SUR追静岡大学学術りポジトリ

 Shizuoka University REpository
Classification of the HCN isomerization reaction dynamics in Ar buffer gas via machine learning

メタデータ	言語：en
	出版者：AIP Publishing
	公開日：2023－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者：Yamashita，Takefumi，Miyamura，Naoaki，Kawai，
	Shinnosuke
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／10297／0002000035

Classification of the HCN isomerization reaction

dynamics in Ar buffer gas via machine learning

\author{
Takefumi Yamashita ${ }^{1,2 \#}$, Naoaki Miyamura ${ }^{1}$, Shinnosuke Kawai ${ }^{3 *}$
 ${ }^{1}$ Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
 ${ }^{2}$ Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
 ${ }^{3}$ Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
 \# Electronic mail: yamashita@1sbm.org
 [^0]}

Abstract

:

The effect of the presence of Ar on the isomerization reaction $\mathrm{HCN} \rightleftarrows \mathrm{CNH}$ is investigated via machine learning. After the potential energy surface function is developed based on the $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVQZ level ab initio calculations, classical trajectory simulations are performed. Subsequently, with the aim of extracting insights into the reaction dynamics, the obtained reactivity, that is, whether the reaction occurs or not from a given initial condition, is learned as a function of the initial positions and momenta of all the atoms in the system. The prediction accuracy of the trained model is greater than 95%, indicating that the machine learning captures the features of the phase space that affect the reactivity. Machine learning models are shown to successfully reproduce reactivity boundaries without any prior knowledge on classical reaction dynamics theory. Subsequent analyses reveal that the Ar atom affects the reaction by displacing the effective saddle point. When the Ar atom is positioned close to the N atom (resp. C atom), the saddle point shifts to the CNH (HCN) region, which disfavors the forward (backward) reaction. The results imply that analyses aided by machine learning are promising tools for enhancing the understanding of reaction dynamics.

INTRODUCTION

Chemical reactions are dynamical processes in which atoms move from one configuration to another. Because the motion of atoms is governed by quantum mechanics, or its classical approximation, a chemical reaction can be understood as a solution to mechanical equations of motion. A molecular system may begin in a given initial state and its evolution over time is determined by the rules of mechanics. Studies in the field of reaction dynamics ${ }^{1}$ conducted over
the last few decades have realized precise state-to-state level understandings of chemical reactions. Examples of experimental evidences supporting the importance of dynamical viewpoints in studying chemical reactions include, but are not limited to, the control of reactions by selecting initial rotational and/or vibrational states of molecules, ${ }^{2-7}$ selectivity in biochemical synthesis, ${ }^{8}$ and reaction control via strong laser fields. ${ }^{9-16}$

A notable finding achieved in the study of reaction dynamics is the existence of "reactivity boundaries" ${ }^{14-43}$ in the phase space that describes atomic motions. In classical mechanics, owing to the deterministic nature of the equations of motion, the initial positions and momenta of the atoms contained in a system uniquely determine whether the reaction will occur or not. Therefore, the phase space, an abstract space that is spanned by all the atomic positions and momenta as coordinates, is divided into two domains; one is the set of all "reactive" initial conditions that lead to reaction, and the other is the set of all "non-reactive" initial conditions. Between these two domains lies a boundary, which is called a reactivity boundary in this study. It is also worth mentioning that quantum mechanical versions of reactivity boundaries have also been developed through various studies. ${ }^{15,16,41}$

In this study, the reactivity in the isomerization reaction $\mathrm{HCN} \rightleftarrows \mathrm{CNH}$ is investigated in the phase space under the influence of one argon atom as a buffer gas. This isomerization reaction has long been drawing interest as one of the simplest isomerization reactions, as well as for applications in interstellar chemistry, ${ }^{44}$ and as a prototypical system for studying the phase space structures of chemical reactions. ${ }^{24,27,28}$ In gas-phase chemistry, the buffer atoms act as energy sources that activate target molecules through collisions. As the density of the system increases, they become solvent to influence the reaction by changing the potential energy
landscape experienced by the reacting molecules. The $\mathrm{HCN}-\mathrm{Ar}$ cluster studied here may be regarded as a first-step model for investigating the solvent effect.

Recently, machine learning (ML) has attracted substantial attention in various fields ranging from business to basic sciences, as studies have demonstrated that computers can solve pattern recognition problems, as humans do, via machine learning. ${ }^{45-48}$ Applications of machine learning to solve molecular problems are also being actively explored, ${ }^{49-51}$ in particular to the prediction of rate constants, ${ }^{52}$ and state-to-state cross sections. ${ }^{53,54}$ The performance of the machine learning, which is known to occasionally outperform human recognition, would contribute to the evolution of computational analyses to improve the current understanding of molecular phenomena. Importantly, in some cases, machine learning can be used to extract essential dominant factors from data ${ }^{55-58}$ without resorting to any prior knowledge of physical laws.

In this study, a systematic method is presented for the analysis of the reaction dynamics to reveal the effects of the Ar atom, seen as a fundamental model for buffer gas or solvent, on the reactivity of HCN . The focus is given on the dynamics occurring in the vicinity of the saddle point lying on the potential energy surface between the reactant and product wells. The dynamics in this region is crucial in the branching of trajectories into the product and reactant wells. To explain it, the process of chemical reaction can be, for simplicity, viewed as three consecutive steps. First the system in the reactant well is excited and climb up the PES to reach the vicinity of the saddle point. Then, the dynamics in the region around the saddle point determines the bifurcation into the reactant or product well. Finally, the system falls into the product well (or back into the reactant well) and relaxes there. In the present work we focus on the second step, that is, the dynamics occurring in the vicinity of the saddle point determining the branching into product or reactant well. The saddle region dynamics has been extensively investigated from the
viewpoint of phase space geometry ${ }^{14-43}$ and, at least under certain conditions, it has been proved that there exist clear boundaries between reacting and non-reacting trajectories. The present work investigates how machine learning (ML) and accompanying analyses can extract such insights from trajectory data, without prior knowledge of the dynamics theory. RF classifiers learn the final state of the reaction, that is, whether the system ends in the HCN state or in the CNH state, as a function of the initial positions and momenta of the four atoms $(\mathrm{H}, \mathrm{C}, \mathrm{N}$, and Ar). The method allows rational dimensional reductions to extract a small number of important coordinates whose values are essentially required to predict the reaction direction. After the dimensional reduction, molecular pictures are presented to interpret why those coordinates are important.

MATERIALS AND METHODS

Potential Energy Surface and Trajectory Calculation

The system is described by classical equations of motion derived from the following Hamiltonian:

$$
\begin{equation*}
H=\sum_{i} \frac{\left|\boldsymbol{p}_{i}\right|^{2}}{2 m_{i}}+V\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}, \boldsymbol{r}_{\mathrm{Ar}}\right) \tag{1}
\end{equation*}
$$

where the index i refers to the atoms in the system $(\mathrm{H}, \mathrm{C}, \mathrm{N}$, and Ar$)$. The position of an atom is described by a three-dimensional vector $\boldsymbol{r}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ and its conjugate momentum is described by $\boldsymbol{p}_{i}=\left(p_{x i}, p_{y i}, p_{z i}\right)$. The mass of each atom i is denoted as m_{i}. For the potential energy $V\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}, \boldsymbol{r}_{\mathrm{Ar}}\right)$, the following function is used in the present study.

$$
\begin{equation*}
V\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}, \boldsymbol{r}_{\mathrm{Ar}}\right)=V_{\mathrm{HCN}}\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}\right)+V_{\mathrm{inter}}\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}, \boldsymbol{r}_{\mathrm{Ar}}\right) \tag{2}
\end{equation*}
$$

where $V_{\mathrm{HCN}}\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}\right)$ is the intramolecular potential energy surface (PES) of HCN , for which the function constructed in Ref. 59, constructed by fitting to spectroscopic data, is used in the present study. The second term, $V_{\mathrm{inter}}\left(\boldsymbol{r}_{\mathrm{H}}, \boldsymbol{r}_{\mathrm{C}}, \boldsymbol{r}_{\mathrm{N}}, \boldsymbol{r}_{\mathrm{Ar}}\right)$, describes the intermolecular interaction between HCN and Ar . To obtain $V_{\text {inter }}$, ab initio calculations were performed at $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVQZ level, and the intermolecular energies were obtained with counterpoise correction. The calculation points are distributed in a range including the regions close to the HCN minimum, the CNH minimum, and the saddle point between them. The concrete positions of these points are explicitly given in the supplementary material to this paper. Data of 1,097 points with intermolecular energy less than $2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which is regarded as the "typical" range of the Ar-HCN interaction considering the binding energy \approx $136 \mathrm{~cm}^{-1}$ of the Ar-HCN complex, were least-squares fitted to the following analytical form:

