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CHAPTER 1

Introduction

1. Kaplansky’s Problem and Its Independency

In this thesis, we introduce properties of forcing notions, which are stronger than
ccc. It is motivated by the classical problem, which is called Kaplansky problem.
In 1949, I. Kaplansky [26] showed that any algebraic norm on C(X,C) (the Banach
algebra of complex-valued continuous functions on an infinite compact Hausdorff
space X) is larger than or equivalent (i.e., provides the same topology) to the uni-
form norm. Then a natural question is raised: Is every algebraic norm on C(X,C)
equivalent to the uniform norm? In the present day, this problem is known to be
independent from ZFC. W. Bade and P. Curtis [2] proved that this problem is
equivalent to the assertion NDH (No Discontinuous Homomorphisms), that is, for
each infinite compact Hausdorff space X, every homomorphism from C(X,C) to any
Banach algebra is continuous. H. G. Dales [14] and J. Esterle [20] independently
gave the first contribution to this problem. Namely, they showed that the continuum
hypothesis CH implies the negation of NDH. Hence ¬NDH is provable in ZFC+CH.
On the other hand, H. Woodin [34] established the assertion Woodin’s condition and
showed that the assertion implies NDH and is consistent with ZFC+MA. Therefore,
he showed that NDH can not be decided in ZFC.

Furthermore, H. Woodin [33] showed that ¬NDH +¬CH is consistent with ZFC,
so NDH can not be decided in ZFC + ¬CH. Concretely, H. Woodin showed that
the finite support iteration of Cohen forcings of length ω2 forces that NUB (No
Ultrapower of R is Beta 1) fails, that is, there exists a non-trivial ultrapower of
R with the property β1. This is sufficient since ¬NUB implies ¬NDH (see [13,
Theorem 5.7.13]). Thereafter, he raised the following problem: Is ¬NDH+MA+¬CH
consistent with ZFC? We shall present a partial solution to this question.

In this chapter, we introduce two classes of forcing notions called eventual precal-
iber ℵ1 (EPCℵ1) and EPC∗

ℵ1
. EPC∗

ℵ1
is a weakening of EPCℵ1 and is preserved under

finite support iterations. Furthermore, the forcing axiom MA(EPCℵ1 + “size ≤ c”)
for EPCℵ1 forcings of size ≤ c implies MA(EPCℵ1). Thus MA(EPC∗

ℵ1
+ size “≤ c”)

implies MA(EPCℵ1).
We also introduce another class ProjCes(E) of forcing notions where E ⊂ ω1

is a stationary set. ProjCes(E) is preserved under finite support iterations, and
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6 1. INTRODUCTION

MA(ProjCes(E) + “size ≤ c”) implies MA(ProjCes(E)). Moreover, MA(EPC∗
ℵ1

+
ProjCes(E) + “size ≤ c”) implies MA(EPCℵ1 + ProjCes(E)).

In Chapter 2, we shall show the following theorem based on Woodin’s proof [33].

Main Theorem. Let V be the ground model in which CH holds. In V , let
Pω2 = 〈Pξ, Q̇ξ | ξ ∈ ω2〉 be a finite support iteration of EPC∗

ℵ1
+ ProjCes(E) forcing

posets of size ≤ ℵ1. Let G be a Pω2-generic set over V . Then, in V [G], there exists
a non-principal ultrafilter U on P(ω) such that Rω/U is β1.

Thus MA(EPC∗
ℵ1

+ProjCes(E)+“size ≤ ℵ1”) and MA(EPCℵ1 +ProjCes(E)) are
consistent with ¬NDH + ¬CH.

In Chapter 3, we raise a consequence of the Main Theorem which relates to
Whitehead’s conjecture in the group theory, which provides an example of an EPCℵ1

forcing. The main result seems to imply the properties EPCℵ1 and EPC∗
ℵ1

are quite
stronger than ccc. We consider the following:

(1) The existence of a non-trivial example of EPCℵ1 forcing.
(2) The position of the property EPCℵ1 among well-known forcing properties

For (1), we shall show that the uniformization of a ladder system coloring is an
example of EPCℵ1 forcing. Moreover, if the domain of a ladder system is a stationary-
co-stationary E ⊂ ω1, then the uniformization is ProjCes(ω1 \ E). This shows
Whitehead’s conjecture fails in the theory ZFC+MAℵ1(EPCℵ1+ProjCes(E)). For(2),
we shall show that any EPC∗

ℵ1
forcing preserves some set-theoretical objects that are

preserved by Cohen forcing. Specifically, EPCℵ1 forcing preserves Luzin sets of size
ℵ1 and mad families of size ℵ1 which were added by the forcing which adds a mad
family. The following are the consequences of what we proved.

(1) MA(EPCℵ1 + ProjCes(E)) is consistent with the same constellation of Ci-
choń-Blass diagram in Cohen model.

(2) MA(σ-centered) and MA(EPCℵ1) do not imply each other.

For a more detailed description of the position of EPCℵ1 , we use the Kunen
forcing, which is defined by a pregap. We shall determine the relation between the
property of Kunen forcing and the type of pregap.

1.1. Notation. For any set T of ordinals, let us introduce the abbreviations

∀∞α ∈ T, · · ·α · · · for ∃β ∈ T, ∀α ∈ T \ β, · · ·α · · ·

and

∃∞α ∈ T, · · ·α · · · for ∀β ∈ T, ∃α ∈ T \ β, · · ·α · · · .
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For any set X, P(X) denotes the power set of X. For any cardinal κ and any set
X, [X]<κ and [X]κ denote the two sets of subsets of X of size <κ and κ, respec-
tively. Similarly, X<κ and Xκ denote two sets of sequence in X of length <κ and κ,
respectively.

For any totally ordered set 〈T,<〉 and a subset X ⊂ T , X is cofinal (coinitial)
in T if for every a ∈ T , there exists x ∈ X such that a ≤ x (x ≤ a). cof(T ) (coi(T ))
denotes the least cardinality of a cofinal (coinitial) subset in T .

2. Introduction of EPC

In this section, we introduce properties of forcing notions.

Definition 1. A forcing notion, or simply, forcing is a partially ordered set.
Its elements are often called conditions. If q ≤ p, then q is called an extension
of p. For a couple of conditions p0, . . . , pn, their common extension is a condition
q which extends all qi’s. Two elements p, q of a forcing notion P are compatible
( incompatible) if there (does not) exists a common extension of them. A subset C
of a forcing notion P is centered ( linked) if every finite subset (pair of elements) of
C have a common extension. In contrast, a subset A of a forcing notion is antichain
if every pair of elements of A is incompatible.

The following property of forcing notions is most commonly used.

Definition 2. A forcing notion P has countable chain condition (ccc) if every
antichain is countable, in other words, every uncountable subset has a compatible
pair.

The following three properties are well-known strengthening of ccc.

Definition 3. A forcing notion P is σ-centered if P is the union of countably
many centered sets.

Definition 4. A forcing notion P has property (K) if every uncountable se-
quence of P has an uncountable linked subsequence.

Definition 5. A forcing notion P is precaliber ℵ1 (PCℵ1) if every uncountable
sequence of P has a centered uncountable subsequence.

The main theme of this paper is a strengthening of precaliber ℵ1.

Definition 6. A sequence 〈pξ | ξ ∈ κ〉 of conditions of a forcing notion P is
eventually centered if

∀α ∈ κ, ∀p ≤ pα, ∃δ(α, p) ∈ κ, {p} ∪ {pξ | ξ ∈ κ \ δ(α, p)} is centered.
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Definition 7. A forcing notion P has eventual precaliber ℵ1 (EPCℵ1) if, for each
sequence 〈pξ ∈ P | ξ < ω1〉, there exists T ∈ [ω1]

ℵ1 such that 〈pξ | ξ ∈ T 〉 is eventually
centered.

Definition 8. A forcing notion P has EPC∗
ℵ1

if, for each sequence
〈pξ ∈ P | ξ < ω1〉, there exists T ∈ [ω1]

ℵ1 and a eventually centered sequence
〈p̃ξ | ξ ∈ T 〉 such that p̃ξ ≤ pξ for each ξ ∈ T .

Notice that every EPCℵ1 forcing notion has EPC∗
ℵ1

and every EPC∗
ℵ1

forcing
notion has precaliber ℵ1, so they have the ccc. Cohen forcing 2<ω is an example
of EPCℵ1 , and we shall give other examples in chapter 3. We show that EPC∗

ℵ1
is

preserved under finite support iterations.

Lemma 1. Every finite support iteration of EPC∗
ℵ1

forcings has EPC∗
ℵ1
.

Proof. We prove the lemma by induction on the length of the iteration.
First, we check the successor step. Assume that P has EPC∗

ℵ1
and Q̇ is a P-

name for an EPC∗
ℵ1

forcing notion. Fix any sequence 〈〈pξ, q̇ξ〉 | ξ ∈ ω1〉 ∈ (P ∗ Q̇)ω1 .

Let Ṡ0 := {
〈
ξ̌, pξ

〉
| ξ ∈ ω1}. Since P has the ccc, there exists p∗ ∈ P such that

p∗ ⊩ |Ṡ0| = ℵ1. By the assumption, we get P-names Ṡ and ˙̃q such that

p∗ ⊩ “Ṡ ∈ [Ṡ0]
ℵ1 ,
〈

˙̃q(ξ)
∣∣∣ ξ ∈ Ṡ

〉
is eventually centered, and ˙̃q(ξ) ≤ q̇ξ for each ξ ∈ Ṡ”.

Define T0 = {ξ ∈ ω1 | ∃p ≤ p∗, p ≤ pξ ∧ p ⊩ ξ̌ ∈ Ṡ}. Then, p∗ ⊩ Ṡ ⊂ Ť0, so T0
is uncountable. Select 〈p̂ξ | ξ ∈ T0〉 such that p̂ξ ≤ p∗, pξ and p̂ξ ⊩ ξ̌ ∈ Ṡ for each

ξ ∈ T0. Fix a sequence
〈

˙̃qξ
∣∣ ξ ∈ T0

〉
of P-names such that p̂ξ ⊩ ˙̃q(ξ̌) = ˙̃qξ. Since P

has EPC∗
ℵ1

, there exist T ∈ [T0]
ℵ1 and a eventually centered sequence 〈p̃ξ | ξ ∈ T 〉

such that p̃ξ ≤ p̂ξ for each ξ ∈ T .

We proceed to show that
〈〈
p̃ξ, ˙̃qξ

〉 ∣∣ ξ ∈ T
〉

is eventually centered. Fix any α ∈ T

and 〈p, q̇〉 ≤
〈
p̃α, ˙̃qα

〉
. Then, we get p′ ≤ p and δ ∈ ω1 such that p′ ⊩ δ̌ = δ̇(α, q̇).

