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ABSTRACT
The effect of the presence of Ar on the isomerization reaction HCN⇄ CNH is investigated via machine learning. After the potential energy
surface function is developed based on the CCSD(T)/aug-cc-pVQZ level ab initio calculations, classical trajectory simulations are performed.
Subsequently, with the aim of extracting insights into the reaction dynamics, the obtained reactivity, that is, whether the reaction occurs
or not under a given initial condition, is learned as a function of the initial positions and momenta of all the atoms in the system. The
prediction accuracy of the trained model is greater than 95%, indicating that machine learning captures the features of the phase space that
affect reactivity. Machine learning models are shown to successfully reproduce reactivity boundaries without any prior knowledge of classical
reaction dynamics theory. Subsequent analyses reveal that the Ar atom affects the reaction by displacing the effective saddle point. When
the Ar atom is positioned close to the N atom (resp. the C atom), the saddle point shifts to the CNH (HCN) region, which disfavors the
forward (backward) reaction. The results imply that analyses aided by machine learning are promising tools for enhancing the understanding
of reaction dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156313

INTRODUCTION

Chemical reactions are dynamical processes in which atoms
move from one configuration to another. Because the motion of
atoms is governed by quantum mechanics, or its classical approx-
imation, a chemical reaction can be understood as a solution to
mechanical equations of motion. A molecular system may begin in
a given initial state, and its evolution over time is determined by the
rules of mechanics. Studies in the field of reaction dynamics1 con-
ducted over the last few decades have led to precise state-to-state
understandings of chemical reactions. Examples of experimental
evidence supporting the importance of dynamical viewpoints in
studying chemical reactions include, but are not limited to, the con-
trol of reactions by selecting initial rotational and/or vibrational
states of molecules,2–7 selectivity in biochemical synthesis,8 and
reaction control via strong laser fields.9–16

A notable finding achieved in the study of reaction dynamics
is the existence of “reactivity boundaries”14–43 in the phase space
that describes atomic motions. In classical mechanics, owing to the
deterministic nature of the equations of motion, the initial positions
and momenta of the atoms contained in a system uniquely deter-
mine whether the reaction will occur or not. Therefore, the phase
space, an abstract space that is spanned by all the atomic positions
and momenta as coordinates, is divided into two domains: one is the
set of all “reactive” initial conditions that lead to a reaction, and the
other is the set of all “non-reactive” initial conditions. Between these
two domains lies a boundary, which is called a reactivity boundary
in this study. It is also worth mentioning that quantum mechanical
versions of reactivity boundaries have also been developed through
various studies.15,16,41

In this study, the reactivity of the isomerization reaction
HCN ⇄ CNH is investigated in the phase space under the
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influence of one argon atom as a buffer gas. This isomerization reac-
tion has long been drawing interest as one of the simplest isomeriza-
tion reactions, as well as for applications in interstellar chemistry44

and as a prototypical system for studying the phase space structures
of chemical reactions.27,28 In gas-phase chemistry, the buffer atoms
act as energy sources that activate target molecules through colli-
sions. As the density of the system increases, they become solvents,
influencing the reaction by changing the potential energy landscape
experienced by the reacting molecules. The HCN–Ar cluster stud-
ied here may be regarded as a first-step model for investigating the
solvent effect.

Recently, machine learning (ML) has attracted substantial
attention in various fields ranging from business to the basic sci-
ences, as studies have demonstrated that computers can solve pat-
tern recognition problems, as humans do, via machine learning.45–48

Applications of machine learning to solve molecular problems
are also being actively explored,49–51 in particular the prediction
of rate constants52 and state-to-state cross sections.53,54 The per-
formance of machine learning, which is known to occasionally
outperform human recognition, would contribute to the evolu-
tion of computational analyses to improve the current under-
standing of molecular phenomena. Importantly, in some cases,
machine learning can be used to extract essential dominant fac-
tors from data55–58 without resorting to any prior knowledge of
physical laws.

In this study, a systematic method is presented for the analysis
of the reaction dynamics to reveal the effects of the Ar atom, seen
as a fundamental model for buffer gas or solvent, on the reactivity
of HCN. The focus is given to the dynamics occurring in the vicin-
ity of the saddle point lying on the potential energy surface (PES)
between the reactant and product wells. The dynamics in this region
is crucial to the branching of trajectories into the product and reac-
tant wells. To explain it, the process of chemical reaction can be, for
simplicity, viewed as three consecutive steps. First, the system in the
reactant well is excited and climbs up the PES to reach the vicinity
of the saddle point. Then, the dynamics in the region around the
saddle point determine the bifurcation into the reactant or product
well. Finally, the system falls into the product well (or back into the
reactant well) and relaxes there. In the present work, we focus on the
second step, that is, the dynamics occurring in the vicinity of the sad-
dle point that determine the branching into the product or reactant
well. The saddle region dynamics has been extensively investigated
from the viewpoint of phase space geometry14–43 and, at least under
certain conditions, it has been proved that there exist clear bound-
aries between reacting and non-reacting trajectories. The present
work investigates how machine learning (ML) and accompanying
analyses can extract such insights from trajectory data without prior
knowledge of dynamics theory. Random forest (RF) classifiers learn
the final state of the reaction, that is, whether the system ends in
the HCN state or in the CNH state, as a function of the initial posi-
tions and momenta of the four atoms (H, C, N, and Ar). The method
allows rational dimensional reductions to extract a small number of
important coordinates whose values are essentially required to pre-
dict the reaction direction. After the dimensional reduction, molec-
ular pictures are presented to interpret why those coordinates are
important.