$$
\begin{align*}
& V_{\mathrm{inter}}=\sum_{i=1}^{3}\left(A_{i} u_{i}^{2}-B_{i} u_{i}\right)+\sum_{i \neq j} C_{i j} u_{i} u_{j}+\sum_{i=1}^{3} \sum_{k=1}^{3} F_{i k} u_{i} s_{k}, \tag{3}\\
& s_{1}=\left|\boldsymbol{r}_{\mathrm{H}}-\boldsymbol{r}_{\mathrm{C}}\right|^{-1}, \tag{4}\\
& s_{2}=\left|\boldsymbol{r}_{\mathrm{N}}-\boldsymbol{r}_{\mathrm{C}}\right|^{-1}, \tag{5}\\
& s_{3}=\left|\boldsymbol{r}_{\mathrm{H}}-\boldsymbol{r}_{\mathrm{N}}\right|^{-1}, \tag{6}\\
& u_{1}=\left|\boldsymbol{r}_{\mathrm{Ar}}-\boldsymbol{r}_{\mathrm{H}}\right|^{-6} \tag{7}\\
& u_{2}=\left|\boldsymbol{r}_{\mathrm{Ar}}-\boldsymbol{r}_{\mathrm{C}}\right|^{-6} \tag{8}\\
& u_{3}=\left|\boldsymbol{r}_{\mathrm{Ar}}-\boldsymbol{r}_{\mathrm{N}}\right|^{-6}, \tag{9}
\end{align*}
$$

where coefficients $A_{i}, B_{i}, C_{i j}$, and $F_{i k}$ are the fitting parameters. The resulting fitting coefficients, as well as the structure and energy at the data points used for the fitting, are available in the supplementary material to this paper. The data points are concentrated on the configurations with HCN adopting the HCN minimum structure, the CNH minimum structure, and the HCN-CNH saddle point structure. Points with displacement of $\cos \gamma$, where γ is the Jacobi angle (Fig. 2), by up to ± 0.2 from these three points were also included to cover a region around the saddle point rather than the single point. The deviation of ± 0.2 in $\cos \gamma$ roughly corresponds to the region where the dynamics is investigated in the present study as will be expressed in Eqs. (14) and (15) below. The mean square residual error of the fitting was $0.18 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which is reasonably small compared to the range of the sampled intermolecular energy $\left(\sim \pm 2 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and the activation energy $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the HCN \rightarrow CNH isomerization reaction. Figure 1 shows the contour plots of the PESs obtained in this study with respect to the position of the H atom for some fixed positions of the C, N, and Ar atoms.

It was previously pointed out ${ }^{60}$ that exponential functions, rather than Lennard-Jones type functions, are required to describe the inner repulsive wall accurately. This is probably because their interest is in the dissociation reactions that occur with high energy, while the present study focuses on the isomerization reaction. Based on the accuracy of the fitting, we consider that the present PES correctly describes at least the essential features of the influence of the Ar atom on the HCN isomerization reaction. A more detailed examination on the effect of the form of repulsion is left for future work. Additionally, since we fit the intermolecular component $V_{\text {inter }}$ separately from the intramolecular component V_{HCN}, one can replace the latter with a more recent ab initio potential function for $\mathrm{HCN},{ }^{61}$ which gives a higher barrier height of $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ compared to $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of Ref. 59, for further quantitative investigations in the future while using the same intermolecular potential of this work. In the present work, the focus is given on the dynamics in the saddle region, which is the pivotal stage governing the branching of trajectories into the reactant or product well. While the barrier height may certainly affect the motion climbing up the PES in the reactant well toward the saddle region, the saddle region dynamics is determined by the local morphology of the PES near the saddle point and its height relative to the reactant minimum not actually plays a significant role. As we fit the intermolecular potential with data points concentrated in the saddle region (see Fig. S2 in the supplementary material), we judge that the present treatment of the PES is sufficient for the purpose, while leaving a room for improvement in future investigation on the reactant excitation stage.

From a given initial condition, the equations of motion were numerically integrated by fourth-order Runge-Kutta method with variable time steps. ${ }^{62}$ To monitor the reaction channels, Jacobi angle γ was defined as the angle between the vector connecting the C and N
atoms and that connecting the H atom from the CN mass center, as shown in Figure 2. The linear HCN structure corresponds to $\gamma=0$, and CNH structure to $\gamma=\pi$. In the simulation, when the angle γ became larger than 1.5 rad , the system was judged to have fallen into the CNH product, and when the angle γ became smaller than 1.0 rad , the system was judged to have fallen into the HCN product.

Figure 1. Contour plots of the PES for some chosen positions of C, N, and Ar atoms. The saddle point on each surface is marked by a cross symbol whose arms show the directions of the normal
modes at the saddle point. The top left panel shows the PES in the absence of Ar, and the dots depict the intrinsic reaction coordinate (IRC)

Figure 2. Definition of Jacobi coordinates for the HCN system.

Initial Condition Sampling

Data sets for machine learning were generated by sampling 200,000 initial conditions and simulating the trajectory to assign the reaction channel to each initial condition. The trajectory simulation was performed for the planar condition, wherein all the atoms were assumed to remain in the same plane for simplicity. Without loss of generality, the C and N atoms were initially placed on the x-axis, with their mass center at the origin (Figure 3) and having zero velocity. The molecular plane was identified with the $x y$-plane. In the form of equations, the initial positions and momenta of $\mathrm{H}, \mathrm{C}, \mathrm{N}$, and Ar atoms were sampled as follows:

$$
\begin{array}{ll}
\boldsymbol{r}_{\mathrm{H}}=\left(x_{\mathrm{H}}, y_{\mathrm{H}}, 0\right), & \boldsymbol{p}_{\mathrm{H}}=\left(p_{x \mathrm{H}}, p_{y \mathrm{H}}, 0\right) \\
\boldsymbol{r}_{\mathrm{C}}=\left(-\frac{m_{\mathrm{N}}}{m_{\mathrm{C}}} x_{\mathrm{N}}, 0,0\right), & \boldsymbol{p}_{\mathrm{C}}=\left(-p_{x \mathrm{~N}},-p_{y \mathrm{~N}}, 0\right) \\
\boldsymbol{r}_{\mathrm{N}}=\left(x_{\mathrm{N}}, 0,0\right), & \boldsymbol{p}_{\mathrm{N}}=\left(p_{x \mathrm{~N}}, p_{y \mathrm{~N}}, 0\right) \\
\boldsymbol{r}_{\mathrm{Ar}}=\left(x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, 0\right), & \boldsymbol{p}_{\mathrm{Ar}}=\left(p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}}, 0\right) \tag{13}
\end{array}
$$

where each variable was independently and uniformly sampled in the following ranges:

$$
\begin{align*}
& x_{\mathrm{H}} / 10^{-10} \mathrm{~m} \in[-0.65,-0.29] \tag{14}\\
& y_{\mathrm{H}} / 10^{-10} \mathrm{~m} \in[0.93,1.29] \tag{15}\\
& x_{\mathrm{N}} / 10^{-10} \mathrm{~m} \in[0.48,0.56], \tag{16}\\
& x_{\mathrm{Ar}} / 10^{-10} \mathrm{~m} \in[-2.5,2.0] \tag{17}\\
& y_{\mathrm{Ar}} / 10^{-10} \mathrm{~m} \in[2.89,3.56] \tag{18}\\
& p_{x \mathrm{H}} / 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s} \tag{19}\\
& p_{y \mathrm{H}} / 10^{-24} \in[-21,21] \tag{20}\\
& p_{x \mathrm{~N}} / 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \in[-21,21] \tag{21}\\
& p_{y \mathrm{~N}} / 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \in[-46,46] \tag{22}\\
& p_{x \mathrm{Ar}} / 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \in[-100,100] \tag{23}\\
& p_{y \mathrm{Ar}} / 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \in[-100,100] \tag{24}
\end{align*}
$$

The structure of the HCN molecule was sampled in a neighborhood of the saddle point $\left(\gamma \approx 1.2 \mathrm{rad} \approx 70^{\circ}\right)$ for the isomerization. The Ar atom position was then sampled in a region near the HCN molecule. This simulated a situation in which the Ar atom collided with the HCN molecule in the middle of isomerization reaction and affected the outcome of the
proceeding reaction. Both forward and backward time propagations were calculated from each initial condition, and the reactant and product states were assigned. Consequently, there are four possible types of trajectories: forward reaction ($\mathrm{HCN} \rightarrow \mathrm{CNH}$), backward reaction $(\mathrm{CNH} \rightarrow \mathrm{HCN})$, no reaction from $\mathrm{HCN}(\mathrm{HCN} \rightarrow \mathrm{HCN})$, and no reaction from $\mathrm{CNH}(\mathrm{CNH} \rightarrow$ CNH). The type of trajectory was regarded as a function of the initial condition specified by the eleven variables $\left(x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}, x_{\mathrm{N}}, p_{x \mathrm{~N}}, p_{y \mathrm{~N}}, x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}\right.$, and $\left.p_{y \mathrm{Ar}}\right)$ as described above and was used as the input to the machine learning. performed uniformly in the rectangular region as described above. This sampling method makes the explanatory variables independently distributed. This makes the interpretation of the role of each variable more accessible from the analyses described in the RESULTS AND DISCUSSION section. As an example of correlated sampling, results of microcanonical sampling are presented in APPENDIX A.

In addition to the full-dimensional sampling, trajectory calculations on the points sampled with fixed Ar positions and momenta were also performed with the aim of providing further analyses on the effect of the Ar atom on the reaction. Eight Ar positions were selected by seeking "representative" positions that illustrated the effect of the Ar atom as revealed by the machine learning results of the full-dimensional sample. For each Ar position, 200,000 trajectory data were generated.