Fix any Γ ∈ [T \ (δ ∪ δ(α, p′))]<ω. Then, there exists p† ≤ p′ such that, for each

γ ∈ Γ, p† ≤ p̃γ. Thus, p† ⊩ Γ̌ ⊂ Ṡ \ δ̇(α, q̇) and hence there exists a P-name q̇† such

that p† ⊩ q̇† ≤ q̇ ∧ ∀γ ∈ Γ̌, q̇† ≤ ˙̃qγ. Therefore
〈
p†, q̇†

〉
is a common extension of

{〈p, q̇〉 ,
〈
p̃γ, ˙̃qγ

〉
| γ ∈ Γ}.

Second, we check the limit steps. Fix any 〈pα ∈ Pγ | α ∈ ω1〉 with γ limit. Pick
T ∈ [ω1]

ℵ1 and S ∈ [γ]<ω such that supp(pα) ∩ supp(pβ) = S for each α 6= β in T .
Pick T1 ∈ [T ]ℵ1 and 〈p̃α | α ∈ T1〉 such that 〈p̃α↾(maxS + 1) | α ∈ T1〉 is eventually
centered in PmaxS+1, p̃α↾(maxS + 1) ≤ pα↾(maxS + 1), and p̃α↾(γ \ maxS + 1) =
pα↾(γ\maxS+1) for each α ∈ T1. We show that 〈p̃α | α ∈ T1〉 is eventually centered.
Fix any α ∈ T1 and q ≤ p̃α. Take δ ∈ ω1 s.t. {q↾(maxS + 1), p̃ξ↾(maxS + 1) | ξ ∈
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T1 \ δ} is centered. Now, fix δ′ ∈ ω1 such that ∀ξ ∈ T1 \ δ′, supp(q) ∩ supp(p̃ξ) \
(maxS + 1) = ∅. Then, {q, p̃ξ | ξ ∈ T1 \ (δ ∪ δ′)} is centered. □

EPCℵ1 also has a good property.

Lemma 2. MA(EPCℵ1 + “size < c”) implies MA(EPCℵ1). Here, c = 2ℵ0.

Proof. Assume that MA(EPCℵ1) fails. Let P be an EPCℵ1 forcing and D =
〈Dα | α < λ〉 be a sequence of length λ < c of dense sets without generic filters.
Fix an elementary submodel M of large enough Hκ of size λ such that P ∈ M
and that {Dα | α < λ} and ω1 are subsets of M . We shall show that P ∩M is a
counter-example for MA(EPCℵ1 + “size < c”).

At first, we shall see that P ∩M is EPCℵ1 . Fix any sequence p̄ = 〈pα | α < ω1〉
in P∩M . p̄ is also a sequence in P, so there is T ∈ [ω1]

ℵ1 such that p̄↾T is eventually
centered. Fix any α ∈ T and q ≤ pα. Fix any ξ0, . . . , ξn−1 ∈ T \ δ(α, q). Then
{q, pξ0 , . . . , pξn−1} is a finite subset of P ∩M and has a common extension in P. By
elementarity, it has a common extension in P ∩M . Thus p̄ is eventually centered.

We proceed to show that D↾M = 〈Dα ∩M | α < λ〉 is a sequence of dense sets
in P ∩M which has no generic filters. Let α ∈ ω1 and p ∈ P ∩M . Then there exists
q ∈ Dα such that q ≤ p. By elementarity and Dα ∈ M , we can assume that q ∈ M .
So each Dα∩M is dense in P∩M . Suppose that there exists a D↾M -generic filter G
on P∩M . Then, {p ∈ P | ∃q ∈ G, q ≤ p} is a D-generic filter on P, a contradiction.

Therefore P ∩M is a counter-example for MA(EPCℵ1 + “size < c”). □

Corollary 1. MA(EPC∗
ℵ1

+ “size < c”) implies MA(EPCℵ1).

The following lemmata are necessary for the proof of the main theorem.

Lemma 3. Let 〈pα | α ∈ ω1〉 be a eventually centered sequence and α ∈ ω1. Let
T ∈ [ω]ℵ1. Then, Dα(T ) = {q ≤ pα | ∃ξ ∈ T, q ≤ pξ} is dense below pα. Furthermore,

⊩P ∀β ∈ ω1, ∀T ∈ [ω1]
ℵ1 , Dβ(T ) is dense in P̌ below pβ.

Proof. We only prove the latter statement. Fix any q0 ∈ P, β ∈ ω1, a P-name
Ṫ for an uncountable set of ω1, and r ≤ pβ. Pick q1 ≤ q0 and ξ ∈ ω1 \ δ(β, r) such

that q1 ⊩ ξ̌ ∈ Ṫ . Then, we get a common extension of r and pξ. □

Lemma 4. Let 〈pα | α < ω1〉 be an eventually centered sequence. Fix α0 < ω1.
Then, pα0 forces that {ξ ∈ ω1 | pξ ∈ Ġ} is uncountable.

Proof. Fix any β ∈ ω1 and p ≤ pα0 . Choose ξ ∈ ω1 \ (δ(α0, p) ∪ β) and a
common extension q of pξ and p. Then, q forces that p̌ξ ∈ Ġ. Therefore, pα0 forces

that, for each β ∈ ω1, there exists ξ ∈ ω1 \ β such that p̌ξ ∈ Ġ. □
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3. Projections on countable elementary submodels

We shall introduce another property of forcing notions.

Definition 9. For a forcing P and for a set X, p(X) ∈ X ∩ P is a projection of
p ∈ P on X if, for any extension q ∈ X ∩ P of p(X), q ‖ p. We say that P projects
into X if every p ∈ P has a projection p(X) on X.

Note that, if densely many p ∈ P has a projection on X, then all q ∈ P has a
projection.

Lemma 5. Let P be a forcing notion and κ be a large enough regular cardinal
such that P ∈ Hκ and that Hκ |= “ P is ccc” iff P is ccc. If P projects into some
countable N ≺ Hκ with P ∈ N , then P has ccc.

Proof. Suppose not, and let N be a countable elementary submodel of Hκ such
that P ∈ N and that P projects into N . Then N |= “P is not ccc” by elementarity.
Thus there exists an uncountable antichain A ⊂ P in N . Pick p ∈ A \ N . Let
p(N) ∈ P ∩ N be a projection of p on N . Pick q ∈ A ∩ N such that q ‖ p(N). Then
q ‖ p, which is a contradiction. □

Definition 10. Let P ∈ Hκ be a partial order. Let N be a countable elementary
submodel of Hκ which has P as an element. Then a filter d ⊂ P ∩ N is a generic
filter over N if and only if d meets all dense subsets of P in N .

Similar to the standard forcing theory for transitive models, the above definition
is equivalent even if “all dense subsets” were replaced by “all maximal antichains”.
If P is ccc, P ∈ N0 ≺ N1 ≺ Hκ, and d ⊂ P ∩ N1 is a generic filter over N1, then
d ∩ N0 meets all maximal antichains of P in N0 since they are also members of N1

and subsets of N0. Moreover, d ∩N0 is a filter: If p, q ∈ d ∩N0, then, since

{r ∈ P | r ≤ p, q or ∀r0 ≤ p, q, r0⊥r} ∈ N0.

is a dense set, there exists r ∈ d ∩N0 which is a common extension of p, q.
The purpose of introducing projections of conditions on a countable elementary

submodel is to obtain the productivity of generic filters over (non-transitive) count-
able elementary submodels. This is used only in the last part of the main lemma of
this thesis.

Lemma 6. Let P and Q be forcing notions, κ a large enough regular cardinal, and
N0 ≺ N1 ≺ Hκ countable elementary submodels with P,Q ∈ N0. Let d0 ⊂ P∩N0 and
d1 ⊂ Q ∩ N1 be generic filters over N0 and N1, respectively. Suppose that d0 ∈ N1

and that Q projects into N0. Then, (d0 × d1) ∩N0 ⊂ (P×Q) ∩N0 is a generic filter
over N0.
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Proof. As we have already seen, d1 ∩ N0 is a filter and so is (d0 × d1) ∩ N0 =
d0× (d1∩N0). Thus we shall prove only the genericity. Let A ⊂ P×Q be a maximal
antichain in N0 with respect to the product order. Let

D1 = {p1 ∈ Q | ∃p0 ∈ d0, ∃r̄ ∈ A, (p0, p1) ≤ r̄}.

Then D1 ∈ N1 is dense: Fix any p1 ∈ Q. Then a projection p
(N0)
1 ∈ N0 of p1 on N0

exists and

D0 = {p0 ∈ P | ∃p′1 ≤ p
(N0)
1 , ∃r̄ ∈ A, (p0, p

′
1) ≤ r̄} ∈ N0

is a dense subset of P. So we pick p0 ∈ d0 ∩D0. Then, by elementarity, there exists

p′1 ≤ p
(N0)
1 in N0 and r̄ ∈ A∩N0 such that (p0, p

′
1) ≤ r̄. Since p′1 ‖ p1, pick a common

extension q1 of p′1 and p1. Then, q1 ∈ D1.
Thus we get p1 ∈ d1 ∩D1. There exists p0 ∈ d0 and the unique (r0, r1) ∈ A such

that (p0, p1) ≤ (r0, r1). Since Q has the ccc by Lemma 5, the antichain A1 = {s1 ∈
Q | ∃s0 ∈ P, p0 ≤ s0 ∧ (s0, s1) ∈ A} ∈ N0 is countable and r1 ∈ A1 ⊂ N0. Since

N0 |= “there exists a unique r ∈ P such that p0 ≤ r and (r, r1) ∈ A”,

we have r0 ∈ N0. In conclusion, r̄ ∈ A ∩ (d0 × d1) ∩N0. □

Corollary 2. Let P be a forcing notion and κ a large enough regular cardinal.
Let N0 ≺ · · · ≺ Nm ≺ Hκ be countable elementary submodels that has P and, for each
i ≤ m, di ⊂ P ∩ Ni be a generic filter over Ni, moreover that is a member of Ni+1

whenever i+1 ≤ m. Suppose that P projects into N0. Then, Πi≤mdi∩N0 ⊂ Pm+1∩N0

is a generic filter over N0.

Proof. Use Lemma 6 m times repeatedly. □

Definition 11. Let P be a forcing notion and E ⊂ ω1. P has a ces(E) projection
if, for any large enough regular cardinal κ and any countable N ≺ Hκ with P, E ∈ N
and with ω1 ∩N ∈ E, P projects into N . Let ProjCes(E) be the class of all forcing
notions that has a ces(E) projection.