MATERIALS AND METHODS
Potential energy surface and trajectory calculation

The system is described by classical equations of motion
derived from the following Hamiltonian:

H =∑i

∣pi∣
2

2mi
+ V(rH, rC, rN, rAr), (1)

where the index i refers to the atoms in the system (H, C, N, and
Ar). The position of an atom is described by a three-dimensional
vector ri = (xi, yi, zi), and its conjugate momentum is described by
pi = (pxi, pyi, pzi). The mass of each atom i is denoted as mi. For the
potential energy V(rH, rC, rN, rAr), the following function is used in
the present study:

V(rH, rC, rN, rAr) = VHCN(rH, rC, rN) + Vinter(rH, rC, rN, rAr), (2)

where VHCN(rH, rC, rN) is the intramolecular potential energy
surface (PES) of HCN, for which the function in Ref. 59,
constructed by fitting to spectroscopic data, is used in the present
study. The second term, Vinter(rH, rC, rN, rAr), describes the inter-
molecular interaction between HCN and Ar. To obtain V inter,
ab initio calculations were performed at the CCSD(T)/aug-cc-pVQZ
level, and the intermolecular energies were obtained with counter-
poise correction. The calculation points are distributed in a range
including the regions close to the HCN minimum, the CNH min-
imum, and the saddle point between them. The concrete positions
of these points are explicitly given in the supplementary material
to this paper. Data of 1097 points with intermolecular energy less
than 2 kJ mol−1, which is regarded as the “typical” range of the
Ar–HCN interaction considering the binding energy of ≈136 cm−1

of the Ar–HCN complex, were least-squares fitted to the following
analytical form:

Vinter =
3

∑

i=1
(Aiui

2
− Biui) +∑

i≠j
Cijuiuj +

3

∑

i=1

3

∑

k=1
Fikuisk, (3)

s1 = ∣rH − rC∣
−1, (4)

s2 = ∣rN − rC∣
−1, (5)

s3 = ∣rH − rN∣
−1, (6)

u1 = ∣rAr − rH∣
−6, (7)

u2 = ∣rAr − rC∣
−6, (8)

u3 = ∣rAr − rN∣
−6, (9)

where coefficients Ai, Bi, Cij, and Fik are the fitting parameters. The
resulting fitting coefficients, as well as the structure and energy at the
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data points used for the fitting, are available in the supplementary
material to this paper. The data points are concentrated on the con-
figurations with HCN adopting the HCN minimum structure, the
CNH minimum structure, and the HCN–CNH saddle point struc-
ture. Points with displacements of cos γ, where γ is the Jacobi angle
(Fig. 2), by up to ±0.2 from these three points were also included
to cover a region around the saddle point rather than the single
point. The deviation of ±0.2 in cos γ roughly corresponds to the
region where the dynamics is investigated in the present study, as
will be expressed in Eqs. (14) and (15) below. The mean square
residual error of the fitting was 0.18 kJ mol−1, which is reasonably
small compared to the range of the sampled intermolecular energy
(∼±2 kJ mol−1) and the activation energy of 146 kJ mol−1 for the
HCN→ CNH isomerization reaction. Figure 1 shows the contour
plots of the PESs obtained in this study with respect to the position
of the H atom for some fixed positions of the C, N, and Ar atoms.

It was previously pointed out60 that exponential functions,
rather than Lennard-Jones type functions, are required to describe
the inner repulsive wall accurately. This is probably because their
interest is in the dissociation reactions that occur with high energy,
while the present study focuses on the isomerization reaction. Based
on the accuracy of the fitting, we consider that the present PES cor-
rectly describes at least the essential features of the influence of the
Ar atom on the HCN isomerization reaction. A more detailed exam-
ination of the effect of the form of repulsion is left for future work.
Additionally, since we fit the intermolecular component V inter sep-
arately from the intramolecular component VHCN, one can replace
the latter with a more recent ab initio potential function for HCN,61

which gives a higher barrier height of 200 kJ mol−1 compared to
146 kJ mol−1 of Ref. 59, for further quantitative investigations in the
future while using the same intermolecular potential of this work. In
the present work, the focus is given to the dynamics in the saddle
region, which is the pivotal stage governing the branching of tra-
jectories into the reactant or product well. While the barrier height
may certainly affect the motion climbing up the PES in the reactant
well toward the saddle region, the dynamics of the saddle region
is determined by the local morphology of the PES near the sad-
dle point, and its height relative to the reactant minimum does not
actually play a significant role. As we fit the intermolecular poten-
tial with data points concentrated in the saddle region (see Fig. S2
in the supplementary material), we judge that the present treat-
ment of the PES is sufficient for the purpose while leaving room for
improvement in the future investigation on the reactant excitation
stage.

From a given initial condition, the equations of motion were
numerically integrated by the fourth-order Runge–Kutta method
with variable time steps.62 To monitor the reaction channels, Jacobi
angle γ was defined as the angle between the vector connecting the
C and N atoms and that connecting the H atom from the CN mass
center, as shown in Fig. 2. The linear HCN structure corresponds
to γ = 0, and the CNH structure to γ = π. In the simulation, when
the angle γ became larger than 1.5 rad, the system was judged to
have fallen into the CNH product, and when the angle γ became
smaller than 1.0 rad, the system was judged to have fallen into the
HCN product.

Initial condition sampling

Datasets for machine learning were generated by sampling
200 000 initial conditions and simulating the trajectory to assign the
reaction channel to each initial condition. The trajectory simulation
was performed for the planar condition, wherein all the atoms were
assumed to remain in the same plane for simplicity. Without loss
of generality, the C and N atoms were initially placed on the x-axis,
with their mass center at the origin (Fig. 3) and having zero velocity.
The molecular plane was identified with the xy-plane. In the form
of equations, the initial positions and momenta of H, C, N, and Ar
atoms were sampled as follows:

rH = (xH, yH, 0), pH = (pxH, pyH, 0), (10)

rC = (−
mN

mC
xN, 0, 0), pC = (−pxN,−pyN, 0), (11)

rN = (xN, 0, 0), pN = (pxN, pyN, 0), (12)

rAr = (xAr, yAr, 0), pAr = (pxAr, pyAr, 0), (13)

where each variable was independently and uniformly sampled in
the following ranges:

xH/10−10 m ∈ [−0.65,−0.29], (14)

yH/10−10 m ∈ [0.93, 1.29], (15)

xN/10−10 m ∈ [0.48, 0.56], (16)

xAr/10−10 m ∈ [−2.5, 2.0], (17)

yAr/10−10 m ∈ [2.89, 3.56], (18)

pxH/10−24 kg m s−1
∈ [−21, 21], (19)

pyH/10−24 kgm s−1
∈ [−21, 21], (20)

pxN/10−24 kg m s−1
∈ [−46, 46], (21)

pyN/10−24 kg m s−1
∈ [−46, 46], (22)

pxAr/10−24 kg m s−1
∈ [−100, 100], (23)

pyAr/10−24 kg m s−1
∈ [−100, 100]. (24)

The structure of the HCN molecule was sampled in a neighbor-
hood of the saddle point (γ ≈ 1.2 rad ≈ 70○) for the isomerization.
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FIG. 1. Contour plots of the PES for some chosen positions of C, N, and Ar atoms. The saddle point on each surface is marked by a cross symbol whose arms show the
directions of the normal modes at the saddle point. The top left panel shows the PES in the absence of Ar, and the dots depict the intrinsic reaction coordinate (IRC).