Figure 3. Schematic illustration of the variables that parameterize the initial condition. Conjugate momenta are omitted to keep the figure simple.

Machine Learning

In this study, we used a random forest (RF) classifier. RF is an ensemble learning method that constructs multiple decision trees using training data and classifies the input data based on majority voting. ${ }^{63}$ The RF classifier was trained by using 180,000 data points, and 20,000 data points were used for the prediction test. All the RF calculations were conducted by using the scikit-learn library (ver. 0.23.2) with the following default hyperparameters: ${ }^{64}$ number of trees (n_estimators) is 100 , maximum depth of each tree (max_depth) is 'none' (unlimited depth), minimum number of samples required to split an internal node (min_samples_split) is 2, minimum number of samples required to be at a leaf node (min_samples_leaf) is 1 , and maximum number of features to consider for each split (max_features) is 'auto' (square root of number of features)). Before the test calculation, we checked the generalization performance of the trained model by using the five-fold cross-validation technique. ${ }^{65}$ In the test calculation, we utilize "accuracy" to see the Random Forest model's ability to correctly predict the reactivity of the HCN isomerization reaction in the presence of Ar based on the given initial conditions. Accuracy is a performance metric commonly used in machine learning to assess the model's predictive ability. It measures the proportion of correctly predicted outcomes over the total number of predictions.

To evaluate the importance of the features in the prediction test, we employed permutation importance, ${ }^{63}$ which quantifies the reduction in predictive performance resulting from the random shuffling of a specific feature. Specifically, for each feature, we randomly permuted its values across the dataset and measured the resulting decrease in prediction accuracy. This allowed us to assess the individual impact of each feature on the model's performance.

In addition to the permutation importance, we utilized the SHapley Additive exPlanation (SHAP) analysis, which is a game-theoretic method widely utilized for interpreting machine learning models. ${ }^{66,67}$ The SHAP analysis assigns a numerical value, known as the SHAP value, to each feature, representing its contribution to the prediction for a particular sample. The SHAP values provide insights into the direction and magnitude of the feature's impact on the predicted reactivity for the HCN isomerization reaction in the presence of Ar. Positive SHAP values indicate that the feature positively contributes to the predicted reactivity, meaning that higher values of the feature are associated with an increased likelihood of the reaction occurring. Conversely, negative SHAP values indicate a negative contribution, indicating that lower values of the feature are associated with a higher likelihood of the reaction.

RESULTS AND DISCUSSION

Full Dimensional Learning and Dimension Reduction

Each sample point, specified with the eleven variables $\left(x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}, r_{\mathrm{CN}}, p_{x \mathrm{~N}}, p_{y \mathrm{~N}}\right.$, $x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}}$), was assigned one of the four reaction channels (HCN $\rightarrow \mathrm{CNH}, \mathrm{CNH} \rightarrow$ HCN, HCN \rightarrow HCN, CNH \rightarrow CNH) from the forward and backward trajectory calculation as explained in the last section. RF machine learning was then applied to predict the reaction channels from the values of the eleven variables. The results are shown in the first row of Table 1. When all the eleven variables are used, the accuracy is as high as 0.95 . This indicates that the present eleven-dimensional (11D) RF model can correctly predict the reaction channels of the HCN reaction for 95% of the initial conditions.

Table 1. Accuracy of the machine learning results in the reaction channel assignment for the HCN reaction under the presence of Ar .

Variables	Dimension	Acc	Cross_max	Cross_min
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}, \\ & x_{\mathrm{N}}, p_{x \mathrm{~N}}, p_{y \mathrm{~N}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}} \end{aligned}$	11	0.952	0.953	0.948
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}, \\ & x_{\mathrm{N}}, p_{x \mathrm{~N}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}} \end{aligned}$	10	0.860	0.860	0.859
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & p_{y \mathrm{~N}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}} \end{aligned}$	7	0.947	0.949	0.944
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}} \end{aligned}$	6	0.858	0.857	0.856
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}, \\ & p_{y \mathrm{~N}} \end{aligned}$	5	0.927	0.926	0.924

Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and minimum values of the cross-validation results, respectively.

With the aim of using the machine learning results to obtain molecular-level insights into the chemical reaction, it is here intended to eliminate some unimportant variables and predict the reaction channel by using as few variables as possible to obtain a simpler picture on the reactivity. Firstly, we conducted a permutation analysis ${ }^{63}$ to evaluate the importance of the variables (called "features" in the machine learning field). Briefly, the values of a variable were randomly permuted in the samples, and the prediction accuracy was then computed for these samples. The decrease in accuracy because of this permutation is regarded as indicating the importance of that variable for the prediction. The results shown in Figure 4 reveal that the x-coordinate and its conjugate momentum of the H atom are the most important variables required for determining the reactivity. This is intuitively understandable because the title reaction $\mathrm{HCN} \rightleftarrows \mathrm{CNH}$ can be approximately regarded as the migration of the H atom from the C side to the N side owing to the smaller mass of H compared to those of C and N . Next to the H variables, the most important variable required for the prediction is $p_{y \mathrm{~N}}$, which approximately represent the bending motion of the HCN molecule. In fact, the elimination of this variable from the RF model decreases the accuracy of prediction by 10% (10D model, the second row in Table 1). Note that the 10D model was trained by using the same fulldimensional data as those used for the 11D learning. This implies that the variable $p_{y \mathrm{~N}}$ has a non-negligible contribution to predicting the reactivity in the full-dimensional sample. By contrast, the decrease in the accuracy induced by the elimination of $x_{\mathrm{N}}, p_{x \mathrm{~N}}, p_{x \mathrm{Ar}}$, and $p_{y \mathrm{Ar}}$ is negligible; the 7D model (third row in Table 1) shows a prediction accuracy of $\sim 95 \%$. This result is consistent with the permutation importance results shown in Figure 4, which demonstrates that the importance of $x_{\mathrm{N}}, p_{x \mathrm{~N}}, p_{x \mathrm{Ar}}$, and $p_{y \mathrm{Ar}}$ is negligible. The elimination of $p_{y \mathrm{~N}}$ from the 7D model results in a 6D model. The fourth row in Table 1 shows that this
model decreases the prediction accuracy to 86%, as can be expected from the results of the 10D model. The Ar positions x_{Ar} and y_{Ar}, contribute to the prediction to some extent, whereas the contributions of the Ar momenta $p_{x A r}$ and $p_{y \mathrm{Ar}}$, are found negligible. The elimination of the Ar coordinates decreases the prediction accuracy by 2% (5D model, the last row in Table 1). Figure 4 also shows that although the importance of the Ar position coordinates is not as high as that of $p_{y \mathrm{~N}}$, it is not negligible.

Figure 4 Contribution of each variable to the prediction of reactivity in the full-dimensional model as evaluated via permutation importance.

Molecular Interpretation of the Full Dimensional Results

Figure 1(a) shows contours of the potential energy experienced by the H atom. The saddle point for the isomerization reaction and IRC are also shown. Near the saddle point, the direction of the IRC is approximately parallel to the x-direction, that is, the direction of the CN axis. Therefore, in this region, the chemical reaction almost corresponds to the movement of the H atom along the x-direction. This explains the high importance of x_{H} and $p_{x \mathrm{H}}$ as well as the low importance of y_{H} and $p_{y \mathrm{H}}$.

To elucidate more concretely how x_{H} and $p_{x \mathrm{H}}$ affect the occurrence of the reaction, the reactivity boundaries in a section of phase space are shown in Figure 5. For visualization, a two-dimensional plane spanned by x_{H} and $p_{x \mathrm{H}}$ is selected, with the other variables fixed at the following values: $y_{\mathrm{H}}=1.112 \AA, x_{\mathrm{N}}=0.526 \AA, x_{\mathrm{Ar}}=-2.50 \AA, y_{\mathrm{Ar}}=3.56 \AA$, and $p_{y \mathrm{H}}=$ $p_{x \mathrm{~N}}=p_{y \mathrm{~N}}=p_{x \mathrm{Ar}}=p_{y \mathrm{Ar}}=0$. As can be observed, the plane is divided into four domains in terms of the reaction channels: two reactive channels ($\mathrm{HCN} \rightarrow \mathrm{CNH}$ and $\mathrm{CNH} \rightarrow \mathrm{HCN}$) and two non-reactive channels (HCN $\rightarrow \mathrm{HCN}$ and $\mathrm{CNH} \rightarrow \mathrm{CNH}$). The boundaries of these four regions are called the "reactivity boundaries." In the calculation, the plane was divided into 200×200 grid points and the boundaries were detected by assigning a reaction channel to each grid point. Reaction-channel assignment was performed both by the trajectory simulations and by the RF prediction, and their results are compared in the figure. It is seen that the RF prediction satisfactorily reproduces the reactivity boundaries obtained from trajectory simulations.

The positioning of the four regions and their boundaries shown in Figure 5 is essentially the same as that found in previous studies conducted on dynamical chemical reaction theory,

Figure 5 Reactivity boundaries are illustrated in the two-dimensional section spanned by x_{H} and $p_{x \mathrm{H}}$. Boundaries calculated by trajectory simulations (thick blue lines) and RF predictions (thin red lines) are compared.