Any countable forcing is in ProjCes(ω1). We shall show that, for stationary-co-
stationary E ⊂ ω1, the uniformization of a coloring of a ladder system on ω1 \E has
a ces(E) projection in section 1 of chapter 3. Note the following:

(1) For uncountable sets A ⊂ B and for any club sets CA ⊂ [A]≤ℵ0 and CB ⊂
[B]≤ℵ0 , the lifting {X ⊂ B | X∩A ∈ CA} is club in [B]≤ℵ0 and the restriction
{X∩A | X ∈ CB} contains a club set in [A]≤ℵ0 (e.g., see [25, Theorem 8.27]).

(2) For a club set C ⊂ [ω1]
≤ℵ0 , since ω1 = {α | α < ω1} and C are mutually

⊂-cofinal, C ∩ ω1 is a club set in ω1.
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(3) For any infinite regular cardinal κ and x ∈ [Hκ]
≤ℵ0 , by the elementary chain

theorem and the Löwenheim-Skolem theorem,

{N | N ≺ Hκ, |N | = ℵ0, x ⊂ N}

is a club set in [Hκ]
≤ℵ0 (e.g., see [32, 2.3 Theorem], [12, Theorem 3.1.13],

[25, Theorem 12.1]).
(4) In particular, for any stationary set E ⊂ ω1, there exists a countable N ≺ Hκ

such that P, E ∈ N and ω1 ∩N ∈ E.
(5) By Lemma 5, for any stationary set E ⊂ ω1, every ProjCes(E) forcing is

ccc.

To facilitate our argument about the property ProjCes(E), we introduce the
following property.

Definition 12. Let P be a forcing notion and E ⊂ ω1. P has a club(E) pro-
jection if, for every ordering p̄ = 〈pξ | ξ < λ〉 of P (we mean that only ran(p̄) = P,
no need of injectivity) with λ ≥ ω1, there exists a club set C ⊂ [λ]≤ℵ0 such that, for
every C ∈ C with ω1 ∩ C ∈ E, P projects into {pξ | ξ ∈ C}.

For a countable forcing P and an ordering 〈pξ | ξ < λ〉 (λ ≥ ω1), select 〈ξp | p ∈ P〉
such that pξp = p. Then C = {C ⊂ λ | {ξp | p ∈ P} ⊂ C} is a club subset (even is a
tail subset) that witnesses that P has a club(E) projection.

Lemma 7. Let P be a forcing notion and E ⊂ ω1 a stationary set. Then, the
following are equivalent.

(1) P has a club(E) projection.
(2) P has a ces(E) projection.

Proof. 1 =⇒ 2: Suppose that P has a club(E) projection. Pick a large enough
regular cardinal κ such that Hκ |= “P has a club(E) projection”. Fix any
countable N ≺ Hκ such that P, E ∈ N and that ω1 ∩ N ∈ E. Fix an
ordering p̄ = 〈pξ | ξ < λ〉 (λ ≥ ω1) of P in N . There exists a club set
C ⊂ [λ]≤ℵ0 in N such that, for every C ∈ C with ω1∩C ∈ E, P projects into
{pξ | ξ ∈ C}. Then CN =

⋃
(C ∩N) = λ ∩N is a member of C and satisfies

ω1 ∩ CN = ω1 ∩N ∈ E. Thus P projects into {pξ | ξ ∈ CN} = P ∩N .
2 =⇒ 1: Suppose that P has a ces(E) projection. Let p̄ = 〈pξ | ξ < λ〉 (λ ≥ ω1) be

an ordering of P. Fix a club set

C ⊂ {λ ∩N | N ≺ Hκ, |N | = ℵ0, p̄,P, E ∈ N}
in [λ]≤ℵ0 . Fix any countable N ≺ Hκ such that p̄,P, E ∈ N and λ ∩N ∈ C.
Suppose that ω1 ∩ λ∩N = ω1 ∩N ∈ E. Since P has a ces(E) projection, P
projects into P ∩N = {pξ | ξ ∈ λ ∩N}.

□
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By the above proof,

(1) in the definition of club(E) projection, “for every ordering” can be replaced
by “for some ordering” and,

(2) in the definition of ces(E) projection, “any countable N ≺ Hκ with P, E ∈ N
and with ...” can be replaced by “there exists x ∈ [Hκ]

≤ℵ0 such that, any
countable N ≺ Hκ with {P, E} ∪ x ⊂ N and with ...”.

Lemma 8. For any stationary set E ⊂ ω1, every finite support iteration of
ProjCes(E) forcings is ProjCes(E).

Proof. We prove the lemma by induction on the length of the iteration.
First, we check the successor step. Assume that P is ProjCes(E) and forces

that Q̇ is ProjCes(E), or equivalently, has club(E) projection. Let 〈q̇ξ | ξ < λ〉 be a

sequence of P names that is an ordering of Q̇. Pick a P name Ċ for a club set in [λ]≤ℵ0

that witnesses that Q̇ has the club(E) projection. Since P is ccc, there exists a club
set C0 in [λ]≤ℵ0 that is forced to be a subset of Ċ (e.g., see [32, 1.8 Theorem]). Let

κ be a large enough regular cardinal. Fix any countable N ≺ Hκ with P ∗ Q̇, E ∈ N
such that ω1 ∩N ∈ E. Since κ is large enough, we can assume that 〈q̇ξ | ξ < λ〉, Ċ,

and C0 are members of N . Fix any (p, q̇) ∈ P ∗ Q̇. Our goal is to find a projection of
(p, q̇) on N . Let C =

⋃
(C0 ∩N) = λ ∩N ∈ C0. Since ω1 ∩ C ∈ E, we have

p ⊩ “q̇ has a projection on {q̇ξ | ξ ∈ C}”.

So there exists p′ ≤ p and ξ(C) ∈ C such that

p′ ⊩ “q̇ξ(C) is a projection of q̇ on {q̇ξ | ξ ∈ C}”.

Note that q̇ξ(C) ∈ N . Let p′(N) be a projection of p′ on N . Then (p′(N), q̇ξ(C)) is a

projection of (p, q̇) on N : Fix any (r, ṡ) ∈ (P ∗ Q̇) ∩ N and assume that (r, ṡ) ≤
(p′(N), q̇ξ(C)). Since

N |= “∃r′ ≤ r, ∃ξ < λ, r′ ⊩ “ṡ = q̇ξ””,

pick r′ ≤ r in N and ξ ∈ λ ∩N such that (r′, q̇ξ) ≤ (r, ṡ). Since p′(N) is a projection
of p′, there exists a common extension p′′ ∈ P of r′ and p′ (and, of course, p). Then,

p′′ ⊩ “q̇ξ ‖ q̇”.
since ξ ∈ C and q̇ξ(C) is a projection of q̇. Pick p∗ ≤ p′′ and q̇∗ such that

p∗ ⊩ “q̇∗ is a common extension of q̇ξ and q̇”.

Thus, (p∗, q̇∗) is a common extension of (r, ṡ) and (p, q̇).
Consider the case cof(γ) ≥ ω. Pick N ≺ Hκ with Pγ, E ∈ N and with ω1∩N ∈ E.

Fix any p ∈ Pγ. Pick δ ∈ γ ∩ N such that max(supp(p) ∩ δ) = max(supp(p) ∩ N).
Let (p|δ)N ∈ Pδ ∩ N be a projection of p|δ on N and let pN = iδ,γ((p|δ)N) where
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iδ,γ : Pδ → Pγ is the cannonical complete embedding. Fix any q ≤ pN in N . Then,
q|δ ≤ (p|δ)N is in N and hence a common extension r ∈ Pδ of q|δ and p|δ exists.
Since supp(p) ∩ supp(q) \ δ ⊂ supp(p) ∩N \ δ = ∅, the condition r̃ ∈ Pγ defined by

r̃(ξ) =


r(ξ) (ξ < δ)

q(ξ) (ξ ∈ supp(q) \ δ)
p(ξ) (otherwise)

is a common extension of q and p. □

Lemma 9. For any stationary set E ⊂ ω1, MA(ProjCes(E)+“size < c”) implies
MA(ProjCes(E))

Proof. Assume that MA(ProjCes(E) + “size < c”). Fix a forcing notion P
that has a ces(E) projection. Let p̄ = 〈pξ | ξ < µ〉 be an ordering of P. Let
D = 〈Dα | α < λ〉 be a sequence of dense sets in P of length λ < c. Our goal is
to find a D-generic filter on P. Let κ be a large enough regular cardinal and select
M ≺ Hκ of size λ such that P,D, λ, p̄, E ∈M and that λ ⊂M . Let µM be the order
type of µ ∩M and c : µ ∩M → µM be the transitive collapse. Note that c↾λ is the
identity map.

We shall only show that P∩M has a club(E) projection since the rest of the proof
is completely the same as the one of Lemma 2. Note that q̄ =

〈
pc−1(ξ)

∣∣ ξ < µM
〉

is
an ordering of P ∩M . Select a club set

C ⊂ {c→(µ ∩N) | N ≺M, |N | = ℵ0, p̄,P, E ∈ N}

where c→(µ ∩ N) is the image of µ ∩ N by c. Then C is a club set in [µM ]≤ℵ0 . Fix
any c→(µ ∩ N) ∈ C such that ω1 ∩ c→(µ ∩ N) = ω1 ∩ N ∈ E. Since P projects
into P ∩ N = {pξ | ξ ∈ µ ∩ N} = {pc−1(ξ) | ξ ∈ c→(µ ∩ N)}, so does P ∩M since
p ‖P q =⇒ p ‖P∩M q by elementarity M ≺ Hκ. □

Combining proofs of Lemmata 2 and 9 naively, we obtain the following.

Lemma 10. For any stationary set E ⊂ ω1, MA(EPCℵ1+ProjCes(E)+size ≤ ℵ1)
implies MA(EPCℵ1 + ProjCes(E))

H. Woodin [33] established the next theorem.

Theorem 1 ([33, Theorem 4.]). Let Cω2 be the finite support iteration of the
Cohen forcing C of length ω2. Let G be a Cω2-generic set over the ground model V
in which CH holds. Then, in V [G], there exists a non-principal ultrafilter U on P(ω)
such that Rω/U is β1.

Our main theorem is a generalization of Woodin’s theorem.
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Main Theorem (Repetition). Let E ⊂ ω1 be a stationary set. Let Pω2 =〈〈
Pξ, Q̇ξ

〉 ∣∣∣ ξ ∈ ω2

〉
be a finite support iteration of EPC∗

ℵ1
+ ProjCes(E) forcing

posets of size ≤ ℵ1. Let G be a Pω2-generic over the ground model V in which CH
holds. Then, in V [G], there exists a non-principal ultrafilter U on P(ω) such that
Rω/U is β1.





CHAPTER 2

Discontinuous homomorhpisms on C(X) and EPCℵ1

1. Real Closed Fields

We aim to force that Rω/U is a β1-field for some ultrafilter U on P(ω). Thus it
is very helpful to investigate properties of real closed fields.