FIG. 2. Definition of Jacobi coordinates for the HCN system.

The Ar atom position was then sampled in a region near the HCN
molecule. This simulated a situation in which the Ar atom collided
with the HCN molecule in the middle of an isomerization reaction
and affected the outcome of the proceeding reaction. Both forward
and backward time propagations were calculated from each ini-
tial condition, and the reactant and product states were assigned.
Consequently, there are four possible types of trajectories: forward
reaction (HCN→ CNH), backward reaction (CNH→ HCN), no
reaction from HCN (HCN→ HCN), and no reaction from CNH
(CNH→ CNH). The type of trajectory was regarded as a function
of the initial condition specified by the 11 variables (xH, yH, pxH, pyH,
xN, pxN, pyN, xAr, yAr, pxAr, and pyAr) as described earlier and was
used as the input to the machine learning.

FIG. 3. Schematic illustration of the variables that parameterize the initial condition.
Conjugate momenta are omitted to keep the figure simple.

In the sampling explained earlier, the center of mass of the
four-atom system is not necessarily at the origin and can also have
non-vanishing momentum. The sampling was performed uniformly
in the rectangular region, as described earlier. This sampling method
makes the explanatory variables independently distributed. This
makes the interpretation of the role of each variable more acces-
sible from the analyses described in the section titled Results and
Discussion. As an example of correlated sampling, the results of
microcanonical sampling are presented in Appendix A.

In addition to the full-dimensional sampling, trajectory calcu-
lations on the points sampled with fixed Ar positions and momenta
were also performed with the aim of providing further analyses on
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the effect of the Ar atom on the reaction. Eight Ar positions were
selected by seeking “representative” positions that illustrated the
effect of the Ar atom as revealed by the machine learning results of
the full-dimensional sample. For each Ar position, 200 000 trajectory
data were generated.

Machine learning

In this study, we used a random forest (RF) classifier. RF is an
ensemble learning method that constructs multiple decision trees
using training data and classifies the input data based on majority
voting.63 The RF classifier was trained using 180 000 data points, and
20 000 data points were used for the prediction test. All the RF cal-
culations were conducted using the scikit-learn library (ver. 0.23.2)
with the following default hyperparameters:64 number of trees
(n_estimators) is 100, maximum depth of each tree (max_depth) is
“none” (unlimited depth), minimum number of samples required
to split an internal node (min_samples_split) is 2, minimum num-
ber of samples required to be at a leaf node (min_samples_leaf)
is 1, and maximum number of features to consider for each split
(max_features) is “auto” (square root of number of features). Before
the test calculation, we checked the generalization performance of
the trained model by using the fivefold cross-validation technique.65

In the test calculation, we utilize “accuracy” to see the Random For-
est model’s ability to correctly predict the reactivity of the HCN
isomerization reaction in the presence of Ar based on the given ini-
tial conditions. Accuracy is a performance metric commonly used
in machine learning to assess the model’s predictive ability. It mea-
sures the proportion of correctly predicted outcomes over the total
number of predictions.

To evaluate the importance of the features in the prediction test,
we employed permutation importance,63 which quantifies the reduc-
tion in predictive performance resulting from the random shuffling
of a specific feature. Specifically, for each feature, we randomly
permuted its values across the dataset and measured the result-
ing decrease in prediction accuracy. This allowed us to assess the
individual impact of each feature on the model’s performance.

In addition to the importance of permutation, we utilized the
SHapley Additive exPlanation (SHAP) analysis, which is a game-
theoretic method widely utilized for interpreting machine learning
models.66,67 The SHAP analysis assigns a numerical value, known
as the SHAP value, to each feature, representing its contribution
to the prediction for a particular sample. The SHAP values provide
insights into the direction and magnitude of the feature’s impact on
the predicted reactivity of the HCN isomerization reaction in the
presence of Ar. Positive SHAP values indicate that the feature pos-
itively contributes to the predicted reactivity, meaning that higher
values of the feature are associated with an increased likelihood of
the reaction occurring. Conversely, negative SHAP values indicate a
negative contribution, indicating that lower values of the feature are
associated with a higher likelihood of the reaction.

RESULTS AND DISCUSSION
Full dimensional learning and dimension reduction

Each sample point, specified with the 11 variables (xH, yH,
pxH, pyH, xN, pxN, pyN, xAr, yAr, pxAr, pyAr), was assigned one of

the four reaction channels (HCN→ CNH, CNH→ HCN, HCN
→ HCN, CNH→ CNH) from the forward and backward trajectory
calculations as explained in the last section. RF machine learning was
then applied to predict the reaction channels from the values of the
11 variables. The results are shown in the first row of Table I. When
all 11 variables are used, the accuracy is as high as 0.95. This indicates
that the present eleven-dimensional (11D) RF model can correctly
predict the reaction channels of the HCN reaction for 95% of the
initial conditions.

