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Abstract 1 

Imidazole-4-carboxamide (ICA), which is one of a group of “fairy chemicals” (FCs) that 2 

cause the fairy ring phenomena, has plant growth inhibitory activity. FCs have the 3 

potential as candidates for a new family of plant hormones as they have been found 4 

endogenously in all plant species tested, and show growth-regulating activity against the 5 

plants. While basic research on FCs is progressing, they are also expected to be applied 6 

not only to agrochemicals but also as pharmaceuticals. Derivatization of one of FCs, 2-7 

azahypoxanthine (AHX) and the structure-activity relationship (SAR) studies have 8 

clarified its activity as a plant growth promoter. Yet, imidazole-4-carboxamide (ICA) has 9 

not been derivatized at all and SAR regarding its activity remains unknown. In this study, 10 

we synthesized the derivatives of ICA by direct C–H arylation of ICA precursors and 11 

evaluated its activity in rice. The 12 total compounds including the arylated ICAs and 12 

their precursors were evaluated for root and shoot elongation in rice, resulting in the 13 

discovery that a number of compounds unexpectedly have an elongation activity in the 14 

root and shoot.  15 
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“Fairy rings” is a phenomenon in which ring-shaped thick growths or necrotic spots of 1 

grasses occur. Since the first publication of a scientific paper on fairy rings in 1675,1 2 

various reports on their causes have been published. However, no definitive conclusion 3 

on the cause of fairy rings had been reached until recently. In 2010, Kawagishi found that 4 

2-azahypoxanthine (AHX) and imidazole-4-carboxamide (ICA), which were isolated 5 

from the fungus Lepista sordida that forms fairy rings, have growth-promoting and 6 

growth-inhibitory activities, respectively, resulting in the fairy ring formation.2 , 3  In 7 

addition, it was found that AHX is metabolized to 2-aza-8-oxohypoxanthine (AOH), 8 

which has growth-promoting activity.4,5 These compounds involved in the formation of 9 

fairy rings were named “fairy chemicals (FCs)”.6,7,8 10 

Interestingly, FCs have been found not only in fungi but also in plants such as rice, 11 

Arabidopsis and potato.4,9 These compounds naturally occur in plants,4,10 ,11 and are 12 

shown to have activity at low concentrations,2,3 attracting much attention as a candidate 13 

for a new family of plant hormones.12 Plant hormones have historically contributed to 14 

agriculture, and FCs are no exception whereby AHX and ICA were shown to increase 15 

yields of wheat and rice.13,14 More interestingly, it was recently discovered that FCs can 16 

be utilized as mammalian drugs as well as agrochemicals. For example, AHX inhibits 17 

hypoxia-inducible factor (HIF) activity, resulting in the inhibition of retinal angiogenesis 18 

in oxygen-induced retinopathy mice. 15  ICA suppresses the expression of immune 19 

checkpoints such as PD-L1 and PD-L2, improving the reactivity of cisplatin against 20 

cancer in mouse.16 AOH activates human epidermal cells to promote the expression of 21 

genes related with cell adhesion, barrier function of skin, protease of stratum corneum 22 

differentiation, epidermal differentiation, and hyaluronan synthase 3 (HAS3).17 23 

Due to interesting bioactivities of FCs beyond the formation of fairy rings, the 24 

construction of a FC-based chemical library has become increasingly important not only 25 

for acquiring highly active/selective molecules but also for elucidation of their modes of 26 

action. In particular, the elucidation of their physiological actions and targets is crucial to 27 

prove FCs as plant hormones. Identification of their target proteins using affinity probes 28 

is one of the approaches to understand their physiological actions. In 2014, we 29 

synthesized biotin-conjugated AHXs for target identification.18 On the other hand, to 30 

develop more active FCs, we discovered a palladium-catalyzed direct C–H arylation of 31 

plant-growth promoter AHX.19 The arylated AHXs showed a stronger growth-promoting 32 

activity than that of original AHX. To explore and deepen knowledge of FCs such as 33 



undeveloped ICA, we herein describe the derivatization of plant-growth inhibitor ICA by 1 

a C–H arylation and the effect of the thus-synthesized ICA derivatives on rice root and 2 

shoot growth (Figure 1). 3 

 4 

 5 

Figure 1. Synthesis of arylated fairy chemicals via C–H arylation 6 

 7 

Following the previous report on the derivatization of AHX, we first investigated direct 8 