Most of the contents in this section are derived from Woodin [33] and we shall
provide proofs of the necessary lemmata that are omitted in his paper.

1.1. β1-Fields and A Discontinuous Homomorphism from C(X). We con-
sider the notion of gaps in ordered fields which plays an important role throughout
this article. Let us begin the argument by defining gaps and several order properties.
The following two definitions are based on [16].

Definition 13. Let 〈T,<〉 be a totally ordered set and let A, B, and S be subsets
of T . We write A � B if a < b for all a ∈ A and b ∈ B, in which case we say
that the pair 〈A,B〉 is a pregap on T . We say that x ∈ T interpolates 〈A,B〉 if
a < x < b for all a ∈ A and b ∈ B. If no x ∈ T interpolates 〈A,B〉, then 〈A,B〉
is called a gap. Furthermore, if cof(A) = κ and coi(B) = λ, then 〈A,B〉 is called a
〈κ, λ〉-gap. When κ, λ < ℵ1, we say that 〈A,B〉 is a countable gap. Otherwise, we
say that 〈A,B〉 is an uncountable gap. The pregap defined by x ∈ T on S is the
pregap 〈{y ∈ S | y < x}, {y ∈ S | x < y}〉.

Definition 14. Let 〈K,<〉 be an ordered field over R. We say that K is

• an α1-field if, for each X ⊂ K, both the cofinality cof(X) of X and the
coitintiality coi(X) of X are less than ℵ1,

• a β1-field if there exists a chain of α1-fields 〈Kν | ν < λ〉 such that K =⋃
ν<λKν, and

• an η1-field if there is no countable gap in K.

It is easily seen that every subfield of an α1-field and every subfield of a β1-field is
also an α1-field and a β1-field, respectively. Since the set of real numbers R has the
countable chain condition, R is an α1-field. Since the ultraproduct Rω/U of R over
a non-principal ultrafilter U on P(ω) is ℵ1-saturated, it is an η1-field. Recall that
a model is ℵ1-saturated if any countable type is realized. η1 and a model-theoretic
terminology ℵ1-saturation are equivalent conditions for real closed fields, by cell

17
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decomposition (see Note 1 and the end of this section). The following represents
that the property β1 implies “small”.

Lemma 11 ([16, Theorem 2.30]). Let K be a β1-field, and let L be a real-closed
η1-field. Then there is an embedding of K in L.

The following theorem is due to J. Esterle and B. E. Johnson; for example, see
[13],[15], or [33].

Theorem 2 ([13, Theorem 5.7.13]). If there is a non-principal ultrafilter U on
P(ω) such that Rω/U is β1, then there is a discontinuous homomorphism from C(X)
into a Banach algebra for any infinite compact Hausdorff space X.

Our definition of property β1 is different from Woodin’s one [33]. The relation
between the two definitions will be considered at the end of the subsection 1.3.

1.2. The Perspective of Model Theory. We shall research real closed fields
with model theoretical arguments.

Let LOR := {0, 1,+, ·,=, <} be the language of ordered rings. For every language
L, formL denotes the set of all formulas of L. In this paper, every structure is denoted
by a blackboard bold letter, and its domain is denoted by a Roman letter, e.g., the
domain of a structure F is F .

Definition 15. Let F be a real closed field and S ⊂ F . Define LOR(S) := LOR∪S
where we regard each element of S as a constant symbol that is interpreted as itself
in F. For each 1 ≤ k < ω, define

Defk(F, S) :=
{
{ā ∈ Fk | F |= φ(ā)} | φ(v̄) ∈ formLOR(S)

}
and

Funck(F, S) :=
{
G ∈ Defk+1(F, S)

∣∣ G : F k → F
}
.

We show later that Func0(F, S) can be defined as the real closure of S in F (see
Lemma 12).

A real closed field is defined to be a field that is real (i.e., every sum of squares
is not equal to −1) and has no proper real algebraic extension. Field theory allows
a reformulation of this notion in the first-order language, see [29, p. 94, Corollary
3.3.5]. We let RCF be the LOR-theory of real closed fields. The following is a basic
fact of RCF, see [29].

Theorem 3 (Quantifier elimination for RCF). RCF eliminates quantifiers, which
means that for every formula φ(v̄) ∈ formLOR

, there exists a quantifier free formula
ψ(v̄) ∈ formLOR

such that RCF |= φ(v̄) ↔ ψ(v̄).

Theorem 4. RCF is model-complete, which means that if F and H are models of
RCF and H is submodel of F, then H is an elementary submodel of F.
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Theorem 5. RCF is complete, which means that RCF ` φ or RCF ` ¬φ for each
sentence φ ∈ formLOR

.

Furthermore, real closures are easily obtained by model-completeness.

Definition 16. Let M be an L-structure and S ⊂ M . We say that y ∈ M is
uniquely defined over S if there is an L-formula φ(v̄, w) and ā ∈ S<ω such that

M |= φ(ā, y) ∧ ∀v(φ(ā, v) → v = y).

Lemma 12. Let F be a real closed field and S ⊂ F. Then,
RF(S) = {y ∈ F | y is uniquely defined with respect to the language LOR(S)}

where RF(S) denotes the real closure of S under F.

Proof. It is clear that Q(S) ⊂ RF(S) where Q(S) is the minimal field containing
Q ∪ S.

First, fix any y ∈ RF(S). Then, since y is algebraic over S, there is a non-zero
polynomial p(X) ∈ Q(S)[X] and m ∈ ω such that

RF(S) |= “y is the m-th root of p(X)”.

By elementarity,

F |= “y is the m-th root of p(X)”.

The m-th root of p(X) is unique so that y is uniquely defined over S.
Second, fix any y ∈ F such that

F |= φ(ā, y) ∧ ∀v(φ(ā, v) → v = y)

for some φ(ū, v) ∈ formLOR
and ā ∈ S<ω. Then,

F |= ∃u (φ(ā, u) ∧ ∀v(φ(ā, v) → v = u))

and hence, by the elementarity,

RF(S) |= ∃u (φ(ā, u) ∧ ∀v(φ(ā, v) → v = u)) .

Thus, there is y′ ∈ RF(S) such that

RF(S) |= φ(ā, y′).

Again, by elementarity,

F |= φ(ā, y′) ∧ ∀v(φ(ā, v) → v = y)

so that y = y′ ∈ RF(S). □
Lemma 13. Let F ⊂ H be real closed fields, S ⊂ H and assume that H =

RH(F(S)). Then H = {G(x̄) | m < ω, G ∈ Funcm(H, F ), x̄ ∈ Sm}.
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Proof. The direction ⊃ is trivial. Fix any a ∈ H and assume that a is uniquely
defined by φ(u, x̄, ȳ) where x̄ ∈ F<ω and ȳ ∈ Sm. Then A = {z̄ ∈ H | H |=
∃!uφ(u, x̄, z̄)} ∈ Defm(H, F ) is non-empty because H |= ∃v̄∃!uφ(u, x̄, v̄). Let G(z̄)
be the unique element u which satisfies φ(u, x̄, z̄) if z̄ ∈ A and let G(z̄) = 0 otherwise.
Then G ∈ Funcm(H, F ) and G(ȳ) = a. □

We fix a real closed field F and a subset S ⊂ F for the rest of this subsection.

Definition 17 ([29, p. 102, Definition 3.3.29]). Let C ⊂
⋃

1≤k<ω Defk(F, S) be
the minimal collection such that

(C1) {a} ∈ C for all a ∈ RF(S),
(C2) (a,+∞) ∈ C and (−∞, a) ∈ C for all a ∈ RF(S),
(C3) (a, b) ∈ C for all a, b ∈ RF(S),
(C4) G ∈ C for all cells A ∈ C ∩ Defk(F, S) and continuous functions G : A → F
in Defk+1(F, S),
(C5) {〈ā, b〉 ∈ A× F | b < G(ā)} ∈ C and {〈ā, b〉 ∈ A× F | G(ā) < b} ∈ C for all
cells A ∈ C ∩Defk(F, S) and all continuous functions G : A→ F in Defk+1(F, S),
(C6) {〈ā, b〉 ∈ A×F | G1(ā) < b < G2(ā)} ∈ C for all cells A ∈ C∩Defk(F, S) and
continuous functions G1, G2 : A→ F in Defk+1(F, S) that satisfy G1 < G2 on A.

Any element of C is called a cell.

Note 1. The following are fundamental facts about RCF.

(1) For each X ∈ Defk(F, S), there is a quantifier free formula φ ∈ formLOR(S)

such that

X = {a ∈ F k | F |= φ(a)}.

(2) (Uniformization) For each A ∈ Defk+1(F, S), there exists a function G ∈
Funck(F, S) on F k such that G↾ domA ⊂ A.([29, p. 101, Corollary 3.3.26])
(3) (Cell decomposition) For each A ∈ Defk(F, S), there are dis-
joint cells C1, . . . , Cm ∈ Defk(F, S) such that A = C1 ∪ . . . ∪
Cm.([29, p. 103, Theorem 3.3.31])
(4) For each G ∈ Funck(F, S), there are cells C1, . . . , Cm ∈ C partitioning F k

such that each G↾Ci is continuous.([18, Ch3. (2.11)])
(5) For every definable continuous function on a definable bounded closed set,
its image is closed and bounded.([29, Corollary 3.3.20])

Fix a natural number k ≥ 1. Note that Defk(F, S) is a Boolean algebra with
respect to the subset relation and the set operations. Fix an ultrafilter U on
Defk(F, S) from now on. Then f =U g :⇐⇒ {x̄ ∈ F k | f(x̄) = g(x̄)} ∈ U is
an equivalence relation on Funck(F, S). For each function f ∈ Funck(F, S), define
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[f ]U := {g ∈ Funck(F, S) | g =U f}. Let UltF(S, U) := {[f ]U | f ∈ Funck(F, S)}. We
define

(1) 0 is the equivalence class of the function 0: F k → {0},
(2) 1 is the equivalence class of the function 1: F k → {1},
(3) [f ]U < [g]U : ⇐⇒ {x̄ ∈ F k | f(x̄) < g(x̄)} ∈ U ,
(4) [f ]U + [g]U := [f + g]U for each f, g ∈ Funck(F, S), and
(5) [f ]U · [g]U := [f · g]U for each f, g ∈ Funck(F, S).

It is easily seen that <, +, and · are well-defined, and that
〈
UltF(S, U), 0, 1,+, ·, <

〉
is a structure for LOR. The analogue of  Los’s theorem for UltF(S, U) holds due to
the uniformization of real closed fields.