With the aim of using the machine learning results to obtain
molecular-level insights into the chemical reaction, it is here
intended to eliminate some unimportant variables and predict the
reaction channel by using as few variables as possible to obtain a
simpler picture of the reactivity. First, we conducted a permuta-
tion analysis63 to evaluate the importance of the variables (called
“features” in the machine learning field). Briefly, the values of a
variable were randomly permuted in the samples, and the predic-
tion accuracy was then computed for these samples. The decrease in
accuracy because of this permutation is regarded as indicating the
importance of that variable for the prediction. The results shown
in Fig. 4 reveal that the x-coordinate and its conjugate momentum
of the H atom are the most important variables required for deter-
mining the reactivity. This is intuitively understandable because the
title reaction HCN⇄ CNH can be approximately regarded as the
migration of the H atom from the C side to the N side owing to
the smaller mass of H compared to those of C and N. Next to the
H variables, the most important variable required for the prediction
is pyN, which approximately represents the bending motion of the
HCN molecule. In fact, the elimination of this variable from the RF
model decreases the accuracy of prediction by 10% (10D model, the
second row in Table I). Note that the 10D model was trained using
the same full-dimensional data as those used for the 11D learning.
This implies that the variable pyN has a non-negligible contribu-
tion to predicting the reactivity in the full-dimensional sample. By
contrast, the decrease in accuracy induced by the elimination of xN,
pxN, pxAr, and pyAr is negligible; the 7D model (third row in Table I)
shows a prediction accuracy of ∼95%. This result is consistent with
the permutation importance results shown in Fig. 4, which demon-
strate that the importance of xN, pxN, pxAr, and pyAr is negligible. The
elimination of pyN from the 7D model results in a 6D model. The
fourth row in Table I shows that this model decreases the predic-
tion accuracy to 86%, as can be expected from the results of the 10D
model. The Ar positions xAr and yAr contribute to the prediction to
some extent, whereas the contributions of the Ar momenta pxAr and
pyAr are found to be negligible. The elimination of the Ar coordinates
decreases the prediction accuracy by 2% (5D model, the last row in
Table I). Figure 4 also shows that although the importance of the Ar
position coordinates is not as high as that of pyN, it is not negligible.

Molecular interpretation of the full
dimensional results

Figure 1(a) shows the contours of the potential energy experi-
enced by the H atom. The saddle point for the isomerization reaction
and IRC are also shown. Near the saddle point, the direction of the
IRC is approximately parallel to the x-direction, that is, the direc-
tion of the CN axis. Therefore, in this region, the chemical reaction
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TABLE I. Accuracy of the machine learning results in the reaction channel assignment for the HCN reaction under the pres-
ence of Ar. Acc denotes the accuracy of the test, and Cross_max and Cross_min denote the maximum and minimum values
of the cross-validation results, respectively.

Variables Dimension Acc Cross_max Cross_min

xH, yH, pxH, pyH, xN, pxN, pyN, xAr, yAr, pxAr, pyAr 11 0.952 0.953 0.948
xH, yH, pxH, pyH, xN, pxN, xAr, yAr, pxAr, pyAr 10 0.860 0.860 0.859
xH, yH, pxH, pyH, pyN, xAr, yAr 7 0.947 0.949 0.944
xH, yH, pxH, pyH, xAr, yAr 6 0.858 0.857 0.856
xH, yH, pxH, pyH, pyN 5 0.927 0.926 0.924

FIG. 4. Contribution of each variable to the prediction of reactivity in the
full-dimensional model as evaluated via permutation importance.

almost corresponds to the movement of the H atom along the x-
direction. This explains the high importance of xH and pxH as well as
the low importance of yH and pyH.

To elucidate more concretely how xH and pxH affect the occur-
rence of the reaction, the reactivity boundaries in a section of phase
space are shown in Fig. 5. For visualization, a two-dimensional plane
spanned by xH and pxH is selected, with the other variables fixed
at the following values: yH = 1.112 Å, xN = 0.526 Å, xAr = −2.50 Å,
yAr = 3.56 Å, and pyH = pxN = pyN = pxAr = pyAr = 0. As can be
observed, the plane is divided into four domains in terms of the
reaction channels: two reactive channels (HCN→ CNH and CNH
→ HCN) and two non-reactive channels (HCN→ HCN and
CNH→ CNH). The boundaries of these four regions are called the
“reactivity boundaries.” In the calculation, the plane was divided into
200 × 200 grid points, and the boundaries were detected by assigning
a reaction channel to each grid point. Reaction-channel assignment
was performed both by the trajectory simulations and by the RF pre-
diction, and their results are compared in the figure. It is seen that
the RF prediction satisfactorily reproduces the reactivity boundaries
obtained from trajectory simulations.

The positioning of the four regions and their boundaries shown
in Fig. 5 is essentially the same as that found in previous studies con-
ducted on dynamical chemical reaction theory.14–43 A large positive
(negative) pxH implies that the H atom has sufficiently high energy
to overcome the reaction barrier from the C side to the N side (from
the N side to the C side, resp.). On the other hand, xH, the position of
the H atom along the x-direction, mainly distinguishes the two non-
reactive channels (HCN→ HCN and CNH→ CNH) for small ∣pxH∣;

FIG. 5. Reactivity boundaries are illustrated in the two-dimensional section
spanned by xH and pxH. Boundaries calculated by trajectory simulations (thick blue
lines) and RF predictions (thin red lines) are compared.

hence, the kinetic energy is low and the system is confined within
either the HCN or the CNH potential well.

A schematic is shown in Fig. 6 to interpret the importance of
pyN. Suppose a case with small H atom momentum. If CN does not
move, the H atom is reflected by the reaction barrier and falls back
into the HCN potential well [panel (a)]. If the N atom has some
positive momentum along the y direction, the CN axis rotates coun-
terclockwise, as shown in the figure [panel (b)]. The N atom then
approaches the moving H atom. Finally, the H atom is caught by the
N atom, thereby forming the CNH product. To verify this interpreta-
tion quantitatively, the reactivity boundaries are drawn in Fig. 7. The
figure shows a two-dimensional section of the phase space spanned
by pyN and pxH, with the other variables fixed at the following values:
xH = −0.574 Å, yH = 1.112 Å, xN = 0.526 Å, xAr = yAr = 100 Å, and
pyH = pxN = pxAr = pyAr = 0. As observed in Fig. 5, the RF prediction
satisfactorily reproduces the reactivity boundaries obtained via the
trajectory simulations. It is noted that the boundaries slant down-
ward as pyN increases, enlarging the region of the HCN→ CNH
reaction. This indicates that for positive pyN, the HCN→ CNH
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FIG. 6. Illustrations to elucidate the role of the N atom’s motion in determining the
reactivity. (a) Consider the case where the H atom initially has a small momentum.
It is reflected back into the reactant (HCN) region by the reaction barrier. (b) For
the same initial momentum of H, if the N atom is initially moving upward in the
figure, the H atom can easily be captured by the N atom to form the CNH product.