C–H arylation of the commercially available ethyl imidazole-4-carboxylate (1), an ICA 9 

precursor. As 1 has two C–H bonds on the imidazole ring, namely at the C2 and C5 10 

positions, site selective reaction is demanded. In addition, the N–H bonds are generally 11 

needed to be protected due to their reactivity, but in terms of step economy, protection 12 

and deprotection steps should be avoided. Among the related reports on direct C–H 13 

arylation of imidazoles at the C2 position using transition metal catalysts such as 14 

palladium,20,21,22,23 nickel,24 copper,25,26,27,28 and rhodium,29,30,31,32 we found that the 15 

conditions reported by Bellina and Rossi,22 were satisfactory for the C2-selective 16 

arylation of N-unprotected imidazole-4-carboxylate 1. When 1 was reacted with 17 

iodobenzene in the presence of palladium acetate (5 mol%) and copper iodide (2.0 equiv) 18 

in DMF at 140 °C for 24 h, the C2-arylated product 2a was obtained in 70% yield (Figure 19 

2). The structure of 2a was determined by X-ray crystallography. 20 
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   2 

Figure 2. Palladium-catalyzed C–H arylation of an ICA precursor 1 at C2-position 3 

 4 

Having established the optimized C–H arylation conditions for 1, we next synthesized 5 

a range of arylated imidazole-4-carboxylates 2 via Pd-catalyzed arylation with iodoarenes 6 

(Figure 3). The reaction with p- and m-tolyl iodides gave the corresponding products 2b 7 

and 2c in 44% and 56% yields, respectively. With regard to the substituents at the p-8 

position of the phenyl group, compounds with electron-deficient moieties such as 9 

trifluoromethyl, chloro, and acetyl groups were synthesized (2d–2f). The thus-obtained 10 

arylated products 2 were reacted with aqueous ammonia to obtain 2-arylated ICAs 3a–3f 11 

in moderate to high yields (Figure 3). 12 
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 1 
Figure 3. Synthesis of ICA derivatives 3a–3f via C–H arylation of 1 and amidation of 2 

2.   3 

 4 

Thanks to the power of C–H arylation methodology, a relatively small library of ICA 5 

derivatives was rapidly constructed from the readily available imidazole-4-carboxylate 1, 6 

which allowed us to explore the previously untapped biological activity of ICAs. In this 7 

paper, we report the preliminary study on the bioactivity of ICA derivatives 2 and 3 in 8 

rice (Figure 4). Rice seeds were germinated and incubated on agar medium containing 9 

100 μM of compound for 7 days, under long day conditions, after which the lengths of 10 

shoot and root were measured. It was found that ICA derivatives 2 as well as non-arylated 11 

1 had no effect on root and shoot length in comparison to controls. Although the parent 12 

ICA showed growth inhibition activity in both terms of shoot and root length, all arylated 13 

compounds 3 did not. Surprisingly, unlike ICA, 2-phenyl ICA 3a showed growth 14 

promoting activity in the shoot. Other arylated ICAs had no activity, indicating that 15 

substitution on 2-phenyl ring was restricted in regards to root/shoot length inhibition. In 16 

addition, p-trifluoromethyl phenyl ICA 3d had root lengthening activity. By comparing 17 

the results of 3b and 3d having the similar structure yet opposite activity, fluorine atoms 18 

play an essential role for the activity switching.   19 
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 2 

Figure 4. Evaluation on the effect of ICA derivatives in (a) shoot and (b) root growth. 3 

Germinated seeds were treated with 100 μM solution of the compounds. Results are the 4 

mean ± standard deviation (n = 16–24). Asterisk indicates a value that is significantly 5 

different from the control (Student’s t-test, p<0.05).  6 

 7 

In summary, a palladium-catalyzed C2-selective direct C–H arylation reaction of 8 

imidazole-4-carboxylate, an ICA precursor, has been developed. The ICA derivatives 9 



were rapidly obtained by amidation of the arylated ICA precursors. A total of 12 1 

compounds including the arylated ICAs and their precursors were evaluated for root and 2 

shoot elongation in rice, resulting in the discovery that 3a and 3d unexpectedly have 3 

elongation activity in the root and shoot, respectively, in contrast to ICA which has an 4 

inhibitory effect. In the future, we will continue investigating the mechanisms of action 5 

in detail among others with the goal to determine why 3a and 3d have such differing 6 

activity to ICA. We also hope to do further SAR studies on ICA to determine its 7 

relationship on activity. These derivative molecules will be starting points in order to 8 

uncover the biological mechanisms of fairy chemicals and develop their use as a new 9 

plant hormone family.   10 
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