Theorem 6. Let f1, . . . , fm ∈ Funck(F, S) and φ(v1, . . . , vm) ∈ formLOR
. Then

UltF(S, U) |= φ([f1]U , . . . , [fm]U) ⇐⇒ {x̄ ∈ F k | F |= φ(f1(x̄), . . . , fm(x̄))} ∈ U

In particular, UltF(S, U) is a real closed field.

Proof. As the standard proof of  Los’s theorem, we shall proceed by induction
on the complexity of φ. The negation step and the conjunction step are very simple
and are similar to the proof of  Los’s theorem, so we consider the existential quantifier
step. Let us assume that

UltF(S, U) |= φ0([f ]U , [f1]U , . . . , [fm]U) ⇐⇒ {x̄ ∈ F k | F |= φ0(f(x̄), f1(x̄), . . . , fm(x̄))} ∈ U

for all f ∈ Funck(F, S). We have

UltF(S, U) |= ∃vφ0(v, [f1]U , . . . , [fm]U)

⇐⇒ UltF(S, U) |= φ0([f ]U , [f1]U , . . . , [fm]U) for some f ∈ Funck(F, S)

⇐⇒ {x̄ ∈ F k | F |= φ0(f(x̄), f1(x̄), . . . , fm(x̄))} ∈ U for some f ∈ Funck(F, S)

⇐⇒ {x̄ ∈ F k | F |= ∃vφ0(v, f1(x̄), . . . , fm(x̄))} ∈ U

The last equivalence follows from uniformization in Note 1. □

For each l < k, idl ∈ Funck(F, S) denotes the projection idl(x0, . . . , xk−1) = xl.
We shall assume that S = F0 is a real closed subfield of F.

Lemma 14.

UltF(F0, U) = RUltF(F0,U)(F0([id0], . . . , [idk−1])).

In particular, the transcendental degree trdeg(UltF(F0, U)/F0) of UltF(F0, U) over F0

is less than or equal to k.
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Proof. Fix any f ∈ Funck(F, F0). Pick φ ∈ formLOR(F0) which defines f , so that

f(x̄) = y ⇐⇒ F |= φ(x̄, y)

and
F |= ∀ū∃v(φ(ū, v) ∧ ∀w(φ(ū, w) → v = w)).

Then, {x̄ ∈ F k | F |= φ(x̄, f(x̄))} = {x̄ ∈ F k | F |= φ(id0(x̄), . . . , idk−1(x̄), f(x̄))} =
F k ∈ U . Therefore,

UltF(F0, U) |= φ([id0]U , . . . , [idk−1]U , [f ]U).

Since F0 is a common elementary submodel of F and UltF(F0, U),

UltF(F0, U) |= ∀ū∃v(φ(ū, v) ∧ ∀w(φ(ū, w) → v = w))

and hence [f ]U is uniquely defined over F0([id0]U , . . . , [idk−1]U). □
Note that, by cell decomposition, U is generated by cells. We shall consider

how properties of U characterize properties of the field extension F0 ≤ UltF(F0, U).
First, we shall see that the generators of U characterize an algebraic property of the
extension.

Lemma 15. The following are equivalent.

(1) trdeg(UltF(F0, U)/F0) = k
(2) U is generated by cells that are constructed by (C2), (C3), (C5), and
(C6).
(3) U is generated by open sets with respect to the product topology of the
order topology.

Proof. Since the implication 2 =⇒ 3 is trivial, we shall show 3 =⇒ 1 =⇒ 2.
For 3 =⇒ 1, we assume that U is generated by open sets. Suppose that

UltF(F0, U) |=
∑
n : k→l

an
∏
i<k

[idi]U
n(i) = 0

where each an is in F0 and l ∈ ω. Here, any natural number l is identified with
the set of non-negative integers less than l, and each a ∈ F0 is identified with the
equivalent class of the constant function with value a. Then,{

〈x0, . . . , xk−1〉 ∈ F k

∣∣∣∣∣ F |=
∑
n : k→l

an
∏
i<k

x
n(i)
i = 0

}
∈ U.

Since U is generated by open sets, there is an open set A ∈ U such that if

〈x0, . . . , xk−1〉 ∈ A then
∑

n : k→l an
∏

i<k x
n(i)
i = 0. Thus, each an is 0. Therefore

[id0]U , . . . , [idk−1]U are independent.
For 1 =⇒ 2, we assume that C ∈ U where C is generated using (C1) or

(C4). If (C1) is used, then {a} × F × · · · × F ∈ U , so that [id0]U = [a]U . Thus
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trdeg(UltF(F0, U)/F0) < k. If (C4) is used, then G × F × · · · × F ∈ U for some
A ∈ C∩Def l(F, F0) and G : A→ F in Def l+1(F, F0), so that [idl]U is uniquely defined

over RUltF(F0,U)(F0([id0]U , . . . , [idl−1]U)). Thus, trdeg(UltF(F0, U)/F0) < k. □

Next, we shall see that U characterizes an order property of the extension F0 ≤
UltF(F0, U). Note that an ultrafilter U ⊂ Defk(F, F0) is principal iff {x̄} ∈ U for
some x̄ ∈ F k

0 : If U is principal, then some single non-empty set A ∈ Defk(F, F0)
generates U . Then, by model-completeness, there exists x̄ ∈ A ∩ F k

0 . Since U is an
ultrafitler, A \ {x̄} ∈ U or {x̄} ∈ U but, since A generates U , A \ {x̄} ∈ U is not the
case. Thus A = {x̄} ∈ U .

Lemma 16. If 〈A,B〉 is a gap in F0, then U⟨A,B⟩ := {C ∈ Def1(F, F0) | ∃x ∈
A∪{−∞}, ∃y ∈ B∪{+∞}, (x, y) ⊂ C} is a non-principal ultrafilter in the Boolean
algebra Def1(F, F0). Conversely, if U is a non-principal ultrafilter in Def1(F, F0),
then U = U⟨AU ,BU ⟩ where AU = {a ∈ F0 | {x ∈ F | a < x} ∈ U} and BU = {b ∈ F0 |
{x ∈ F | x < b} ∈ U}.

Proof. Suppose that 〈A,B〉 is a gap in F0. Since the case when A = ∅ or B = ∅
is simpler, we assume that both A and B are non-empty. First, we shall show that
U⟨A,B⟩ is non-principal. Note that {(x, y) | x ∈ A, y ∈ B} generates U⟨A,B⟩. Fix any
x ∈ A and y ∈ B. Then x < (x+y)2−1 < y and hence either there exists x′ ∈ A such
that (x + y)2−1 ≤ x′ or there exists y′ ∈ B such that y′ ≤ (x + y)2−1. We assume
that the former case occurs. Then (x′, y) ⊊ (x, y) and (x′, y) ∈ U⟨A,B⟩. Thus U⟨A,B⟩ is
non-principal. Next, let us proceed to the maximality of U⟨A,B⟩. Fix any C ∈ U⟨A,B⟩.
Using cell decomposition, there exist finitely many elements a−i , a

+
i , aj, b

−, b+ ∈ F0

such that

C =
⋃
i

(a−i , a
+
i ) ∪

⋃
j

{aj} ∪ (b−,+∞) ∪ (−∞, b+).

Since 〈A,B〉 is a gap, there exist x ∈ A and y ∈ B such that a−i , a
+
i , aj, b

−, b+ /∈ (x, y)
for each i and j. Thus either (x, y) is included in C or it is disjoint from C. In the
former case, C ∈ U , and otherwise F0 \ C ∈ U .

Suppose that U is a non-principal ultrafilter in Def1(F, F0). Since U is closed
under intersections and ∅ /∈ U , 〈AU , BU〉 is a pregap. Towards a contradiction, let
us assume that c ∈ F0 interpolates 〈AU , BU〉. Then, one of {x ∈ F0 | x < c},
{x ∈ F0 | c < x}, and {c} is in U . If {c} ∈ U , then U is principal, a contradiction. If
{x ∈ F0 | x < c} ∈ U , then c ∈ BU , a contradiction. The case {x ∈ F0 | c < x} ∈ U
is similar. □

Lemma 17. Let U be an ultrafilter on Defk(F, F0). If 〈A,B〉 is a gap in
UltF(F0, U), then the set of all {〈x̄, y〉 | x̄ ∈ X, HA(x̄) < y < HB(x̄)} where X ∈ U ,
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[HA]U ∈ A∪{[−∞]U}, and [HB]U ∈ B ∪{[+∞]U} generates a non-principal ultrafil-
ter W⟨A,B⟩ on Defk+1(F, F0). Here, +∞ and −∞ denote constant functions to +∞
and −∞, respectively.

Proof. Let us assume that 〈A,B〉 is a gap in UltF(F0, U). We consider the case
that both A and B are non-empty. Fix any X ∈ Defk+1(F, F0). By cell decompo-
sition, we get F0-definable cells Cj (j < kC), Dj (j < kD), E+

j (j < kE+), and E−
j

(j < kE−) and F0-definable functions HC
j (j < kC), HD,−

j , HD,+
j (j < kD), HE−

j

(j < kE−), HE+

j (j < kE+) such that

X =
⋃
j<kC

{〈x̄, y〉 ∈ Cj × F | HC
j (x̄) = y} ∪

⋃
j<kD

{〈x̄, y〉 ∈ Dj × F | HD,−
j (x̄) < y < HD,+

j (x̄)}

∪
⋃

j<kE−

{〈x̄, y〉 ∈ E−
j × F | y < HE−

j (x̄)} ∪
⋃

j<kE+

{〈x̄, y〉 ∈ E+
j × F | HE+

j (x̄) < y}.

By reordering C = {Cj, Dj, . . . | j < kC , j < kD, . . .}, we shall assume that Cj
(j < lC), Dj (j < lD), E−

j (j < lE−), and E+
j (j < lE+) are only members of U

in C. Let H be the set of definable functions we have chosen. Since 〈A,B〉 is a
gap in UltF(F0, U) and since H is finite, there are [H−]U ∈ A and [H+]U ∈ B such
that the open interval ([H−]U , [H

+]U) does not contain [H]U for any H ∈ H. If

[HD,−
j ]U ≤ [H−]U < [H+]U ≤ [HD,+

j ]U for some j < lD, if [HE+

j ]U ≤ [H−]U for some

j < lE+ , or if [H+]U ≤ [HE−
j ]U for some j < lE− , then X ∈ W⟨A,B⟩. Otherwise, define

C =
⋂
j<lC

Cj ∩
⋂

lC≤j<kC

(
F k \ Cj

)
∩
⋂
j<lD

Dj ∩
⋂

lD≤j<kD

(
F k \Dj

)
∩
⋂

j<lE−

E−
j ∩

⋂
lE−≤j<kE−

(
F k \ E−

j

)
∩
⋂

j<lE+

E+
j ∩

⋂
lE+≤j<kE+

(
F k \ E+

j

)
.