FIG. 7. Reactivity boundaries are illustrated in a two-dimensional section spanned
by pyN and pxH. Boundaries calculated by trajectory simulations (thick blue lines)
and RF predictions (thin red lines) are compared. The region of HCN→ CNH reac-
tive initial conditions expands with increasing pyN, which implies that the motion of
the N atom in the positive y-direction assists the HCN→ CNH reaction.

reaction occurs more easily, which confirms the interpretation
illustrated in Fig. 6.

The mechanical picture obtained here, as shown in Fig. 6, is
intuitively reasonable and is computationally confirmed by plotting
the reactivity boundaries as in Fig. 7. This plot is, however, possi-
ble only after one has chosen the coordinates (in this case, pyN and
pxH) to plot the boundaries in the phase space. The machine learning
helped to choose the coordinates for the plot by identifying the coor-
dinates that have a significant influence on the reaction outcome, as
done by inspecting the permutational importance in Fig. 4.

By contrast, xN and pxN, which approximately represent the
CN stretching motion, are not important for predicting the reac-
tion. This implies that the isomerization reaction is dynamically
independent of the CN stretching motion.

The effect of Ar atom position analyzed by SHAP

Machine learning and the subsequent analyses via permutation
importance have revealed that the presence of Ar affects the reactiv-
ity of the HCN system. To obtain further insights into the role of the
Ar atom, the SHAP values66,67 of the variables xAr and yAr were eval-
uated for the 7D model here. Briefly, the SHAP value of a variable
approximately describes the extent of the variable’s contribution to
making a prediction. Figure 8 shows the SHAP values of xAr and yAr
plotted against the two-dimensional plane of (xAr, yAr). For exam-
ple, it is observed from the top right panel of Fig. 8 that the variable
xAr makes a large positive contribution in predicting that the given
initial condition corresponds to the CNH→ CNH channel when the
Ar atom is located at the points (xAr, yAr) ≈ (−1.0 Å, 2.9 Å).

Eight regions can be roughly recognized in the (xAr, yAr)-plane
from the plots of SHAP values in Fig. 8. To clarify, the top right panel
of Fig. 8 is reproduced in the left panel of Fig. 9, wherein the right
panel shows the division of the left-panel figure into eight regions.
Regions (F) and (G) are characterized by the greatest effect of the
Ar atom position (xAr, yAr) on the reactivity. These two regions also
show the most contrasting SHAP values because the effect of the
Ar-atom positions experienced in the region (F) is in the oppo-
site direction to that experienced in the region (G). For example,
for the CNH→ CNH channel, the variable xAr has a large posi-
tive effect in the region (F), whereas it has a large negative effect
in the region (G). Compared to regions (F) and (G), the effect of the
Ar-atom position is weaker in regions (A)–(E) and (H), and the con-
trast between these regions is not necessarily clear. In the molecular
picture, these regions correspond to the configuration wherein the
Ar atom is located rather far from the HCN molecule; therefore, they
may exhibit weaker intermolecular interactions.

Machine learning with single initial Ar position

To obtain further insights into the effect of the Ar-atom posi-
tion, one representative point was chosen from each of the eight
regions identified in the previous subsection, as shown in Fig. 9.
Hereafter, these points are denoted by a, b, . . . , h in bold Roman
letters. Machine learning was performed on datasets in which the
initial position of the Ar atom was set at each of the points a–h,
and the remaining variables were randomly sampled in the region
described in the section titled Materials and Methods. The learning
results obtained for different Ar-atom positions were compared to
assess the influence of the Ar-atom position on the reaction. In the
sampling, the initial momentum of the Ar atom was fixed at zero
because the initial momentum of the Ar atom (pxAr, pyAr) was found
to have negligible effects on reactivity in full-dimensional learning.
Based on the high performance of the “7D model” with the input
(xH, yH, pxH, pyH, pyN, xAr, yAr) found for the full-dimensional data,
machine learning was applied here with respect to the five variables
xH, yH, pxH, pyH, and pyN, since xAr and yAr were not used as variables
in this analysis. In addition, machine learning was also performed
for the configuration in which the Ar atom was placed sufficiently
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FIG. 8. The contributions of the variables xAr and yAr are evaluated by using SHAP values. The SHAP value is calculated for each point in the learning dataset. Each point is
then plotted by its (xAr, yAr) values. The color indicates the SHAP value of xAr (top panel) or yAr (bottom panel) for each point.

FIG. 9. The left panel reproduces the right top panel of Fig. 8. As shown in the right
panel, eight regions can be recognized according to the direction and extent of the
effect of Ar on the reaction.

distant from the HCN molecule so that the intermolecular inter-
action between them was negligible. This condition is denoted as
“Ar∞.”

As shown in Table II, the machine learning results exhibit ∼95%
or higher prediction accuracy for every case, while the Ar-position
dependence of accuracy is negligible. This demonstrates the con-
sistent performance and effectiveness of the model in predicting
the reactivity for each Ar position. Moreover, the permutation-
importance results shown in Fig. 10 indicate high similarity between
results achieved for a–e, h, and Ar∞. This further supports the
molecular view that regions (A)–(E) and (H) are characterized by
weak intermolecular interactions, and the reactions there are almost
the same as those in the isolated HCN without Ar buffer gas. By con-
trast, the permutation-importance results obtained for points g and
h show the increased importance of the motions of the hydrogen
atom in the y-direction, parameterized by yH and pyH.