A schematic is shown in Figure 6 to interpret the importance of $p_{y \mathrm{~N}}$. Suppose a case with small H atom momentum. If CN does not move, the H atom is reflected by the reaction barrier and falls back into the HCN potential well (panel (a)). If the N atom has some positive momentum along the y direction, the CN axis rotates counterclockwise, as shown in the figure (panel (b)). The N atom then approaches the moving H atom. Finally, the H atom is caught by the N atom, thereby forming the CNH product. To verify this interpretation quantitatively, the reactivity boundaries in Figure 7. The figure shows a two-dimensional section of the phase space spanned by $p_{y \mathrm{~N}}$ and $p_{x \mathrm{H}}$, with the other variables fixed at the following values: $x_{\mathrm{H}}=-0.574 \AA, y_{\mathrm{H}}=1.112 \AA, x_{\mathrm{N}}=0.526 \AA, x_{\mathrm{Ar}}=y_{\mathrm{Ar}}=100 \AA$, and $p_{y \mathrm{H}}=p_{x \mathrm{~N}}=p_{x \mathrm{Ar}}=p_{y \mathrm{Ar}}=0$. As observed in Figure 5, the RF prediction satisfactorily reproduces the reactivity boundaries obtained via the trajectory simulations. It is noted that the boundaries slant downward as $p_{y \mathrm{~N}}$ increases, enlarging the region of the $\mathrm{HCN} \rightarrow \mathrm{CNH}$ reaction. This indicates that for positive $p_{y \mathrm{~N}}$, the $\mathrm{HCN} \rightarrow \mathrm{CNH}$ reaction occurs more easily, which confirms the interpretation illustrated in Figure 6.

The mechanical picture obtained here as shown in Figure 6 is intuitively reasonable and is computationally confirmed by plotting the reactivity boundaries as in Figure 7. This plot is, however, possible only after one has chosen the coordinates (in this case, $p_{y \mathrm{~N}}$ and $p_{x \mathrm{H}}$) to plot the boundaries in the phase space. The machine learning helped to choose the coordinates for the plot by identifying the coordinates that have significant influence on the reaction outcome as done by inspecting the permutational importance in Figure 4.

By contrast, x_{N} and $p_{x \mathrm{~N}}$, which approximately represent the CN stretching motion, are not important for predicting the reaction. This implies that the isomerization reaction is dynamically independent of the CN stretching motion.
(a)

Figure 6 Illustrations to elucidate the role of the N atom motion in determining the reactivity. (a) Consider the case where the H atom initially has a small momentum. It is reflected back into the reactant (HCN) region by the reaction barrier. (b) For the same initial momentum of H , if the N atom is initially moving upward in the figure, the H atom can easily be captured by the N atom to form the CNH product.

Figure 7 Reactivity boundaries are illustrated in a two-dimensional section spanned by $p_{y \mathrm{~N}}$ and $p_{x \mathrm{H}}$. Boundaries calculated by trajectory simulations (thick blue lines) and RF predictions (thin red lines) are compared. The region of $\mathrm{HCN} \rightarrow \mathrm{CNH}$ reactive initial conditions expands with increasing $p_{y \mathrm{~N}}$, which implies that the motion of the N atom in the positive y-direction assists the $\mathrm{HCN} \rightarrow \mathrm{CNH}$ reaction.

The Effect of Ar Atom Position Analyzed by SHAP

The machine learning and the subsequent analyses via permutation importance have revealed that the presence of Ar affected the reactivity of the HCN system. To obtain further insights into the role of the Ar atom, the SHAP values ${ }^{66,67}$ of the variables x_{Ar} and y_{Ar} were evaluated for the 7D model here. Briefly, the SHAP value of a variable approximately describes the extent of contribution of the variable in making a prediction. Figure $\mathbf{8}$ shows the SHAP values of x_{Ar} and y_{Ar} plotted against the two-dimensional plane of $\left(x_{\mathrm{Ar}}, y_{\mathrm{Ar}}\right)$. For example, it is observed from the top right panel of Figure 8 that the variable $x_{\text {Ar }}$ makes a large positive contribution in predicting that the given initial condition corresponds to the $\mathrm{CNH} \rightarrow \mathrm{CNH}$ channel when the Ar atom is located at the points $\left(x_{\mathrm{Ar}}, y_{\mathrm{Ar}}\right) \approx(-1.0 \AA, 2.9 \AA)$.

Eight regions can be roughly recognized in the $\left(x_{\mathrm{Ar}}, y_{\mathrm{Ar}}\right)$-plane from the plots of SHAP values in Figure 8. To clarify, the top right panel of Figure 8 is reproduced in the left panel of Figure 9, wherein the right panel shows the division of the left-panel figure into eight regions. Regions (F) and (G) are characterized by the greatest effect of the Ar atom position $\left(x_{\mathrm{Ar}}, y_{\mathrm{Ar}}\right)$ on the reactivity. These two regions also show the most contrasting SHAP values because the effect of the Ar-atom positions experienced in region (F) is in the opposite direction to that experienced in region (G). For example, for the CNH \rightarrow CNH channel, the variable x_{Ar} has a large positive effect in region (F), whereas it has a large negative effect in region (G). Compared to regions (F) and (G), the effect of the Ar-atom position is weaker in regions (A)-(E) and (H), and the contrast between these regions is not necessarily clear. In the molecular picture, these regions correspond to the configuration wherein the Ar atom is
located rather far from the HCN molecule; therefore, they may exhibit weaker intermolecular interactions.

Figure 8 The contributions of the variables x_{Ar} and y_{Ar} are evaluated by using SHAP values. The SHAP value is calculated for each point in the learning data set. Each point is then plotted by its $\left(x_{\mathrm{Ar}}, y_{\mathrm{Ar}}\right)$ values. The color indicates the SHAP value of x_{Ar} (top panel) or y_{Ar} (bottom panel) for each point.

Figure 9 The left panel reproduces the right top panel of Figure 8. As shown in the right panel, eight regions can be recognized according to the direction and extent of the effect of Ar on the reaction.

Machine Learning with Single Initial Ar Position

To obtain further insights into the effect of the Ar-atom position, one representative point was chosen from each of the eight regions identified in the previous subsection, as shown in Figure 9. Hereafter, these points are denoted by $\mathbf{a}, \mathbf{b}, \ldots, \mathbf{h}$ in bold Roman letters. Machine learning was performed on datasets in each of which the initial position of the Ar atom was set at each of the points $\mathbf{a}-\mathbf{h}$ and the remaining variables were randomly sampled in the region described in the Materials and Methods section. The learning results obtained for different Aratom positions were compared to assess the influence of the Ar-atom position on the reaction. In the sampling, the initial momentum of the Ar atom was fixed at zero because the initial momentum of the Ar atom ($p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}}$) was found to have negligible effects on reactivity in
the full-dimensional learning. Based on the high performance of the "7D model" with the input $\left(x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}, p_{y \mathrm{~N}}, x_{\mathrm{Ar}}, y_{\mathrm{Ar}}\right)$ found for the full-dimensional data, machine learning here was applied with respect to five variables $x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}$, and $p_{y \mathrm{~N}}$, since x_{Ar} and y_{Ar} were not used as variables in this analysis. In addition, machine learning was also performed for the configuration in which the Ar atom was placed sufficiently distant from the HCN molecule so that the intermolecular interaction between them was negligible. This condition is denoted as "Aro."

Table 2. Accuracy of the results of machine learning performed on the HCN reaction with a single Ar initial position.

	x_{Ar} / \AA	y_{Ar} / \AA	Acc	Cross_max	Cross_min
\mathbf{a}	-2.5	3.56	0.963	0.962	0.958
\mathbf{b}	-1.2	3.56	0.962	0.961	0.960
\mathbf{c}	0.3	3.56	0.959	0.962	0.960
\mathbf{d}	2.0	3.56	0.960	0.961	0.958
\mathbf{e}	-2.5	2.89	0.963	0.961	0.958
\mathbf{f}	-1.2	2.89	0.968	0.970	0.967
\mathbf{g}	0.3	2.89	0.947	0.949	0.945
\mathbf{h}	2.0	2.89	0.960	0.960	0.959
Arळ	100	0	0.961	0.960	0.959

Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and minimum values of the cross-validation results, respectively.

Figure 10 Contribution of each variable to the prediction of reactivity is evaluated via permutation importance. The result is shown for each Ar-atom position defined in Figure 9.

As shown in Table 2, the machine learning results exhibit approximately 95% or higher prediction accuracy for every case, while the Ar-position dependence of accuracy is negligible. This demonstrates consistent performance and effectiveness of the model in predicting the reactivity for each Ar position. Moreover, the permutation-importance results shown in Figure 10 indicates high similarity between results achieved for $\mathbf{a}-\mathbf{e}, \mathbf{h}$, and Aro. This further supports the molecular view that regions (A)-(E) and (H) are characterized by weak intermolecular interactions and the reactions there are almost the same as the isolated HCN without Ar buffer gas. By contrast, the permutation-importance results obtained for points \mathbf{g} and \mathbf{h} show the increased importance of the motions of the hydrogen atom in the y-direction, parametrized by y_{H} and $p_{y \mathrm{H}}$.