Then C ∈ U . Let

Y =
⋂
j<lC

{〈x̄, y〉 ∈ C × F | HC
j (x̄) 6= y} ∩

⋂
j<lD

{〈x̄, y〉 ∈ C × F | y ≤ HD,−
j (x̄) or HD,+

j (x̄) ≤ y}

∩
⋂

j<lE−

{〈x̄, y〉 ∈ C × F | HE−

j (x̄) ≤ y} ∩
⋂

j<lE+

{〈x̄, y〉 ∈ C × F | y ≤ HE+

j (x̄)}.

Then Y ⊂ F k+1 \ X and {x̄ ∈ F k | ∀y ∈ F, H−(x̄) < y < H+(x̄) =⇒ 〈x̄, y〉 ∈
Y } ∈ U . Thus Y ∈ W⟨A,B⟩ and hence F k+1 \ X ∈ W⟨A,B⟩. Therefore W⟨A,B⟩ is an
ultrafilter.

If {〈x̄0, y0〉} ∈ W⟨A,B⟩, then the constant function H(x̄) := y0 interpolates 〈A,B〉
and is definable over F0, a contradiction. Thus W⟨A,B⟩ is non-principal. □
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Let 〈Al, Bl〉 be the pregap in RUltF(F0,U)(F0([id0]U , . . . , [idl−1]U)) defined by [idl]U
for each l < k. That is, Al = {[G]U ∈ RUltF(F0,U)(F0([id0]U , . . . , [idl−1]U)) |
{x̄ ∈ F k | F |= G(x̄) < xl} ∈ U} and Bl is defined similarly. We define
Ul := {{〈x0, . . . , xl−1〉 | ∃xl, . . . xk−1, 〈x0, . . . , xk−1〉 ∈ A} | A ∈ U}. Note that Ul is an
ultrafilter on Def l(F, F0). We regard UltF(F0, Ul) as a subfield of UltF(F0, Ul′) for each
l ≤ l′ ≤ k by the embedding [G]Ul

7→ [G̃]Ul′
where G̃(x0, . . . , xl′−1) = G(x0, . . . , xl−1).

Then UltF(F0, Ul) = RUltF(F0,Ul′ )(F0([id0]U , . . . , [idl−1]U)).

Lemma 18. The following are equivalent.

(i) F0 is cofinal in UltF(F0, U).
(ii) Both of cof(Al) and coi(Bl) are infinite for all l < k.
(iii) For each A ∈ U , there is a bounded cell C ∈ U such that Cl(C) ⊂ A
where Cl(C) is the closure of C.
(iv) For each G ∈ Funck(F, F0), there exists A ∈ U such that G↾A is bounded.

Before proceeding to the proof, we remark that Cl(A) ∈ Defk(F, F0) for any
A ∈ Defk(F, F0). To see this, let φ(v̄) be the definition of A. Then,

Cl(A) = {w̄ ∈ F | F |= ∀r(r > 0 → ∃v̄(φ(v̄) ∧ (w1 − v1)
2 + · · · + (wk − vk)

2 < r))}.

So, both the interior Int(A) and the boundary ∂(A) of A are also F0-definable.

Proof. First, we shall show that (i) implies (ii). We assume that some coi(Bl)

is finite. If coi(Bl) = 0, then [idl]U bounds RUltF(F0,U)(F0([id0]U , . . . , [idl−1]U)),
so it bounds F0. If coi(Bl) = 1, then (min(Bl) − [idl]U)−1 bounds

RUltF(F0,U)(F0([id0]U , . . . , [idl−1]U)), so it bounds F0.
Second, we shall assume that (ii) holds, and prove (iii) by induction on k. Suppose

that k = 1 and fix any A ∈ U . By cell decomposition, A can be decomposed into
open intervals (some of them may have no endpoints) and singletons. Remark that
endpoints of F0-definable open intervals and elements of F0-definable singletons are
uniquely defined over F0, hence they are members of F0 by Lemma 12. If some
singleton is a member of U , since the closure of a singleton is a singleton, the case
k = 1 is done. Otherwise, there exists x ∈ F0∪{−∞} and y ∈ F0∪{+∞} such that
(x, y) ⊂ A and (x, y) ∈ U . Note that x ∈ A0 ∪ {−∞} and that y ∈ B0 ∪ {+∞}.
Since cof(A0) and coi(B0) are infinite, there exist a ∈ A0 and b ∈ B0 such that
x < a < b < y. Thus, Cl((a, b)) = [a, b] ⊂ (x, y) ⊂ A and (a, b) ∈ U . We proceed to
the inductive step. So we shall assume that the claim holds for l and we shall consider
the case k = l + 1. Fix any A ∈ U . We choose a cell C ∈ U such that C ⊂ A by
cell decomposition. Since {〈x0, . . . xl〉 | G(x0, . . . , xl−1) < xl < H(x0, . . . , xl−1)} ∈ U
for some [G]Ul

∈ Al and [H]Ul
∈ Bl, we shall assume that {y ∈ F | 〈x̄, y〉 ∈ C} is

bounded for each x̄ ∈ F l. So C is not generated by (C5). Consider the case when
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there are C0 ∈ Ul and functions G,H ∈ Funcl(F, F0) that is continuous on C0 such
that

C = {〈x0, . . . , xl〉 ∈ C0 × F | G(x0, . . . , xl−1) < xl < H(x0, . . . , xl−1)}.
The other case, which means that C is generated by (C4), is simpler. Now, we have
[G]Ul

< [idl]U < [H]Ul
. Since Al and Bl are infinite, there are functions G′, H ′ ∈

Funcl(F, F0) such that

[G]Ul
< [G′]Ul

< [idl]U < [H ′]Ul
< [H]Ul

.

Choose a cell C ′
0 ∈ Ul such that G′ and H ′ are continuous on C ′

0 (see Note 1 (iv)),

G(x0, . . . , xl−1) < G′(x0, . . . , xl−1) < H ′(x0, . . . , xl−1) < H(x0, . . . , xl−1)

for all 〈x0, . . . , xl−1〉 ∈ C ′
0, and C ′

0 ⊂ C0. By the induction hypothesis, we pick a
bounded cell C1 ∈ Ul such that Cl(C1) ⊂ C ′

0. Note that G′↾Cl(C1) and H ′↾Cl(C1)
are bounded (see [29, Corollary 3.3.20]). Let

C̃ := {〈x0, . . . , xl〉 ∈ C1 × F | G′(x0, . . . , xl−1) < xl < H ′(x0, . . . , xl−1)}.

Then, C̃ ∈ U , C̃ is bounded, and

Cl(C̃) = {〈x0, . . . , xl〉 ∈ Cl(C1) × F | G′(x0, . . . , xl−1) ≤ xl ≤ H ′(x0, . . . , xl−1)}
is a subset of C (see [18, Ch.6 (1.7)]). This finishes the implication (ii) =⇒ (iii).

Third, we shall show that (iii) implies (iv). Fix any G ∈ Funck(F, F0). Choose
a cell C ∈ U such that G↾C is continuous, see 4 of Note 1. By the assumption, we
pick a bounded cell C ′ ∈ U such that Cl(C ′) ⊂ C. Then, G↾Cl(C ′) is bounded.

Fourth, we shall show that (iv) implies (i). Fix any G ∈ Funck(F, F0). By the
assumption, pick A ∈ U such that G↾A is bounded (see [29, Corollary 3.3.20]). This
statement can be written in F0. Thus there is x ∈ F0 such that G(z̄) < x for all
z̄ ∈ A. Therefore [G]U < x. □

Note 2. If C0, . . . , Cn are cells that is constructed using (C1) or (C4) at least
once, then Int(C0 ∪ · · · ∪ Cn) = ∅. To see this, for i < m, fix any ai, bi ∈ F such
that ai < bi. Suppose that, for the construction of Ck, (C1) or (C4) is used at the
ik-th step. For each i < m, select xi ∈

⋂
i=ik

{x ∈ (ai, bi) | (x0, . . . , xi−1, x) /∈ πiCk}
where πi : F

m → F i+1 is the projection map on the first i+ 1 coordinates. Then the
sequence x̄ = 〈xi | i ≤ m〉 is in (Πi<m(ai, bi)) \

⋃
k≤nCk.

Lemma 19. For any A ∈ Defm(F, F0), Int(∂(A)) = ∅.

Proof. ∂(A) does not contain any open cell (see
[18, Ch.3 (2.3), Ch.4 (1.1) and (1.10)]). So any cell decomposition of ∂(A)
consists of cells C0, . . . , Cn that are constructed using (C1) or (C4) at least once.
Thus Int(∂(A)) = Int(C0 ∪ · · · ∪ Cn) = ∅. □
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By Lemmata 15 and 18, we have the next lemma. H. Woodin [33] mentions it
without proof.

Lemma 20. Let F be a real closed field and fix a real closed subfield F0. Suppose
that U is an ultrafilter on Defk(F, F0). Then, the following are equivalent.

(1) trdeg(UltF(F0, U)/F0) = k and F0 is cofinal in UltF(F0, U).
(2) U is generated by closures of bounded open cells in U .

Proof. To see that 2 implies 1, suppose that U is generated by closures of
bounded open cells. For each A ∈ U , there exists an open cell C such that Cl(C) ⊂ A
and that Cl(C) ∈ U . Since Cl(C) = C ∪ ∂(C) and ∂(C) has empty interior (see
Lemma 19), ∂(C) /∈ U and hence C ∈ U . Thus U satisfies (iii) of Lemma 18 and 3
of Lemma 15.

Conversely, we assume that 1 holds. Fix any A ∈ U . By Lemma 18, pick a
bounded cell C ∈ U such that Cl(C) ⊂ A. Since U is generated by open sets, C has
non-empty interior. By Note 2, since C is bounded, C is generated using only (C3)
and (C6). Thus C is an open cell. □

For the proof of the main theorem, we also require the following fact.

Lemma 21 ([18, Ch 8. (3.10)]). Let f : A → C be a definable continuous map
from a definable closed subset A of a definable set B into a definable set C that is
definably contractible to a point c ∈ C. Then f can be extended to a continuous
definable function f̃ : B → C.

Here, “C is definably contractible to a point c ∈ C” means that there exists
a definable homotopy H : C × [0, 1] → F that contracts to c, that is, a definable
continuous function such that x 7→ H(x, 0) defines the identity map on C and that
x 7→ H(x, 1) defines the constant map to {c}. For a definable interval I ⊂ F and a
point c ∈ I, the function H(x, t) = x(1− t) + ct on I × [0, 1] is a definable homotopy
that witnesses that I is contractible to a point c ∈ I.