TABLE II. Accuracy of the results of machine learning performed on the HCN reaction
with a single Ar initial position. Acc denotes the accuracy of the test, and Cross_max
and Cross_min denote the maximum and minimum values of the cross-validation
results, respectively.

xAr (Å) yAr (Å) Acc Cross_max Cross_min

a −2.5 3.56 0.963 0.962 0.958
b −1.2 3.56 0.962 0.961 0.960
c 0.3 3.56 0.959 0.962 0.960
d 2.0 3.56 0.960 0.961 0.958
e −2.5 2.89 0.963 0.961 0.958
f −1.2 2.89 0.968 0.970 0.967
g 0.3 2.89 0.947 0.949 0.945
h 2.0 2.89 0.960 0.960 0.959
Ar∞ 100 0 0.961 0.960 0.959

Cross tests

To further demonstrate the distinction between points f, g
and the other cases, the results of “cross tests” were examined. A
cross-test means that the result of learning in one case is used to
predict the reaction channel in another case, and the prediction
accuracy is evaluated. As shown in Table III, the result of learn-
ing by using the dataset Ar∞ can predict the reaction outcome for
points a–e and h with almost perfect accuracy, further supporting
the view that reactions that occur in the regions (A)–(E) and (H) are
essentially similar to the unimolecular reaction of isolated HCN. By
contrast, the learning result obtained for the unimolecular reaction
shows a low performance in the prediction of reaction outcomes for
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FIG. 10. Contribution of each variable to the prediction of reactivity is evaluated via permutation importance. The result is shown for each Ar-atom position defined in Fig. 9.

TABLE III. Accuracy of the random forest evaluated in the cross-prediction tests.
Machine learning is performed on one dataset (denoted as “Training”), and then the
result is applied to the prediction in another dataset (denoted as “Test”).

Training Ar∞ a b c d e f g h

Test
Ar∞ 0.961 0.960 0.961 0.960 0.961 0.960 0.616 0.772 0.961
a 0.961 0.963 0.958 0.961 0.961 0.960 0.619 0.780 0.961
b 0.960 0.960 0.962 0.958 0.959 0.961 0.632 0.765 0.959
c 0.959 0.959 0.957 0.959 0.960 0.958 0.622 0.773 0.959
d 0.960 0.962 0.959 0.959 0.960 0.961 0.624 0.773 0.960
e 0.962 0.961 0.963 0.960 0.962 0.963 0.622 0.762 0.960
f 0.617 0.616 0.624 0.613 0.619 0.622 0.968 0.479 0.616
g 0.773 0.774 0.764 0.776 0.769 0.765 0.479 0.947 0.773
h 0.961 0.960 0.959 0.959 0.960 0.959 0.613 0.768 0.960

f and g, and the cross-test results between f and g exhibit the worst
performance.

Interestingly, the permutation importance evaluated for the
prediction of f by the learning of g and vice versa (Fig. 11) shows
negative values for xH and pyH. This implies that the information on
xH or pyH worsens the prediction accuracy if the reactivity at f is pre-
dicted by using the learning results obtained for g. In other words,

the roles played by xH and pyH in determining the reaction channels
are likely to be opposite in direction between regions (F) and (G).

Molecular interpretation for the effect
of the Ar position

Figures 1(b) and 1(d) show the potential energy contours expe-
rienced by the H atom for the Ar-atom positions corresponding to
points f and g, respectively. The saddle point is marked by a cross
symbol whose arms show the accompanying normal directions. As
can be observed, the position of the saddle point shifts along the x-
direction, mainly because of the repulsive interaction with the Ar
atom. Qualitatively, a saddle point on the PES divides the space
into the “reactant” and “product” regions (at least approximately for
sufficiently low energies). Therefore, the initial conditions wherein
pxH is so low that the reaction barrier cannot be overcome are clas-
sified into the HCN→ HCN (CNH→ CNH) channel if xH < xsdl
(xH > xsdl, resp.). Here, xsdl denotes the x-coordinate of the saddle
point. Because the value of xsdl changes significantly between points
f and g, classifying the trajectories via learning on one of the points
results in significant errors when applied to the other point. The
error may be so large that it is better not to use the information in xH
at all. This explains the negative importance found in the cross-test
results obtained for f and g. This interpretation can be confirmed
by plotting the reactivity boundaries, as shown in Fig. 12, for the
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FIG. 11. Contribution of each variable is evaluated via the permutation importance
when the result of learning the dataset at f (g) is applied to predict the reaction
channels at g (f, resp.). A negative contribution from a variable implies that its use
likely leads to the wrong prediction. In other words, the effect of the variable on the
reaction is opposite in direction for points f and g.

Ar-atom positions f and g. The topological positioning of the four
regions is similar to that shown in Fig. 5, which is drawn with the Ar
atom located at a and using the learning results for full-dimensional
data. A comparison of the two panels in Fig. 12 with each other

and with Fig. 5 reveals the shift of the reactivity boundaries in the
direction of xH in accordance with the saddle point.

As can be observed in Figs. 1(b) and 1(d), the direction of the
reaction coordinate (by normal mode approximation at the saddle)
has a small y-component for points f and g, whereas it is nearly par-
allel to the x-direction in the absence of the Ar atom. This highlights
the importance of pyH in determining the reactivity of points f and
g. Moreover, the sign of the y-component of the reaction coordinate
direction for f is opposite to that for g. This implies that the contribu-
tions of pyH to the reactivity are opposite in direction at points f and
g, explaining the negative importance of pyH found in the cross-tests.

SUMMARY AND OUTLOOK

In the present study, the reaction dynamics of the isomeriza-
tion reaction HCN⇄ CNH was investigated under the effect of an
Ar atom as the buffer gas. Reaction trajectories were simulated on
the potential energy function newly constructed with CCSD(T)/aug-
cc-pVQZ level ab initio calculations. The four reaction channels
(HCN→ HCN, HCN→ CNH, CNH→ CNH, and CNH→ HCN)
assigned by the trajectory simulation were regarded as a function
of the initial positions and momenta of all the atoms in the sys-
tem. Machine learning by the RF method was performed on the data
obtained by the trajectory simulation. Its prediction accuracy was
∼95%, which indicated that the RF model captured the features of the
phase space affecting the reactivity. Subsequent analyses of the con-
tributions of the variables via permutation importance and SHAP
values enabled the extraction of variables essential to determine reac-
tivity. Corresponding molecular pictures of the roles played by these
variables were provided. The primary importance of the position
and momentum of the H atom along the x-direction, where the
x-axis is taken parallel to the CN bond, can be understood from
the fact that the reaction is essentially the motion of the H atom

FIG. 12. Reactivity boundaries are illustrated in a two-dimensional section spanned by xH and pxH. Left panel: the Ar atom is initially positioned at the point f. Right panel: the
Ar atom is initially positioned at the point g.
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because of its small mass and that the IRC is nearly parallel to the
x-axis near the saddle point. Machine learning results revealed that
pyN is also important in predicting reactivity, which corresponds to
the initial rotation of the CN. This is interpreted as meaning that the
motion of the H and N atoms toward each other facilitates the for-
mation of the HN bond. Central to the interest of the present study,
the effect of the Ar atom was also elucidated through the analyses
of the machine-learning results, and it was successfully interpreted
in terms of the displacement of the saddle point by the repulsive
interaction between the H and Ar atoms.

