複数UAVを用いた小口径下水管検査のための陣形制 御手法の検討

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: ja
	出版者: 情報処理学会
	公開日: 2023-10-18
	キーワード (Ja):
	キーワード (En):
	作成者: 近本, 祐介, 堤, 悠喜, 石原, 進
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/0002000064

複数UAVを用いた小口径下水管検査のための 陣形制御手法の検討

近本 祐介^{†1} 堤 悠喜^{†1} 石原 進^{†1}

概要:現在下水管の老朽化が問題となっており,全国的に下水管の検査や修復作業が必要となっている. しかしながらその時間的,人的コストが作業実施の障壁となっている.筆者らは下水管検査の短時間化や 人的コストの削減を目指し,小口径下水管を対象として複数のUAV(Unmanned Aerial Vehicle)を用い た管内部の検査手法の開発を行なう.この手法は,複数のUAVによって下水管内部に無線マルチホップ ネットワークを構成し,通信接続性を維持するよう中継用のUAVの位置を自動で調整しながら先頭を飛 行するカメラ搭載UAVのリアルタイムの操縦と映像転送を可能とするものである.この検査を実現する ため,本稿では,管内を飛行するUAVの陣形制御手法を提案する.また下水管内部におけるUAVの陣形 制御のために必要なUAV間の距離測定技術について調査を行ったので報告する.

A Study on Formation Control Method for Small Diameter Sewer Pipe Inspection Using Multiple UAVs

1. はじめに

現在,国内の下水管の総延長48万kmのうち40%以上 が耐用年数である30年を超えており,老朽化下水管を原因 とした道路陥没事故が年間3000件以上発生している[1]. このため,老朽化下水管の早急な検査と危険箇所の補修・ 交換が必要とされている.既存の下水管内部の検査手法と してはファイバスコープ[2],自走ロボット[3]を用いたも のがあるが,これらの手法は機器・作業コストが高く,管 内部の水深や堆積した土砂を原因とした検査範囲の制約が 大きい.また,筆者らは機器コストの低い浮流カメラ[4] を用いた下水管検査システムを開発していたが,管内の水 量の低下,管内を堆積している土砂によって浮流カメラが 管内部を流れず検査できなくなるという問題点があった. そこで本研究では,低コストかつ短時間,耐障害物性に優 れた検査を可能とするため,図1のような複数の小型UAV を用いた下水管検査システムを開発を目指す.

提案する検査手法の概略は以下の通りである.まず調査したい下水管付近のマンホールから複数の小型 UAV (Unmanned Aerial Vehicle)を投入し下水管内部に配置す

^{†1} 現在,静岡大学 Presently with Shizuoka University

図1 複数の UAV を用いた下水管検査

る. 投入口に設置した制御ノード(CN)とこれらのUAV 同士は無線 LAN によるマルチホップネットワークを構成 しておき,通信接続性を失わないよう自律的に端末間距離 を常に調整する. このネットワークを介して先頭を飛行す るカメラを搭載した UAV(以後カメラ UAV と呼ぶ)は, 撮影映像を中継 UAV を介して常時 CN ヘストリーミング 送信する. 検査員は CN に接続したタブレット等からカメ ラ UAV を遠隔操作し,リアルタイムに管内部の撮影映像 を検査する. この手法は,UAV の配置後作業員は CN に 接続された端末を介して UAV を操作し,閲覧したい箇所 を検査できるので,作業コストが低く安全である.また, UAV は管内部に堆積した土砂や水の有無の影響を受けな **IPSJ SIG Technical Report**

いので長距離の検査が期待できる.

このシステムの実現のためには、UAV の撮影映像デー タ並びに先頭のカメラ UAV の遠隔操作に関する制御信 号を下水管内部において無線 LAN によって転送可能でな ければならない. 長島らは、これまでに ϕ 200-250 mm の 地下下水管での 2.4GHz・5GHz IEEE802.11 無線 LAN (, IEEE802.15.4, 並びに 920MHz 帯 ARIB STD-T108) での 通信性能の評価を行い、5-10 m 程の通信可能範囲が確保で きることを確認している [5]. 先頭のカメラ UAV からタブ レット端末への安定した映像ストリーミングを維持するた めには、各 UAV は飛行間隔をこの通信可能範囲に収める よう陣形制御をする必要がある. つまり UAV 間の距離が 最大でも約5m以内になるように地上の端末からの遠隔 操作のための制御信号を用いて陣形制御しなければならな い.本稿では、複数の UAV を用いた陣形制御手法を提案 する.この陣形制御に必要となる各 UAV 同士の距離の測 距可能距離・精度について議論する.以下2章では目標と する複数の UAV を用いた下水管検査とその課題について 述べ,3章では筆者らの提案する複数 UAV を用いた陣形 制御手法について述べる.4章では下水管内部でのUWB を用いた測距可能距離・精度に関する調査について述べ, 5章で本稿をまとめる.