Let us consider the case when f is a continuous definable function on the closure
of a cell C into a bounded set in F . Then the image of f is a closed interval (see
[18, Ch.1 (3.6), Ch.3 (2.9), Ch.6 (1.11)]). So we have the following corollary.

Corollary 3. Every bounded continuous definable function on the closure of a
cell in Fm can be extended to a bounded continuous definable function on Fm.

1.3. γ1-extensions and β1-real Fields. We shall define a key notion of an
extension of real closed fields.

Definition 18. Suppose that H ⊂ F are real closed fields. For each ā ∈ F n,
tpF(ā/H) denotes {A ∩ Hn | ā ∈ A ∈ Defn(F, H)}. Notice that tpF(ā/H) is an
ultrafilter on Defn(H, H). We say that Y ⊂ F is γ1 over H if tpF(ā/H) is countably
generated for each ā ∈ (Y \H)<ω. F is a γ1-extension of H if F is γ1 over H.
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The notation “tp” comes from the model-theoretical term “type”. We identify
each element of tpF(ā/H) with the formula that defines it. If two extensions G and
F of a real closed field H have a tuple of common elements ā ∈ (G ∩ F)<ω, then
tpF(ā/H) = tpG(ā/H). So we often omit F in tpF(ā/H).

If 〈A,B〉 is the gap on H defined by a ∈ F \ H, then, by cell decomposition,
{(x, y) ⊂ H | x ∈ A, y ∈ B} generates tpF(a/H). This implies the following lemma.

Lemma 22. Let H ⊂ F be real closed fields. a ∈ F is γ1 over H iff a does not
define an uncountable gap on H.

Lemma 23. Let H be a chain of γ1-extensions of F. Then,
⋃
H is a γ1-extension

of F.

Proof. Fix any {a1, ..., an} ⊂
⋃

H. Then, {a1, ..., an} ⊂ H for some H ∈ H.
Thus tp(〈a1, . . . , an〉 /F) is coutably generated. □

The next lemma is a straightforward generalization of a well-known fact about
atomic extensions in model theory. This was proved by Alex Kruckman (private
communication).

Lemma 24. Let 〈Hα | α < λ〉 be a ⊂-increasing sequence such that Hα+1 is γ1
over Hα for each α ∈ λ and Hγ =

⋃
ξ<γ Hξ for each limit γ < λ. Then,

⋃
α<λHα is

γ1 over H0.

Proof. By Lemma 23, it suffices to show that if H0 ⊂ H1 ⊂ H2 are γ1-extensions,
then H2 is γ1 over H0. Fix any ā ∈ Hm

2 . Let 〈An ∈ Defm(H1, H1) | n < ω〉 be a ⊂-
decreasing sequence that generates tp(ā/H1). Let φn(x̄, b̄n) be a formula that defines
An with parameters b̄n ∈ Hmn

1 . For each n ∈ ω, let 〈Bn,i ∈ Defmn(H0, H0) | i < ω〉
be a ⊂-decreasing sequence that generates tp(b̄n/H0). Let ψn,i(x̄, d̄n,i) be a formula
that defines Bn,i where d̄n,i ∈ H<ω

0 . We define

Cn,i := {x̄ ∈ H0 | H0 |= ∃ȳ(φn(x̄, ȳ) ∧ ψn,i(ȳ, d̄n,i))}
for each n, i ∈ ω. We will show that 〈Cn,i | n, i ∈ ω〉 generates tp(ā/H0). So let
A ∈ tp(ā/H0) and assume that φ(x̄, d̄0) defines A. Since A ∈ tp(ā/H1), we take
n ∈ ω such that An ⊂ A. Thus,

H1 |= φn(x̄, b̄n) → φ(x̄, d̄0)

and hence

EDiag(H1) |= φn(x̄, b̄n) → φ(x̄, d̄0)

where EDiag(H1) denotes the elementary diagram of H1. By compactness, there is
a formula θ(b̄, b̄n, d̄1) ∈ EDiag(H1) such that b̄ ∈ H1 \H0, d̄1 ∈ H0, and

θ(b̄, b̄n, d̄1) |= φn(x̄, b̄n) → φ(x̄, d̄0).



1. REAL CLOSED FIELDS 29

Now, b̄ is not mentioned in φn(x̄, b̄n) → φ(x̄, d̄0), so that

∃w̄(θ(w̄, b̄n, d̄1)) |= φn(x̄, b̄n) → φ(x̄, d̄0).

Moreover, b̄n is not mentioned in φ(x̄, d̄0), so that

∃ȳ(φn(x̄, ȳ) ∧ ∃w̄(θ(w̄, ȳ, d̄1))) |= φ(x̄, d̄0).

Since ∃w̄(θ(w̄, ȳ, d̄1)) ∈ tp(b̄n/H0), there is i ∈ ω such that

H0 |= ψn,i(ȳ, d̄n,i) → ∃w̄(θ(w̄, ȳ, d̄1)).

Thus,

H0 |= ∃ȳ(φn(x̄, ȳ) ∧ ψn,i(ȳ, d̄n,i)) → φ(x̄, d̄0).

Therefore, Cn,i ⊂ A. □
Lemma 25. Let H be a real closed subfield of a real closed field F. Suppose that

F = RF(H(x)). If {x} is γ1 over H, then so is F.

Proof. Consider the case the type of the gap on H defined by x is
〈ω, ω〉. Other cases are similar. Let 〈〈aj, bj〉 | j < ω〉 be the gap. Fix any
ȳ ∈ Fm. By Lemma 12, each yi is uniquely defined by some φi(u, x) ∈
formLOR(H∪{x}), that is, F |= φi(yi, x) ∧ ∀u(φi(u, x) → u = yi). Let Cj ={
z̄ ∈ Hm | H |= ∃w

(∧
i<m φi(zi, w) ∧ aj < w < bj

)}
for each j < ω. We shall show

that {Cj | j < ω} is a generator of tpF(ȳ/H).
Fix any C ∈ tpF(ȳ/H) which is defined by φC(ū). Let

D =

{
w ∈ H

∣∣∣∣∣ H |= ∀ū

((∧
i<m

φi(ui, w)

)
→ φC(ū)

)}
.

Since D ∈ tpF(x/H), there exists a j < ω such that (aj, bj) ⊂ D. Then, Cj ⊂ C. □
Woodin [33] used the property γ1 to define the property β1 in his sense.

Definition 19 ([33]). Let H be a real closed subfield of a real closed field F.
F is W-β1 over H if F =

⋃
αHα where 〈Hα | α < λ〉 is a continuously ⊂-increasing

sequence of real closed fields such that, for each ξ < λ,

(1) H0 = H
(2) Hξ+1 = RHξ+1(Hξ(Y )) for some countable subset Y ⊂ Hξ+1, and
(3) Hξ+1 is γ1 over Hξ.

F is W-β1-real field if it contains R and is W-β1 over R.

In more detail about Woodin’s result [33], he showed that, under CH, the finite
support iteration of Cohen forcing C of length ω2 forces that some ultrapower Rω/U
is a W-β1-real field. Woodin also defined a real closed η1-field as an ℵ1-saturated
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real closed field. It is known that, for real closed fields, ℵ1-saturation is equivalent to
our definition of η1 (e.g., see [12, 5.4]). By the following lemma, the two properties
W-β1-real and β1 are equivalent for ultrapowers of the reals over ω since they are η1.
For that reason, we do not distinguish β1 and W-β1 when we discuss ultrapowers of
the reals.

Lemma 26. (1) The unique real closed β1-η1-field E , which is called the
Esterle algebra, exists. More specifically, if K is a real closed β1-η1-field
over R, then there exists an R-algebra isomorphism from K onto E (see [16,
Corollary 2.33 and introduction of Ch.2]).
(2) E is W-β1 (see [16, Theorem 2.36] and Lemma 25).
(3) Any W-β1-real field is β1.

proof of (3). We assume that F is W-β1. Since R is β1, R is embeddable in any
real closed η1-field ([16, Theorem 2.30]). By Lemma 4 in [33], F can be embedded
in any η1 real closed field. In particular, it can be embedded in E . Since any real
closed subfield of any β1 real closed field is β1, F is also β1. □

2. The Main Lemma

In this section, V always stands for the ground model.
For M ⊂ Rω, define

M∧ := {F (g1, . . . , gm) ∈ Rω | m ∈ ω, g1, . . . , gm ∈M, F ∈ Funcm(R, ∅)}.

where F (g1, . . . , gm)(n) = F (g1(n), . . . , gm(n)) for each n < ω. We say that a filter
base F ⊂ P(ω) is an M-ultrafilter if it totally orders M , that is, for each f, g ∈ M ,
one of the three sets {i ∈ ω | f(i) < g(i)}, {i ∈ ω | f(i) = g(i)}, and {i ∈ ω |
f(i) > g(i)} includes an element of F . To avoid redundancy, we abuse the notation
by using F itself for the filter obtained by ⊂-upward closure of F . Define the LOR-
structure 〈M∧/F , 0, 1,+, ·, <〉 similarly to

〈
UltF(S, U), 0, 1,+, ·, <

〉
. This structure

was studied in Woodin [33]. If F is an M∧-ultrafilter, then M∧/F is a real closed
ordered field by the following lemma, which is the analogue of  Los’s theorem for
M∧/F .

Lemma 27. LetM ⊂ Rω and let F ⊂ P(ω) be anM∧-ultrafilter. Let f1, . . . , fm ∈
M∧ and φ(v1, . . . , vm) be an LOR-formula. Then

M∧/F |= φ([f1]F , . . . , [fm]F) ⇐⇒ {i < ω | R |= φ(f1(i), . . . , fm(i))} ∈ F

Proof. As the standard proof of  Los’s theorem, we shall proceed by induction
on the complexity of φ. The conjunction step is straightforward. The negation step
works by the following claim.
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Claim 1. Fix k < ω. For ψ(v̄) ∈ LOR and f̄ ∈ (M∧)k, either {i < ω | R |=
ψ(f̄(i))} ∈ F or {i < ω | R |= ¬ψ(f̄(i))} ∈ F .

Proof. Induct on k. The case k = 0 is clear. Assume that the claim holds for
k and fix (f̄ , g) ∈ (M∧)k+1 and φ(v̄, w) ∈ LOR. By cell decomposition, there exist
F−
l , F

+
l , G

−
j , G

+
j′ , Hn ∈ Funck(R, ∅) and ψFl (v̄), ψG

−
j (v̄), ψG

+

j (v̄), ψHn (v̄) ∈ LOR such
that

R |= φ(r̄, s)

⇐⇒ R |=
∨
l<L

(
ψFl (r̄) ∧ F−

l (r̄) < s < F+
l (r̄)

)
∨
∨
j<J−

(
ψG

−

j (r̄) ∧G−
j (r̄) < s

)
∨
∨
j<J+

(
ψG

+

j (r̄) ∧ s < G+
j (r̄)

)
∨
∨
n<N

(
ψHn (r̄) ∧Hn(r̄) = s

)
.