Cross Tests

To further demonstrate the distinction between the points \mathbf{f}, \mathbf{g} and the other cases, results of "cross tests" were examined. A cross test means that the result of learning in one case is used to predict the reaction channel in another case, and the prediction accuracy is evaluated. As shown in Table 3, the result of learning by using the data set Aro can predict the reaction outcome for points $\mathbf{a}-\mathbf{e}$, and \mathbf{h} with almost perfect accuracy, further supporting the view that reactions that occur in the regions $(\mathrm{A})-(\mathrm{E})$ and (H) are essentially similar to the unimolecular reaction of isolated HCN . By contrast, the learning result obtained for the unimolecular reaction shows a low performance in the prediction of reaction outcomes for \mathbf{f} and \mathbf{g}, and the cross-test results between \mathbf{f} and \mathbf{g} exhibit the worst performance.

Interestingly, the permutation importance evaluated for the prediction of \mathbf{f} by the learning of \mathbf{g} and vice versa (Figure 11) shows negative values for x_{H} and $p_{y \mathrm{H}}$. This implies that the information on x_{H} or $p_{y \mathrm{H}}$ worsens the prediction accuracy if the reactivity at \mathbf{f} is predicted by using the learning results obtained for \mathbf{g}. In other words, the roles played by x_{H} and $p_{y \mathrm{H}}$ in determining the reaction channels are likely to be opposite in direction between regions (F) and (G).

Table 3. Accuracy of the random forest evaluated in the cross-prediction tests. Machine learning is performed on one data set (denoted as "Training") and then the result is applied to the prediction in another data set (denoted as "Test").

Training	Aro	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}
Test									
Aro	0.961	0.960	0.961	0.960	0.961	0.960	0.616	0.772	0.961
a	0.961	0.963	0.958	0.961	0.961	0.960	0.619	0.780	0.961
\mathbf{b}	0.960	0.960	0.962	0.958	0.959	0.961	0.632	0.765	0.959
c	0.959	0.959	0.957	0.959	0.960	0.958	0.622	0.773	0.959
d	0.960	0.962	0.959	0.959	0.960	0.961	0.624	0.773	0.960
\mathbf{e}	0.962	0.961	0.963	0.960	0.962	0.963	0.622	0.762	0.960
f	0.617	0.616	0.624	0.613	0.619	0.622	0.968	0.479	0.616
\mathbf{g}	0.773	0.774	0.764	0.776	0.769	0.765	0.479	0.947	0.773
h	0.961	0.960	0.959	0.959	0.960	0.959	0.613	0.768	0.960

Figure 11 Contribution of each variable is evaluated via the permutation importance when the result of learning the data set at $\mathbf{f}(\mathbf{g})$ is applied to predict the reaction channels at $\mathbf{g}(\mathbf{f}$, resp.). Negative contribution from a variable implies that a use of the variable likely leads to a wrong prediction. In other words, the effect of the variable on the reaction is opposite in direction for the points \mathbf{f} and \mathbf{g}.

Figure 12 Reactivity boundaries are illustrated in a two-dimensional section spanned by x_{H} and $p_{x \mathrm{H}}$. Left panel: the Ar atom is initially positioned at the point \mathbf{f}. Right panel: the Ar atom is initially positioned at the point \mathbf{g}.

Molecular Interpretation for the Effect of the Ar Position

Figure 1 (b) and (d) show the potential energy contours experienced by the H atom for the Ar-atom positions corresponding to points \mathbf{f} and \mathbf{g}, respectively. The saddle point is marked by a cross symbol whose arms shows the accompanying normal directions. As can be observed, the position of the saddle point shifts along the x-direction, mainly because of the repulsive interaction with the Ar atom. Qualitatively, a saddle point on the PES divides the space into the "reactant" and "product" regions (at least approximately for sufficiently low energies). Therefore, the initial conditions wherein $p_{x \mathrm{H}}$ is so low that the reaction barrier
cannot be overcome is classified into the $\mathrm{HCN} \rightarrow \mathrm{HCN}(\mathrm{CNH} \rightarrow \mathrm{CNH})$ channel if $x_{\mathrm{H}}<x_{\text {sdl }}$ ($x_{\mathrm{H}}>x_{\text {sdl }}$, resp.). Here, $x_{\text {sdl }}$ denotes the x-coordinate of the saddle point. Because the value of $x_{\text {sdl }}$ changes significantly between the points \mathbf{f} and \mathbf{g}, classifying the trajectories via learning on one of the points results in significant errors when applied to the other point. The error may be so large that it is better not to use the information of x_{H} at all. This explains the negative importance found in the cross-test results obtained for \mathbf{f} and \mathbf{g}. This interpretation can be confirmed by plotting the reactivity boundaries, as shown in Figure 12, for the Aratom positions \mathbf{f} and \mathbf{g}. The topological positioning of the four regions is similar to that shown in Figure 5, which is drawn with the Ar atom located at \mathbf{a} and by using the learning results for full-dimensional data. A comparison of the two panels in Figure 12 with each other and with Figure 5 reveals the shift of the reactivity boundaries in the direction of x_{H} in accordance with the saddle point.

As can be observed in Figure 1 (b) and (d), the direction of the reaction coordinate (by normal mode approximation at the saddle) has a small y-component for points \mathbf{f} and \mathbf{g}, whereas it is nearly parallel to the x-direction in the absence of the Ar atom. This highlights the importance of $p_{y \mathrm{H}}$ in determining the reactivity for points \mathbf{f} and \mathbf{g}. Moreover, the sign of the y-component of the reaction coordinate direction for \mathbf{f} is opposite to that for \mathbf{g}. This implies that the contributions of $p_{y \mathrm{H}}$ to the reactivity are opposite in direction at points \mathbf{f} and \mathbf{g}, explaining the negative importance of $p_{y \mathrm{H}}$ found in the cross tests.
SUMMARY AND OUTLOOK
In the present study, the reaction dynamics of the isomerization reaction $\mathrm{HCN} \rightleftarrows \mathrm{CNH}$ was investigated under the effect of an Ar atom as the buffer gas. Reaction trajectories were simulated on the potential energy function newly constructed with $\operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVQZ level ab initio calculations. The four reaction channels (HCN \rightarrow HCN, HCN $\rightarrow \mathrm{CNH}, \mathrm{CNH} \rightarrow$ $\mathrm{CNH}, \mathrm{CNH} \rightarrow \mathrm{HCN}$) assigned by the trajectory simulation were regarded as a function of the initial positions and momenta of all the atoms in the system. Machine learning by the RF method was performed on the data obtained by the trajectory simulation. Its prediction accuracy was $\sim 95 \%$, which indicated that the RF model captured the features of the phase space affecting the reactivity. Subsequent analyses of the contributions of the variables via permutation importance and SHAP values enabled the extraction of variables essential to determine reactivity. Corresponding molecular pictures of the roles played by these variables were provided. The primary importance of the position and momentum of the H atom along the x-direction, where the x-axis is taken parallel to the CN bond, can be understood from the fact that the reaction is essentially the motion of the H atom because of its small mass, and that the IRC is nearly parallel to the x-axis near the saddle point. Machine learning results revealed that $p_{y \mathrm{~N}}$ is also important in predicting reactivity, which corresponds to the initial rotation of the CN . This is interpreted as the motion of the H and N atoms towards each other facilitates the formation of the HN bond. Central to the interest of the present study, the effect of the Ar atom was also elucidated through the analyses of the machine-learning results, and it was successfully interpreted in terms of the displacement of the saddle point by the repulsive interaction between the H and Ar atoms.
It is noted that the machine learning found out those variables essential to the dynamics of the reaction without any pre-knowledge of this reaction. The data used for the learning were only the trajectory simulation results obtained for the sampled initial conditions. Starting from the set of all the variables in the system, the machine learning and subsequent analyses extracted a reduced number of variables regarded as important for the reaction. While the molecular interpretations provided for the roles played by these variables are clear after the extraction of the variables, it was not a priori trivial that only those variables were of essential importance before the machine learning analyses. The present results imply that a thorough statistical analyses provided by machine learning can further advance the fundamental understanding of polyatomic reaction dynamics. It is known in many reactions that difference in initial conditions leads to significant difference in reaction dynamics. ${ }^{68-73}$ It would be interesting to apply the machine learning analysis of the present study to elucidate the mechanism of such chemical reactions.
In this present study, we have chosen a relatively simple system of the short-time passage over an isomerization saddle and focused on the applicability of the machine learning to extract insights into the dynamics. For the purpose of machine learning, the initial condition was sampled uniformly in the rectangular region with planar geometry of the four-atom system. In fact, it is shown in Appendix A that uniform sampling is more efficient for the purpose of evaluating the importance of each variable than microcanonical sampling, which holds the total energy of the system constant. Concerning the planarity, a partial investigation on the effect of the out-of-plane motions is presented in Appendix B. In the range investigated, the results do not change the main conclusion of this study. Moreover, complete picture of a chemical reaction, beyond the passage over the saddle, will include excitation in the reactants
basin before entering the saddle region, and relaxation in the product basin after the passage over the saddle. Indeed, in the case of the HCN isomerization considered in the present study, the system will keep passing back and forth between the HCN and CNH wells if relaxation does not occur in the well after the passage over the saddle. More complicated behaviors like fractal dependence on initial conditions may arise in those dynamics in the well, or when one proceeds to analyze larger molecular systems with the methods presented in this work. Those problems would present intriguing challenges on the technical aspects of machine learning in future investigations. Technical developments on the machine learning combined with the analyses methods proposed in our current study would open the way to elucidate the dynamics of such complicated systems. For example, the use of curvilinear coordinates in contrast to the cartesian coordinates as have been used in the present study may offer advantages in terms of interpretability. In this respect, it is encouraging that the machine learning can handle analytical formulas, ${ }^{56}$ which may enable to find best curvilinear coordinates to describe the reaction dynamics. It is also noteworthy that the concept of mapping the initial phase space by analyzing the minimum dynamic path (MDP), as proposed by Unke et al., ${ }^{74}$ holds promise for enabling efficient sampling of reactive trajectories, which can further enhance the effectiveness of our machine learning-based analysis. However, the precise relationship between the MDP analysis and the present ML-based analysis is not yet clear and warrants further investigation as an intriguing topic for future research from a physical viewpoint. Since the reaction path is necessarily curvilinear, it would be interesting to compare the results of the machine learning using curvilinear coordinates with their findings in future investigations.

