reason to focus, at least as the first-step 

investigation, on the motion confined in the 𝑥-𝑦 plane. 
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Figure 14 Plots of the reactivity boundaries as in Figure 12 in the main text. The Ar atom is 

placed at the points f and g, where the effect of the Ar atom was best observed in the main text. 

In the left panel, the Ar atom is given initial momenta 𝑝𝑧Ar = 1.0 × 10−22 kg m s−1. In the right 

panel, the Ar atom is initially off the HCN plane with 𝑧Ar = 1.0 Å. 
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