It is noted that the machine learning found out those variables
essential to the dynamics of the reaction without any prior knowl-
edge of this reaction. The data used for the learning were only the
trajectory simulation results obtained for the sampled initial con-
ditions. Starting from the set of all the variables in the system, the
machine learning and subsequent analyses extracted a reduced num-
ber of variables regarded as important for the reaction. While the
molecular interpretations provided for the roles played by these vari-
ables are clear after the extraction of the variables, it was not a
priori trivial that only those variables were of essential importance
before the machine learning analyses. The present results imply that
thorough statistical analyses provided by machine learning can fur-
ther advance the fundamental understanding of polyatomic reaction
dynamics. It is known in many reactions that differences in initial
conditions lead to significant differences in reaction dynamics.68–73

It would be interesting to apply the machine learning analysis of the
present study to elucidate the mechanism of such chemical reactions.

In this present study, we have chosen a relatively simple sys-
tem of short-time passage over an isomerization saddle and focused
on the applicability of machine learning to extract insights into the
dynamics. For the purpose of machine learning, the initial condi-
tion was sampled uniformly in the rectangular region with the planar
geometry of the four-atom system. In fact, it is shown in Appendix A
that this uniform sampling is more efficient for the purpose of evalu-
ating the importance of each variable than microcanonical sampling,
which holds the total energy of the system constant. Concerning
the planarity, a partial investigation of the effect of the out-of-plane
motions is presented in Appendix B. In the range investigated, the
results do not change the main conclusion of this study. Moreover,
a complete picture of a chemical reaction beyond the passage over
the saddle will include excitation in the reactant basin before enter-
ing the saddle region and relaxation in the product basin after the
passage over the saddle. Indeed, in the case of the HCN isomeriza-
tion considered in the present study, the system will keep passing
back and forth between the HCN and CNH wells if relaxation does
not occur in the well after the passage over the saddle. More com-
plicated behaviors like fractal dependence on initial conditions may
arise in those dynamics in the well or when one proceeds to ana-
lyze larger molecular systems with the methods presented in this
work. Those problems would present intriguing challenges in the
technical aspects of machine learning in future investigations. Tech-
nical developments in machine learning combined with the analysis
methods proposed in our current study would open the way to eluci-
date the dynamics of such complicated systems. For example, the use
of curvilinear coordinates in contrast to the cartesian coordinates as
used in the present study may offer advantages in terms of inter-
pretability. In this respect, it is encouraging that machine learning
can handle analytical formulas,56 which may enable it to find the best

curvilinear coordinates to describe the reaction dynamics. It is also
noteworthy that the concept of mapping the initial phase space by
analyzing the minimum dynamic path (MDP), as proposed by Unke
et al.,74 holds promise for enabling efficient sampling of reactive tra-
jectories, which can further enhance the effectiveness of our machine
learning-based analysis. However, the precise relationship between
the MDP analysis and the present ML-based analysis is not yet clear
and warrants further investigation as an intriguing topic for future
research from a physical viewpoint. Since the reaction path is nec-
essarily curvilinear, it would be interesting to compare the results of
machine learning using curvilinear coordinates with their findings
in future investigations.

Another interesting future direction may be to validate the
present results through experiments, e.g., scattering experiments
with molecular beams.1 The energy and direction of the collision
can be controlled by aligned molecular beams.1,68,75 The initial state
of the molecule can be prepared by laser excitation. With the pre-
cise control of the initial state by these experimental techniques,
the reaction outcome can be controlled by selecting the reactive or
non-reactive initial conditions revealed by the present study. While
the present study primarily focused on the saddle region dynamics
rather than the entire reaction process including the initial exci-
tation, the obtained insights already carry some implications for
experimental investigations. For instance, it was found that the posi-
tion of the Ar atom affects the branching of trajectories in the
saddle region, directing them into the reactant or product well. This
suggests that for the same given excitation method (e.g., laser irradi-
ation), isomerization can be promoted by colliding the Ar atom from
the C side rather than the N side of the HCN molecule (see Fig. 12).
This direction would open an interesting avenue for controlling
chemical reactions based on clear molecular insights.

SUPPLEMENTARY MATERIAL

See the supplementary material for the data of the electronic
state calculation and the potential energy surface fitting.

ACKNOWLEDGMENTS
This research was supported by the JSPS KAKENHI (Grant No.

16KT0050). S.K. was also supported by JSPS KAKENHI (Grant No.
16K17852). Part of the computation was performed by the super-
computers of ACCMS, Kyoto University, and TSUBAME (Grant
Nos. hp210141 and hp220134). T.Y. also acknowledges the support
from Scientific Research [Grant Nos. JSPS KAKENHI (C) 21K03482
and (C)18K05025], the GAP Fund (UTokyo), and the Program
for Promoting Research on the Supercomputer Fugaku (Appli-
cation of Molecular Dynamics Simulation to Precision Medicine
Using Big Data Integration System for Drug Discovery, Grant Nos.
JPMXP1020200201, hp210172, and hp220164).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

J. Chem. Phys. 159, 124116 (2023); doi: 10.1063/5.0156313 159, 124116-11

Published under an exclusive license by AIP Publishing

 04 O
ctober 2023 03:07:51

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Author Contributions

Takefumi Yamashita: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Funding acquisition (equal);
Investigation (equal); Methodology (equal); Project administra-
tion (equal); Supervision (equal); Validation (equal); Visualiza-
tion (equal); Writing – original draft (equal). Naoaki Miya-
mura: Data curation (supporting). Shinnosuke Kawai: Conceptu-
alization (equal); Data curation (equal); Formal analysis (equal);
Funding acquisition (equal); Investigation (equal); Methodology
(equal); Project administration (equal); Supervision (equal); Val-
idation (equal); Visualization (equal); Writing – original draft
(equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the supplementary material.