目標とする複数の UAV を用いた下水管検 査とその課題

1章で述べたように、下水管内部での無線 LAN の使用 には通信可能範囲の制限があることから、1 台の UAV を 使用して数 10 メートル以上に及ぶ範囲の遠隔操作、常時 接続の映像閲覧をすることは容易ではない.このため、中 継 UAV を複数台用いてマルチホップネットワークを形成 し、先頭のカメラ UAV の遠隔操作並びに常時接続の映像 閲覧の可能となる範囲を拡大することが本研究での目標 となる.この目標を達成するためには、マルチホップ通信 を保つように i) 通信品質および UAV での観測対象領域・ 及び今後の移動計画に応じた適切な UAV の陣形制御と、 ii) UAV 陣形と通信品質に応じた適切な経路選択とデータ 制御パケットの送信制御手法を開発する必要がある.後者 については、堤ら [6] が提案をしている.本稿では前者の 実現のための提案について述べる.

3. 複数 UAV を用いた陣形制御

3.1 陣形制御における課題

複数の UAV を用いた陣形制御について 2 つの課題があ る.1つ目に、制御信号の到達遅延によって UAV の陣形制 御が遅延することが考えられる.地上の検査員の端末から のリアルタイムな遠隔制御要求に応じて、管内部の各 UAV に対して適切に移動のための制御信号を送信する.このと き下水管内部の端末に対して GNSS の使用が容易でないこ

図2 一様伸縮モデル

図3 一部伸縮モデル

と,並びに管内部において無線 LAN を用いた通信可能範 囲には制限があることから,この制御信号は検査員の端末 から複数の UAV が形成するマルチホップネットワークを 介し適切な UAV に向けて送信しなければならない.この 制御信号の送信対象が増えると,制御信号の到達・到達確 認のための時間的遅延が発生し,リアルタイムな陣形制御 が困難になることが予想される.2つ目に,カメラ UAV の 撮影映像を地上の端末までストリーミング転送する際に効 率的な経路選択をする必要がある.UAV の飛行間隔が小 さく通信品質の良いリンクが複数存在した場合,映像デー タを隣の UAV へ転送するのではなく,そのリンクの中で 最も CN へ近い UAV へ転送する方が映像データがマルチ ホップして生じる遅延を減らせる.

本章ではこれらの課題に着眼し,一様伸縮モデルと一部 伸縮モデルを示し,両者を比較する.

一様伸縮モデル

図2に一様伸縮による陣形制御モデルの例を挙げる.ま ず,複数のUAVを衝突回避できる程度の最短間隔 d_{\min} を 維持した状態で下水管内部に配置する.全てのUAV は定 期的に隣接するCN側のUAVとの距離dを測距し,隣の UAVとの飛行間隔が $d = d_{\min}$ となるように自律制御を行 う.地上の端末からカメラUAVの移動を要求する際には, 遠くに移動する場合は飛行間隔dを大きく,近くに移動す る場合は飛行間隔dと小さく変更するメッセージを含ん だ制御信号を全てのUAVに向けてCNからマルチホップ ネットワークを介してブロードキャストする.この制御信 号を受信したUAV は信号に含まれる新しい飛行間隔とな るように自律制御を行う.これにより複数のUAVが一様 に伸縮しながら先頭のカメラUAVの位置を調整する. IPSJ SIG Technical Report

一部伸縮モデル

このモデルは、1 台の CN 近くの UAV のみに対して遠隔 制御を行い間接的にカメラ UAV の位置を操作する. 一部 伸縮モデルの例を図 3 を用いて述べる. この図では CN に 最も近くを飛行しているノードを Stay Node, それ以外を Moving Node と呼ぶ. また, Moving Node の中でも Stay Node に最も近いノードを Tail Moving Node と呼び, 最 も先頭を飛行するカメラ UAV を Head Moving Node と呼 ぶ. これらの UAV はすべて一様伸縮同様に定期的に隣接 する AP 側の UAV との距離 *d* を測定しこの値をもとに以 下に述べる陣形制御をする.