Another interesting future direction may be to validate the present results by experiments, e.g. with scattering experiments with molecular beam. ${ }^{1}$ The energy and direction of the collision can be controlled by aligned molecular beams. ${ }^{1,68,75}$ The initial state of the molecule can be prepared by laser excitation. With the precise control of the initial state by these experimental techniques, the reaction outcome can be controlled by selecting the reactive or non-reactive initial conditions revealed by the present study. While the present study primarily focused on the saddle region dynamics rather than the entire reaction process including the initial excitation, the obtained insights already carry some implications for experimental investigations. For instance, it was found that the position of the Ar atom affects the branching of trajectories in the saddle region directing them into the reactant or product well. This suggests that for the same given excitation method (e.g. laser irradiation), isomerization can be promoted by colliding the Ar atom from the C side rather than the N side of the HCN molecule (see Fig. 12). This direction would open an interesting avenue for controlling chemical reactions based on clear molecular insights.

SUPPLEMENTARY MATERIAL

See supplementary material for the data of the electronic state calculation and the potential energy surface fitting, machine learning results for microcanonical sampling, and computational results for sample with variation in the z-direction.

ACKNOWLEDGMENTS

This research was supported by the JSPS KAKENHI (grant number: 16KT0050). S.K. was also supported by JSPS KAKENHI (grant number: 16K17852). Part of the computation was performed by the supercomputers of ACCMS, Kyoto University, and TSUBAME (hp210141 and hp220134). T.Y. also acknowledges the support from Scientific Research (JSPS KAKENHI (C) 21K03482, (C)18K05025), GAP fund (UTokyo), and the Program for Promoting Research on the Supercomputer Fugaku (Application of Molecular Dynamics Simulation to Precision Medicine Using Big Data Integration System for Drug Discovery, JPMXP1020200201, hp210172, and hp220164).

APPENDIX A. Machine Learning Results for Microcanonical Sampling

In the main text, the machine learning was performed on data points uniformly sampled in the rectangular region of initial conditions (Eqs. (14)-(24)). In this sampling, all the explanatory variables are independent of each other. One may consider more chemically "natural" ways of sampling such as the microcanonical ensemble, where the energy conservation is taken into account, sampling with constant energy and angular momentum, or even a quasi-classical sampling where all the quantum numbers are held constant in the initial condition. As a primary investigation for such sampling, here we report the results of machine learning on the microcanonical sampling.

To obtain sample points with a constant energy, a 60 ns-long trajectory simulation of HCN was performed and the coordinates and momenta were extracted every 60 fs . Then 5000 points with $1.0<\gamma<1.5$ were randomly selected. The energy of the trajectory was set at $69.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above the saddle point, which roughly allows excitation of the vibrational mode orthogonal to the reaction coordinate with one quantum number, considering that the highest-frequency normal mode at the saddle point has the frequency $3100 \mathrm{~cm}^{-1} \approx$ $35 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The total angular momentum was set to zero. The momenta were re-sampled every 20 fs during the trajectory. After the microcanonical sample of HCN was obtained, the Ar atom was put at random positions in the region $-1.24<x_{\mathrm{Ar}} / 10^{-10} \mathrm{~m}<0.27$ and $2.89<$ $y_{\mathrm{Ar}} / 10^{-10} \mathrm{~m}<3.56$, and the momenta $p_{x \mathrm{Ar}}$ and $p_{y \mathrm{Ar}}$ were sampled by the normal distribution with standard deviation $2.0 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.

The results of the machine learning on the microcanonical sample are summarized in Table 4, corresponding to Table 1 in the main text, and the values of permutation importance
are shown in Fig. 13, corresponding to Fig. 4 in the main text. Somewhat counter-intuitively, a non-negligible contribution of y_{H} is found. This is in contrast to what was found on the rectangular sampling shown in the main text (Fig. 4), and is counterintuitive from the fact that the reaction coordinate is nearly parallel to the x-direction and the motion along y is a vibrational mode orthogonal to the reaction direction (Fig. 1). This can be interpreted as follows. As the vibration along the y-direction is excited, energy available to the reaction direction is reduced due to the constancy of the total energy. Hence, the magnitude of $p_{x \mathrm{H}}$ is inversely correlated with y_{H} in the sample, and a higher value of y_{H} implies a smaller $\left|p_{x \mathrm{H}}\right|$, which makes the initial condition less likely to be reactive. From this interpretation, the reactivity itself is directly affected by the value of $p_{x \mathrm{H}}$, but due to the correlation between y_{H} and $\left|p_{x \mathrm{H}}\right|$ existing in the sample, machine simply finds correlation between y_{H} and the reactivity. Therefore, for the purpose of obtaining molecular insights from the results of machine learning, it is recommendable to prepare rectangular sample points so that the explanatory variables are independently distributed. Nevertheless, it would be interesting for future work to devise methodologies to extract sensible interpretations even from correlated samples.

Table 4. Accuracy of the machine learning results in the reaction channel assignment for the HCN reaction with microcanonically sampled initial conditions.

Variables	Dimension	Acc	Cross_max	Cross_min
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & p_{x \mathrm{C}}, p_{y \mathrm{C}}, x_{\mathrm{N}}, p_{x \mathrm{~N}}, p_{y \mathrm{~N}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}} \end{aligned}$	13	0.943	0.944	0.936
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & p_{x \mathrm{C}}, p_{y \mathrm{C}}, x_{\mathrm{N}}, p_{x \mathrm{~N}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}} \end{aligned}$	12	0.936	0.940	0.932
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}}, p_{x \mathrm{Ar}}, p_{y \mathrm{Ar}} \end{aligned}$	8	0.928	0.926	0.919
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & x_{\mathrm{N}}, x_{\mathrm{Ar}}, y_{\mathrm{Ar}} \end{aligned}$	7	0.933	0.931	0.926
$\begin{aligned} & x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}} \\ & x_{\mathrm{Ar}}, y_{\mathrm{Ar}} \end{aligned}$	6	0.933	0.933	0.926
$x_{\mathrm{H}}, y_{\mathrm{H}}, p_{x \mathrm{H}}, p_{y \mathrm{H}}$	4	0.919	0.917	0.912

Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and minimum values of the cross-validation results, respectively.

Figure 13 Contribution of each variable to the prediction of reactivity in the microcanonical sample as evaluated via permutation importance.

APPENDIX B. Effects of the z-direction

In the main text, the sampling was performed with all four atoms in the $x-y$ plane (Eqs.(10)-(13)), because it is expected that the effect of the Ar atom can be best observed when it is on the same plane with HCN . In this paragraph, we show some preliminary results for the effect of displacing the Ar atom in the z-direction. Figure 14 shows plots of the reactivity boundaries in the $x_{\mathrm{H}}-p_{x \mathrm{H}}$ plane as in Figure 12 in the main text. In the left panel, the Ar atom is given initial momenta $p_{z A r}=1.0 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$, which is the same as the maximum value given to $p_{x \mathrm{Ar}}$ and $p_{y \mathrm{Ar}}$ in the sampling conducted in the main text (Eq. (23)(24)). It is seen that the effect of the initial $p_{z A r}$ on the reactivity boundaries is negligible. In the right panel of the same figure, the Ar atom is initially displaced off the HCN plane with $z_{\mathrm{Ar}}=1.0 \AA$. Here, the reactivity boundaries for \mathbf{f} and \mathbf{g} approach with each other and becomes more similar to that shown in Figure 5 which was drawn for the case a where the Ar effect is weak. This suggests that the effect of the Ar atom diminishes as it moves away from the HCN in the z-direction. Therefore, in either case the effect of the z-direction is easily understandable. We consider that this provides a good reason to focus, at least as the first-step investigation, on the motion confined in the $x-y$ plane.