APPENDIX A: MACHINE LEARNING RESULTS
FOR MICROCANONICAL SAMPLING

In the main text, machine learning was performed on data
points uniformly sampled in the rectangular region of initial condi-
tions [Eqs. (14)–(24)]. In this sampling, all the explanatory variables
are independent of each other. One may consider more chemically
“natural” ways of sampling such as the microcanonical ensemble,
where energy conservation is taken into account, sampling with
constant energy and angular momentum, or even a quasi-classical
sampling, where all the quantum numbers are held constant in the
initial condition. As a primary investigation for such sampling, here
we report the results of machine learning on the microcanonical
sampling.

To obtain sample points with a constant energy, a 60 ns-long
trajectory simulation of HCN was performed, and the coordinates
and momenta were extracted every 60 fs. Then 5000 points with
1.0 < γ < 1.5 were randomly selected. The energy of the trajectory
was set at 69.4 kJ mol−1 above the saddle point, which roughly
allows excitation of the vibrational mode orthogonal to the reac-
tion coordinate with one quantum number, considering that the
highest-frequency normal mode at the saddle point has the fre-
quency 3100 cm−1

≈ 35 kJ mol−1. The total angular momentum
was set to zero. The momenta were re-sampled every 20 fs dur-
ing the trajectory. After the microcanonical sample of HCN was

FIG. 13. Contribution of each variable to the prediction of reactivity in the
microcanonical sample as evaluated via permutation importance.

obtained, the Ar atom was put at random positions in the regions
−1.24 < xAr/10−10 m < 0.27 and 2.89 < yAr/10−10 m < 3.56, and the
momenta pxAr and pyAr were sampled by the normal distribution
with a standard deviation of 2.0 × 10−23 kg m s−1.

The results of the machine learning on the microcanonical sam-
ple are summarized in Table IV, corresponding to Table I in the
main text, and the values of permutation importance are shown in
Fig. 13, corresponding to Fig. 4 in the main text. Somewhat counter-
intuitively, a non-negligible contribution of yH is found. This is
in contrast to what was found on the rectangular sampling shown
in the main text (Fig. 4), and it is counterintuitive from the fact
that the reaction coordinate is nearly parallel to the x-direction and
the motion along y is a vibrational mode orthogonal to the reac-
tion direction [Fig. 1(a)]. This can be interpreted as follows: As the
vibration along the y-direction is excited, the energy available in the
reaction direction is reduced due to the constancy of the total energy.
Hence, the magnitude of pxH is inversely correlated with yH in the
sample, and a higher value of yH implies a smaller ∣pxH∣, which makes
the initial condition less likely to be reactive. From this interpreta-
tion, the reactivity itself is directly affected by the value of pxH, but
due to the correlation between yH and ∣pxH∣ existing in the sample,
the machine simply finds a correlation between yH and the reactivity.
Therefore, for the purpose of obtaining molecular insights from the
results of machine learning, it is recommended to prepare rectangu-
lar sample points so that the explanatory variables are independently
distributed. Nevertheless, it would be interesting for future work to
devise methodologies to extract sensible interpretations even from
correlated samples.

TABLE IV. Accuracy of the machine learning results in the reaction channel assignment for the HCN reaction with microcanonically sampled initial conditions. Acc denotes the
accuracy of the test, and Cross_max and Cross_min denote the maximum and minimum values of the cross-validation results, respectively.

Variables Dimension Acc Cross_max Cross_min

xH, yH, pxH, pyH, pxC, pyC, xN, pxN, pyN, xAr, yAr, pxAr, pyAr 13 0.943 0.944 0.936
xH, yH, pxH, pyH, pxC, pyC, xN, pxN, xAr, yAr, pxAr, pyAr 12 0.936 0.940 0.932
xH, yH, pxH, pyH, xAr, yAr, pxAr, pyAr 8 0.928 0.926 0.919
xH, yH, pxH, pyH, xN, xAr, yAr 7 0.933 0.931 0.926
xH, yH, pxH, pyH, xAr, yAr 6 0.933 0.933 0.926
xH, yH, pxH, pyH 4 0.919 0.917 0.912
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FIG. 14. Plots of the reactivity boundaries as in Fig. 12 in the main text. The Ar atom is placed at points f and g, where the effect of the Ar atom was best observed in the
main text. In the left panel, the Ar atom is given initial momentum pzAr = 1.0 × 10−22 kg m s−1. In the right panel, the Ar atom is initially off the HCN plane with zAr = 1.0 Å.

APPENDIX B: EFFECTS OF THE z-DIRECTION

In the main text, the sampling was performed with all four
atoms in the x–y plane [Eqs. (10)–(13)] because it is expected that
the effect of the Ar atom can be best observed when it is on the
same plane with HCN. In this paragraph, we show some preliminary
results for the effect of displacing the Ar atom in the z-direction.
Figure 14 shows plots of the reactivity boundaries in the xH–pxH
plane, as in Fig. 12 in the main text. In the left panel, the Ar atom
is given the initial momentum of pzAr = 1.0 × 10−22 kg m s−1, which
is the same as the maximum value given to pxAr and pyAr in the sam-
pling conducted in the main text [Eqs. (23) and (24)]. It is seen that
the effect of the initial pzAr on the reactivity boundaries is negligible.
In the right panel of the same figure, the Ar atom is initially displaced
off the HCN plane with zAr = 1.0 Å. Here, the reactivity boundaries
for f and g approach each other and become more similar to those
shown in Fig. 5, which was drawn for the case a, where the Ar effect
is weak. This suggests that the effect of the Ar atom diminishes as it
moves away from the HCN in the z-direction. Therefore, in either
case, the effect of the z-direction is easily understandable. We con-
sider that this provides a good reason to focus, at least as the first-step
of the investigation, on the motion confined to the x–y plane.
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