• Stay Node の制御

d = d_{min}(UAV 同士で接近しない程度に近づける最 短間隔)となるように間隔を調整する

• Tail Moving Node の制御

地上の端末からdを変更する制御信号を受け取り、制 御信号を直接 CN から受信したのち $d_{\min} < d < d_{\max}$ の範囲で移動する. (d_{\max} は UAV 間で制御信号の送 信並びに映像転送が可能な最大飛行間隔)

遠隔操作によって $d \le d_{\min}$ となると、1 つ右側を飛 行する Moving Node を Tail Moving Node へ切り替 える制御信号を送り、その後自身は Stay Node へ切 り替わる.

遠隔操作によって $d \ge d_{\max}$ となると、1 つ左側を飛 行する Stay Node を Tail Moving Node へ切り替え、 その後、自身は Moving Node へ切り替わる.

その他の Moving Node の制御

 $d = d_{\max}$ となるように間隔を調整する.

両者モデルの比較

一部伸縮モデルの利点について述べる.一様伸縮モデル は遠隔操作のための制御信号を全ての UAV に転送する必 要があるのに対し,一部伸縮モデルは,CN の近くを飛行 する UAV に1台対してのみ制御信号を送信するので,陣 形制御が制御信号到達の遅延による影響を受けにくいと考 えられる.また,一様収縮モデルは d の値が小さくなると, 3.1節で述べたようにカメラ UAV の撮影映像をストリーミ ング転送するためのより効率的な経路選択をしなければ, 必要以上に映像データがマルチホップすることで生じる遅 延が大きくなってしまう.この近い距離で必要以上にマル チホップしながら映像ストリーミング転送してしまうこと を一部収縮モデルは回避できる.

一部伸縮モデルの欠点として、Tail Moving Node の Stay
 Node, Moving Node への切り替わり処理における遅延が

陣形制御への遅延を引き起こしてしまう可能性が挙げられ る. Tail Moving Node は CN を介して地上の端末から制 御信号を受信するのでこの切り替わり制御を素早く実行で きれば一部伸縮モデルを利用することが望ましいと考えら れる.

下水管内部での UWB を用いた 測距可能距離・精度の調査

本章では下水管内部における測距可能距離・精度の調 査について議論する.3章で述べた通り,各UAVは隣接 するUAVとの距離を測定した値を元に飛行間隔を調整す る.安定した映像ストリーミングを維持するための最大飛 行間隔は約5mであったことから,(1章参照)UAVに搭 載するセンサの測距可能距離はこの間隔以上であること が望ましい.この条件を満足し得る測距方法としてUWB (IEEE802.15.4z)を用いた方法が考えられる.筆者らは大 学に敷設された模擬下水管内部にてUWB(IEEE802.15.4z) の測距可能距離並びに精度を調べる実験を実施した.ここ では,この実験に基づき,提案システムでのUWBの応用 可能性について議論する.

下水管内部での UWB を用いた測距実験

大学に敷設された塩ビ製(ϕ 200 mm),鉄筋コンクリート製(ϕ 250 mm)の模擬下水管にUWBインターフェースを搭載した端末2台を間隔を変えて設置し,測距を行った.以下に詳細な実験手順について述べる.

あらかじめ下水管には図4のようにハンドホールが設置 されており、その上に土嚢が乗っている.まず下水管に取 り付けられているハンドホールを開けて、インターフェー スタグ(Apple AirTag)を貼り付けた木製の箱(図5)を 開口から投入して真下に設置する.設置する際には下水管 の中心にタグが位置するよう調整する. 設置後ハンドホー ルの蓋を閉めて土嚢を上から被せる.投入地点から1m離 れた地点のハンドホールを開けて UWB インターフェース を搭載した端末(図6)を投入し測距を行い、画面に表示 される測距値を記録する.測距後は端末を取り出しハンド ホールを閉めて蓋を閉じる.1mずつ間隔を増やしていき, 測距値が取得できなくなるまで同様の操作を繰り返す. こ の実験を塩ビ製下水管の水の有り(水深 75 mm) 無し,鉄 筋コンクリート製の水の有り(水深 80 mm)無しそれぞれ の測定環境で実施した.また、地上空間における測距と結 果を比較するために1mおきに測定を行い測距の結果を記 録した.