Figure 14 Plots of the reactivity boundaries as in Figure 12 in the main text. The Ar atom is placed at the points \mathbf{f} and \mathbf{g}, where the effect of the Ar atom was best observed in the main text. In the left panel, the Ar atom is given initial momenta $p_{z \mathrm{Ar}}=1.0 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. In the right panel, the Ar atom is initially off the HCN plane with $z_{\mathrm{Ar}}=1.0 \AA$.

REFERENCES

1. R. D. Levine, Molecular Reaction Dynamics. (Cambridge University Press, Cambridge, 2005). DOI: 10.1017/CBO9780511614125
2. B. C. Dian, A. Longarte, and T. S. Zwier, "Conformational Dynamics in a Dipeptide After Single-Mode Vibrational Excitation," Science 296(5577), 2369-2373 (2002). DOI: 10.1126/science. 1071563
3. W. Zhang, H. Kawamata, and K. Liu, "Stretching Excitation in the Early Barrier F + CHD_{3} Reaction Inhibits CH Bond Cleavage," Science 325(5938), 303-306 (2009). DOI: 10.1126/science. 1175018
4. K. Nakai, H. Kono, Y. Sato, N. Niitsu, R. Sahnoun, M. Tanaka, and Y. Fujimura, "Ab initio molecular dynamics and wavepacket dynamics of highly charged fullerene cations produced with intense near-infrared laser pulses," Chem. Phys. 338(2), 127-134 (2007). DOI: 10.1016/j.chemphys.2007.04.011
5. K. Iwata, "Ultrafast bimolecular radical reaction between S1 p-terphenyl and carbon tetrachloride. Mode-specific acceleration of vibrational dephasing in reactant molecule,"J. Raman Spectrosc. 39(11), 1512-1517 (2008). DOI: 10.1002/jrs. 2104
6. A. Gutiérrez-González, F. F. Crim, and R. D. Beck, "Bond selective dissociation of methane $\left(\mathrm{CH}_{3} \mathrm{D}\right)$ on the steps and terraces of $\mathrm{Pt}(211), "$ J. Chem. Phys. 149(7), 074701 (2018). DOI:10.1063/1.5041349
7. N. Gerrits, J. Geweke, D. J. Auerbach, R. D. Beck, and G.-J. Kroes, "Highly Efficient Activation of HCl Dissociation on $\mathrm{Au}(111)$ via Rotational Preexcitation,"J. Phys. Chem. Lett. 12(30), 7252-7260 (2021). DOI: 10.1021/acs.jpclett.1c02093
8. Y. J. Hong and D. J. Tantillo, "Biosynthetic consequences of multiple sequential post-transition-state bifurcations," Nature Chem. 6, 104-111 (2014). DOI: 10.1038/nchem. 1843
9. K. Yamanouchi, "The Next Frontier," Science 295(5560), 1659-1660 (2002). DOI: 10.1126/science. 1068449
10. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics. (John-Wiley \& Sons, New York, 2000).
11. M. Shapiro and P. Brumer, "Quantum control of bound and continuum state dynamics," Phys. Rep. 425(4), 195-264 (2006). DOI: 10.1016/j.physrep.2005.12.005
12. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72(2), 545-591 (2000). DOI: 10.1103/RevModPhys. 72.545
13. A. D. Bandrauk, "Molecules in Laser Fields," in Frontiers of Chemical Dynamics, Ed. by E. Yurtsever, NATO ASI Series, vol. 470 (Springer, Dordrecht, 1995), pp.131-150. DOI: 10.1007/978-94-011-0345-9_6
14. S. Kawai, A. D. Bandrauk, C. Jaffé, T. Bartsch, J. Palacián, and T. Uzer, "Transition state theory for laser-driven reactions," J. Chem. Phys. 126(16), 164306 (2007). DOI: 10.1063/1.2720841
15. S. Kawai and T. Komatsuzaki, "Quantum reaction boundary to mediate reactions in laser fields," J. Chem. Phys. 134(2), 024317 (2011). DOI:/10.1063/1.3528937
16. S. Kawai and T. Komatsuzaki, "Laser Control of Chemical Reactions by Phase Space Structures," Bull. Chem. Soc. Jpn. 85(8), 854-861 (2012). DOI: 10.1246/bcsj. 20120085
17. M. Toda, T. Komatsuzaki, T. Konishi, R. S. Berry, and S. A. Rice, (Ed.) Geometrical Structures of Phase Space in Multidimensional Chaos: Applications to Chemical Reaction Dynamics in Complex Systems, Adv. Chem. Phys. 130A and 130B, (John-Wiley \& Sons, New York 2005).
18. T. Komatsuzaki, R. S. Berry, and D. M. Leitner, (Ed.) Advancing Theory for Kinetics and Dynamics of Complex, Many-Dimensional Systems: Clusters and Proteins, Adv. Chem. Phys. 145, (John-Wiley \& Sons, New York, 2011).
19. R. Hernandez and W. H. Miller, "Semiclassical transition state theory. A new perspective," Chem. Phys. Lett. 214(2), 129-136 (1993). DOI:10.1016/0009-2614(93)90071-8
20. R. Hernandez, "A combined use of perturbation theory and diagonalization: Application to bound energy levels and semiclassical rate theory," J. Chem. Phys. 101(11), 9534-9547 (1994). DOI:10.1063/1.467985
21. T. Komatsuzaki and R. S. Berry, "Regularity in chaotic reaction paths. I. Ar 6 ," J. Chem. Phys. 110(18), 9160-9173 (1999). DOI:10.1063/1.478838
22. T. Komatsuzaki and R. S. Berry, "Dynamical hierarchy in transition states: why and how does a system climb over the mountain?" Proc. Natl. Acad. Sci. USA 98(14), 7666-7671 (2001). DOI:10.1073/pnas. 131627698
23. S. Wiggins, L. Wiesenfeld, C. Jaffé, and T. Uzer, "Impenetrable Barriers in Phase-Space," Phys. Rev. Lett. 86(24), 5478-5481 (2001). DOI:10.1103/PhysRevLett.86.5478

24. T. Uzer, C. Jaffé, J. Palacián, P. Yanguas, and S. Wiggins, "The geometry of reaction dynamics," Nonlinearity 15(4), 957 (2002). DOI:10.1088/0951-7715/15/4/301

25. T. Komatsuzaki and R. S. Berry, "Chemical Reaction Dynamics: Many-Body Chaos and Regularity," in Adv. Chem. Phys. 123, Ed. by I. Prigogine and S. A. Rice (John-Wiley \& Sons, New York, 2002), pp.79-152. DOI: 10.1002/0471231509.ch2
26. S. Kawai, H. Teramoto, C.-B. Li, T. Komatsuzaki, and M. Toda, "Dynamical Reaction Theory based on Geometric Structures in Phase Space," in Advancing Theory for Kinetics and Dynamics of Complex, Many-Dimensional Systems: Clusters and Proteins, Adv. Chem. Phys. 145, Ed. by T. Komatsuzaki, R. S. Berry, and D. M. Leitner (John-Wiley \& Sons, New York, 2011), pp.123-169. DOI: 10.1002/9781118087817.ch4
27. C.-B. Li, A. Shojiguchi, M. Toda, and T. Komatsuzaki, "Dynamical Hierarchy in Transition States of Reactions," Few-Body Systems 38(2), 173-179 (2006). DOI: 10.1007/s00601-005-0130-2
28. C.-B. Li, A. Shojiguchi, M. Toda, and T. Komatsuzaki, "Definability of No-Return Transition States in the High-Energy Regime above the Reaction Threshold," Phys. Rev. Lett. 97(2), 028302 (2006). DOI: 10.1103/PhysRevLett.97.028302
29. T. Bartsch, R. Hernandez, and T. Uzer, "Transition State in a Noisy Environment," Phys. Rev. Lett. 95(5), 058301 (2005). DOI: 10.1103/PhysRevLett.95.058301
30. T. Bartsch, T. Uzer, and R. Hernandez, "Stochastic transition states: Reaction geometry amidst noise," J. Chem. Phys. 123(20), 204102 (2005). DOI: 10.1063/1.2109827
31. T. Bartsch, T. Uzer, J. M. Moix, and R. Hernandez, "Identifying reactive trajectories using a moving transition state," J. Chem. Phys. 124(24), 244310 (2006). DOI: 10.1063/1.2206587
32. T. Bartsch, J. M. Moix, R. Hernandez, S. Kawai, and T. Uzer, "Time-Dependent Transition State Theory," Adv. Chem. Phys. 140, 191-238 (2008). DOI: 10.1002/9780470371572.ch4
33. S. Kawai and T. Komatsuzaki, "Dynamic pathways to mediate reactions buried in thermal fluctuations. I. Time-dependent normal form theory for multidimensional Langevin equation," J. Chem. Phys. 131(22), 224505 (2009). DOI: 10.1063/1.3268621
34. S. Kawai and T. Komatsuzaki, "Dynamic pathways to mediate reactions buried in thermal fluctuations. II. Numerical illustrations using a model system," J. Chem. Phys. 131(22), 224506 (2009). DOI: 10.1063/1.3268622
35. S. Kawai and T. Komatsuzaki, "Hierarchy of reaction dynamics in a thermally fluctuating environment," Phys. Chem. Chem. Phys. 12(27), 7626-7635 (2010). DOI: 10.1039/B922080A
36. S. Kawai and T. Komatsuzaki, "Nonlinear dynamical effects on reaction rates in thermally fluctuating environments," Phys. Chem. Chem. Phys. 12(27), 7636-7647 (2010). DOI: 10.1039/B922596J
37. S. Kawai and T. Komatsuzaki, "Dynamic reaction coordinate in thermally fluctuating environment in the framework of the multidimensional generalized Langevin equations," Phys. Chem. Chem. Phys. 12(47), 15382-15391 (2010). DOI: 10.1039/C0CP00543F
38. S. Kawai and T. Komatsuzaki, "Robust Existence of a Reaction Boundary to Separate the Fate of a Chemical Reaction," Phys. Rev. Lett. 105(4), 048304 (2010). DOI: 10.1103/PhysRevLett.105.048304
39. H. Waalkens, R. Schubert, and S. Wiggins, "Wigner's dynamical transition state theory in phase space: classical and quantum," Nonlinearity 21(1), R1 (2008). DOI: 10.1088/09517715/21/1/R01
40. A. Goussev, R. Schubert, H. Waalkens, and S. Wiggins, "The quantum normal form approach to reactive scattering: The cumulative reaction probability for collinear exchange reactions," J. Chem. Phys. 131(14), 144103 (2009). DOI: 10.1063/1.3245402
41. Y. Nagahata, F. Borondo, R. M. Benito, and R. Hernandez, "Identifying reaction pathways in phase space via asymptotic trajectories," Phys. Chem. Chem. Phys. 22(18), 1008710105 (2020). DOI: 10.1039/c9cp06610a
42. J.-C. Loison, V. Wakelam, and K. M. Hickson, "The interstellar gas-phase chemistry of HCN and HNC," Mon. Not. R. Astron. Soc. 443(1), 398-410 (2014). DOI: 10.1093/mnras/stu1089
43. J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, "Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition," Neural networks 32, 323-332 (2012). DOI: 10.1016/j.neunet.2012.02.016
44. M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," Science 349(6245), 255-260 (2015). DOI: 10.1126/science.aaa8415
45. S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, "Machine learning: a review of classification and combining techniques," Artif. Intell. Rev. 26(3), 159-190 (2006). DOI: 10.1007/s10462-007-9052-3
46. B. Mahesh, "Machine Learning Algorithms - A Review," Int. J. Sci. Res. 9, 381-386 (2020). DOI: 10.21275/ART20203995
47. K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, "Machine learning for molecular and materials science," Nature 559(7715), 547-555 (2018). DOI: 10.1038/s41586-018-0337-2
48. F. Noé, A. Tkatchenko, K. R. Müller, and C. Clementi, "Machine learning for molecular simulation," Ann. Rev. Phys. Chem. 71(1), 361-390 (2020). DOI: 10.1146/annurev-physchem-042018-052331
49. M. Haghighatlari and J. Hachmann, "Advances of machine learning in molecular modeling and simulation," Curr. Opin. Chem. Eng. 23, 51-57 (2019). DOI: 10.1016/j.coche.2019.02.009
50. P. L. Houston, A. Nandi, and J. M. Bowman, "A Machine Learning Approach for Prediction of Rate Constants," J. Phys. Chem. Lett. 10(17), 5250-5258 (2019). DOI: 10.1021/acs.jpclett. 9 b 01810
51. D. Koner, O. T. Unke, K. Boe, R. J. Bemish, and M. Meuwly, "Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation," J. Chem. Phys. 150(21), 211101 (2019). DOI:10.1063/1.5097385
52. J. Arnold, J. C. San Vicente Veliz, D. Koner, N. Singh, R. J. Bemish, and M. Meuwly, "Machine learning product state distributions from initial reactant states for a reactive atom-diatom collision system," J. Chem. Phys. 156(3), 034301 (2022). DOI: 10.1063/5.0078008
53. B. Chen, K. Huang, S. Raghupathi, I. Chandratreya, Q. Du, and H. Lipson, "Automated discovery of fundamental variables hidden in experimental data," Nat. Comput. Sci. 2(7), 433-442 (2022). DOI: 10.1038/s43588-022-00281-6
54. S.-M. Udrescu and M. Tegmark, "AI Feynmann: A physics-inspired method for symbolic regression," Sci. Adv. 6(16), eaay2631 (2020). DOI: 10.1126/sciadv.aay2631
55. P. Zhang, H. Shen, and H. Zhai, "Machine learning topological invariants with neural networks," Phys. Rev. Lett. 120(6), 066401 (2018). DOI: 10.1103/PhysRevLett.120.066401
56. J. Liang and X. Zhu, "Phillips-inspired machine learning for band gap and exciton binding energy prediction," J. Phys. Chem. Lett. 10(18), 5640-5646 (2019). DOI: 10.1021/acs.jpclett.9b02232
57. J. N. Murrel, S. Carter, and L. O. Halonen, "Frequency optimized potential energy functions for the ground-state surfaces of HCN and HCP," J. Mol. Spectrosc. 93(2), 307316 (1982). DOI: 10.1016/0022-2852(82)90170-9
58. S. P. J. Rodrigues and A. J. C. Varandas, "Dynamics Study of the Reaction Ar + HCN \rightarrow Ar + H + CN," J. Phys. Chem. A 102(31), 6266-6273 (1998). DOI: 10.1021/jp981466v
59. T. van Mourik, G. J. Harris, O. L. Polyansky, J. Tennyson, A. G. Császár, P. J. Knowles, "Ab initio global potential, dipole, adiabatic, and relativistic correction surfaces for the HCN-HNC system," J. Chem. Phys. 115(8), 3706-3718 (2001). DOI: 10.1063/1.1383586
60. W. H. Press, W. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, 2007).
61. L. Breiman, "Random Forests," Mach. Learn. 45(1), 5-32 (2001). DOI: 10.1023/A:1010933404324
62. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res. 12, 2825-2830 (2011). DOI: 10.5555/1953048.2078195
63. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning - Data Mining, Inference, and Prediction, 2nd ed. (Springer, New York, 2009). DOI: 10.1007/978-0-387-84858-7
64. S. M. Lundberg and S. I. Lee, "A unified approach to interpreting model predictions," Adv. Neural Inf. Process. Syst. 30, 4768-4777 (2017).
65. S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, and S. I. Lee, "From local explanations to global understanding with explainable AI for trees," Nat. Mach. Intell. 2(1), 56-67 (2020). DOI: 10.1038/s42256-019-0138-9
66. D. H. Parker and R. B. Bernstein, "Oriented Molecule Beams Via the Electrostatic Hexapole: Preparation, Characterization, and Reactive Scattering," Annu. Rev. Phys. Chem. 40(1), 561-595 (1989). DOI: 10.1146/annurev.pc.40.100189.003021
67. A. Sinha, M. C. Hsiao, and F. F. Crim, "Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms," J. Chem. Phys. 94(7), 4928-4935 (1991). DOI: 10.1063/1.460578
68. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez-Rábanos, K. Stark, and H.-J. Werner, "The $F+H D \rightarrow D F(H F)+H(D)$ reaction revisited: Quasiclassical trajectory study on an $a b$ initio potential energy surface and comparison with molecular beam experiments," J. Chem. Phys. 102(23), 9248-9262 (1995). DOI: 10.1063/1.468875
69. F. J. Aoiz, L. Bañares, V. J. Herrero, V. Sáez-Rábanos, K. Stark, I. Tanarro, and H.-J. Werner, "The F + HD reaction: cross sections and rate constants on an ab initio potential energy surface," Chem. Phys. Lett. 262(3-4), 175-182 (1996). DOI: 10.1016/0009-2614(96)01074-3
70. S. Kawai, Y. Fujimura, O. Kajimoto, and T. Yamashita, "Quasiclassical trajectory study of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{NO}+\mathrm{NO}:$ Classification of reaction paths and vibrational distribution," J . Chem. Phys. 124(18), 184315 (2006). DOI: 10.1063/1.2191041
71. S. Kawai, Y. Fujimura, O. Kajimoto, T. Yamashita, C.-B. Li, T. Komatsuzaki, and M. Toda, "Dimension reduction for extracting geometrical structure of multidimensional phase space: Application to fast energy exchange in the reaction $O\left({ }^{1} \mathrm{D}\right)+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{NO}+$ NO," Phys. Rev. A 75(2), 022714 (2007). DOI: 10.1103/PhysRevA.75.022714
72. O. T. Unke, S. Brickel, and M. Meuwly, "Sampling reactive regions in phase space by following the minimum dynamic path," J. Chem. Phys. 150(7), 074107 (2019). DOI: 10.1063/1.5082885
73. V. Aquilanti, M. Bartolomei, F. Pirani, D. Cappelletti, F. Vecchiocattivi, Y. Shimizu, and T. Kasai, "Orienting and aligning molecules for stereochemistry and photodynamics," Phys. Chem. Chem. Phys. 7(2), 291-300 (2005). DOI: 10.1039/B415212C

[^0]: * Electronic mail: kawai.shinnosuke@shizuoka.ac.jp