実験結果

表1はUWBを用いた模擬下水管内部での測距の結果を まとめたものである.この実験結果から塩化ビニル製模擬 下水管(φ200 mm)では水の有無に限らず最大2m地点

情報処理学会研究報告

IPSJ SIG Technical Report

Vol.2021-MBL-101 No.17 Vol.2021-ITS-87 No.17 2021/12/7

表 1 下水管内部における UWB の測距性能評価

GroundTruth (m)	地上 (m)	<i>ϕ</i> 200 mm 塩化ビニル製 (m)	塩化ビニル製(水深 80 mm)(m)	<i>ϕ</i> 250 mm 鉄筋コンクリート製 (m)	鉄筋コンクリート製(水深 80 mm)(m)
1	0.8	0.7	0.8	1	0.8
2	1.8	1.7	1.8	2	1.8
3	2.8	N/A	N/A	2.9	2.8
4	3.8			4	3.8
5	4.8			4.9	N/A
6	5.8			5.9	
7	6.8			N/A	

図4 実験に使用した模擬下水管

図 5 木製の箱に貼り付けたタグ (AirTag Apple 社製)

図 6 ハンドホール内に投入した端末(タグとの距離をリアルタイム に表示している)

まで,鉄筋コンクリート製模擬下水管(φ250 mm)では. 水の有無に限らず最大4m地点までの測定値を取得できて いることがわかる.また,測定精度については,最大で30 cmの誤差が確認された.また,それぞれの測定環境ごと に誤差を調べると,誤差の変化は10 cm 未満であった.さ らに,測定間隔に限らず誤差が大きくなる様子は確認され なかった.

議論

実験結果より、口径 250 mm の鉄筋コンクリート下水管 においては、1 章で述べた UAV の最大飛行間隔(約5 m) に若干及ばない4 m の範囲までであれば測距可能である ことが確認できる.この事実から UAV による測距を UAV の陣形制御に利用する場合、最大飛行間隔を4 m 以内に設 定することで、本研究で提案する一部伸縮モデルへの応用 が可能となる.また、それぞれの個別の測定環境における 誤差の変化が最大で10 cm であり、測定間隔の大きさに応 じて測定誤差が大きく変化する様子は確認されなかったこ とから、UAV の飛行間隔の変化による測距の乱れが10 cm 以上の規模では生じにくいことが期待される.

5. まとめ

本稿では、複数のUAV(Unmanned Aerial Vehicle)を 用いた小口径下水管検査を実現するため、複数のUAV を 用いた陣形制御モデルの検討と、陣形制御に必要な端末間 の測距に関する実験を行った.陣形制御モデルについては、 提案した一部伸縮モデルと一様伸縮モデルを比較すると、 一部伸縮モデルの方が制御信号の送信対象を減らして陣形 制御の遅延を抑え、必要以上にマルチホップせず映像スト リーミングすることが可能であることを述べた.また、こ の陣形制御に用いる端末間の測距方法としてUWBを用い た測距が利用可能であることを述べた.今後は、提案した 陣形制御モデルへUWBの測距を応用し実際にUAV を用 いた陣形制御を実装していく予定である.

謝辞 謝辞:本研究は科学研究費補助金 21K18746 の助 成により行われたものである。

参考文献

[1] 国土交通省、下水道,"下水道の維持管理". http://www.mlit.go.jp/mizukokudo/sewerage/ IPSJ SIG Technical Report

crd_sewerage_tk_000135.html(2021/11/10 確認)

- [2] 東芝テリー株式会社: 管内検査用カメラ, ハードケーブルカラーカメラシステム,HS3040
 https://www.toshiba-teli.co.jp/products/
 inspection/scope/hs3040.htm#bkm5 (2021/11/10)
 確認)
- [3] 株式会社キュー・アイ:長距離走行型デジタル伝送TVカメ ラ装置 PV-2300 https://www.qi-inc.com/products/ snake-camera/(2021/11/10 確認)
- [4] 石原進,武居悠樹,劉志,前田琢磨,澤野弘明,"下水管検査 用浮流型無線ネットワークカメラシステムの実現技術," 情報処理学会研究報告, vol.DPS-172, no.4, pp.1-8, 2017.
- [5] T. Nagashima, et al.: "Measurement of Wireless LAN Characteristics in Sewer Pipes for Sewer Inspection Systems Using Drifting Wireless Sensor Nodes," IEICE Trans. Commun., vol.E99-B, no.9, 2016.
- [6] 堤 悠喜,近本祐介,石原 進:複数移動無線端末を用いた 下水管検査における端末制御と映像データ転送のための マルチホップ通信手法の一検討,情報処理学会,モバイ ルコンピューティングと新社会システム (MBL)研究会 Work in Progress (WiP) (2021).
- [7] 川合健斗,島田彩加,武居悠樹,石原進,"無線 LAN 受信 信号強度を用いた鉄筋コンクリート製下水管内における 自己位置推定に関する基礎検討,"情報処理学会第 81 回全 国大会, vol.1, pp79–80, (2019).