By the assumption, either {i < ω | ψ(f̄(i))} ∈ F or {i < ω | ¬ψ(f̄(i))} ∈ F
for each ψ(v̄) ∈ LOR. If {i < ω | ¬ψ(f̄(i))} ∈ F for every ψ(v̄) ∈ Ψ :=
{ψFl (v̄), ψG

−

j− (v̄), ψG
+

j+ (v̄), ψHn (v̄) | l < L, j− < J−, j+ < J+, n < N}, then

{i < ω | R |= ¬φ(f̄(i), g(i))} ∈ F . Otherwise, removing ψ ∈ Ψ such that
{i < ω | ¬ψ(f̄(i))} ∈ F , we shall assume {i < ω | ψ(f̄(i))} ∈ F for all ψ ∈ Ψ. Since
F−(f̄), . . . , Hn(f̄), g ∈ M∧ and F is an M∧-ultrafilter, F determines whether g is a
member of

⋃
l

(
F−
l (f̄), F+

l (f̄)
)
∪
⋃
j

(
G−
j (f̄),+∞

)
∪
⋃
j

(
−∞, G+

j (f̄)
)
∪
⋃
n{Hn(f̄)},

that is, whether {i < ω | R |= φ(f̄(i), g(i))} is a member of F . □
The existential quantifier step works by the following claim.

Claim 2. For φ(ū, v) ∈ LOR and ḡ ∈ (M∧)m,

(∃f ∈M∧, {i < ω | R |= φ(ḡ(i), f(i))} ∈ F) ⇐⇒ {i < ω | R |= ∃xφ(ḡ(i), x)} ∈ F .

Proof. ( =⇒ ) is clear. Applying uniformization in Note 1 to A := {〈r̄, s〉 ∈
Rm+1 | R |= φ(r̄, s)}, we have ( ⇐= ). □

□
Note 3. Let M ⊂M∗ ⊂ Rω. Let F and F∗ be an M∧-ultrafilter and an (M∗)∧-

ultrafilter, respectively, such that F ⊂ F∗. Define G = M∧/F and G∗ = (M∗)∧/F∗.
Then G can be considered as a subfield of G∗ via the embedding [x]F 7→ [x]F∗.

Note 4 (See [33]). We shall consider the case M∗ = M ∪ {g0, . . . , gm−1}
for some ḡ = 〈g0, . . . , gm−1〉 ∈ (Rω)m in the situation of Note 3. Let W =
tpG∗

([g0]F∗ , . . . , [gm−1]F∗/G). Then,

ι([F (f0, . . . , fk−1, ḡ)]F∗) = FUltG
∗
(G,W )([f0]F , . . . , [fk−1]F , [id0]W , . . . , [idm−1]W )
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for F ∈ Funck+m(R, ∅) and f0, . . . , fk−1 ∈ M defines an isomorphism ι : G∗ →
UltG

∗
(G,W ). Here, FUltG

∗
(G,W ) is the function in Funck+m(UltG

∗
(G,W ), ∅) with the

same definition of F . Furthermore, ι fixes G and ι([gk]F∗) = [idk]W .

Definition 20. A filter F ⊂ P(ω) is countably generated over a filter base
B ⊂ P(ω) if there exists a countable set {τn ⊂ ω | n < ω} such that F = {A ⊂ ω |
∃n < ω, ∃X ∈ B, τn ∩X ⊂ A}. A forcing notion P has the γ1 property if, for an
ultrafilter U on P(ω), for a P-name Ṁ of a subset of Rω that contains Rω ∩ V , and
for a P-name Ḟ for an Ṁ∧-ultrafilter that is countably generated over U , Ṁ∧/Ḟ is
γ1 over (Rω ∩ V )/U in any generic extension by P.

Note that some ccc forcings do not have the γ1 property. Hechler forcing is an
example since a dominating real defines a ((cof(Rω/U))V , 0) gap in (Rω ∩ V )/U .
H. Woodin [33] proved the next theorem, essentially.

Theorem 7 ([33, Theorem 4.]). (CH) Let K be a class of forcing notions that
is closed under finite support iterations. Suppose that ZFC proves that every P ∈ K
has the ccc and the γ1 property. Let Pω2 =

〈〈
Pξ, Q̇ξ

〉 ∣∣∣ ξ ∈ ω2

〉
be a finite support

iteration of forcing notions in K such that each Pξ forces that |Q̇ξ| ≤ ℵ1. Let G be
a Pω2-generic set over V . Then, in V [G], there exists an ultrafilter U on P(ω) such
that Rω/U is β1.

Thanks to this theorem, to prove our main result, it is enough to show that every
EPC∗

ℵ1
forcing has the γ1 property. First, we shall show that any eventual precaliber

ℵ1 forcing has the 1-dimensional version of the γ1 property, which is useful to prove
the general version.

Lemma 28. (CH) Let E ⊂ ω1 be a stationary set. Let P be an EPC∗
ℵ1

+
ProjCes(E) forcing notion. Let U be an ultrafilter on ω. In the forcing extension
V P with P, let Rω ∩ V ⊂ Ṁ ⊂ Rω and let U ⊂ Ḟ ⊂ P(ω) be a Ṁ∧-ultrafilter that
is countably generated over U . Then, every singleton {[ġ]Ḟ} ⊂ Ṁ∧/Ḟ is γ1 over
F := (Rω ∩ V )/U , that is, [ġ]Ḟ does not define an uncountable gap.

Proof. Since CH is assumed in the ground model, it is enough to show that
the cofinality of {h ∈ (Rω )̌ | h <Ḟ ġ} is not ω1 in the extension model. Fix any
p ∈ P. Assume that p forces that 〈ġα ∈ (Rω )̌ | α < ω1〉 is a <Ǔ -increasing sequence
<Ḟ -below ġ and Ḟ is generated by Ǔ ∪ {τ̇n | n ∈ ω}. It can be assumed that
{τ̇n | n ∈ ω} is ⊂-decreasing. We shall show that there exist h ∈ Rω and q ≤ p such
that q ⊩ ∀α ∈ ω1, ġα <Ǔ ȟ ≤Ḟ ġ.

Select a sequence 〈nα ∈ ω, gα ∈ Rω, pα ≤ p, σα ∈ U | α < ω1〉 such that each pα
forces that ġα = ǧα and ġα(i) < ġ(i) for all i ∈ σ̌α ∩ τ̇nα . Pick T ∈ [ω1]

ℵ1 ,
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〈p̃α ≤ pα | α ∈ T 〉, and 〈δ(α, q) ∈ ω1 | α ∈ T, q ≤ p̃α〉 such that each {q, p̃ξ | ξ ∈
T \ δ(α, q)} is centered. Shrinking T , we assume that nα = n for all α ∈ T . Define

h(i) = inf{sup{gξ(i) | i ∈ σξ, ξ ∈ T \ α} | α ∈ ω1}.
Fix α ∈ T .

Claim 3. p̃α ⊩ ∀i ∈ τ̇n, ȟ(i) ≤ ġ(i)

Proof. Suppose not, and fix q ≤ p̃α, i ∈ ω, and x ∈ Q such that q ⊩ ǐ ∈
τ̇n ∧ ġ(̌i) < x̌ < ȟ(̌i). Since x < h(i), there exists S ∈ [T ]ℵ1 such that i ∈ σξ and
x < gξ(i) for each ξ ∈ S. Pick β ∈ S \ δ(α, q) and r ≤ q, p̃β. Then, r forces that
ġβ = ǧβ, ġβ(j) < ġ(j) for all j ∈ σ̌β ∩ τ̇n, ġ(i) < ǧβ(i), and i ∈ σ̌β ∩ τ̇n, which is a
contradiction. □

Claim 4. p̃α ⊩ ∀ξ < ω1(ġξ <Ǔ ȟ)

Proof. Otherwise, fix q ≤ p̃α and ξ ∈ ω1 such that q ⊩ ȟ <Ǔ ġξ. Pick β ∈ T \(ξ∪
δ(ξ, q)) and a common extension r ∈ P of q and p̃β. Then r ⊩ ȟ <U ġξ ≤U ġβ = ǧβ.
Thus we have h <U gβ, and let σ′ := {i ∈ ω | h(i) < gβ(i)}. For each i ∈ σ′, select
ηi ∈ ω1 such that sup{gγ(i) | i ∈ σγ, γ ∈ T \ ηi} < gβ(i). Pick γ ∈ T \ (β ∪ supi∈σ′ ηi).
Then for all i ∈ σ′ ∩ σγ, gγ(i) < gβ(i). However, since pβ and pγ are compatible,
gβ < gγ. This is a contradiction. □

Thus, [h]Ḟ interpolates 〈[ġα]Ḟ , [ġ]Ḟ | α < ω1〉. By the same argument, any pair
of [ġ]Ḟ and a decreasing ω1-sequence in F above [ġ]Ḟ is interpolated by some x ∈ F.
Thus, [ġ]Ḟ is γ1 over F. □

Let us prove the general version. To facilitate our proof, we introduce more
notation.

Definition 21. Let F := Rω/U . For each A ∈ Defk(F, F ) which is defined by
ϕ(v̄, [f̄ ]U), and for each i ∈ ω, let A[i] := {r̄ ∈ R | R |= ϕ(r̄, f̄(i))}.

Note 5. The above notation A[i] depends on the choice of a formula φ and
parameters f̄ . Hence we need to take care that A[i] is not well-defined, which means
that, even if A = B, it may happen that 〈A[i] | i < ω〉 6= 〈B[i] | i < ω〉.

Note 6. If A = {x̄ ∈ (Rω/U)m | Rω/U |= φ(x̄, [f̄ ]U)} has a definable property
P by a single formula, e.g., being cell, bounded, open, function, continuous function,
etc., then ρ = {i ∈ ω | R |= A[i] has the property P} ∈ U . Let

˜̄f(i) =

{
f̄(i) (i ∈ ρ)

f̄(min ρ) (i /∈ ρ)

Then Ã = {x̄ ∈ (Rω/U)m | Rω/U |= φ(x̄, [ ˜̄f ]U)} is equal to A and Ã[i] has the
property P for every i < ω.
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Definition 22. Let S be a set and T be an ordered set. For functions f, g : S →
T , define [f, g] := {〈s, t〉 ∈ S × T | f(s) ≤ t ≤ g(s)}. For any set S0 ⊂ S and any
binary relation R on T , define S0[fRg] := {s ∈ S0 | f(s)Rg(s)}.

Main Lemma. Assume CH. Let P be an EPC∗
ℵ1

forcing.

(1) Suppose that P does not have the γ1 property. Let U be an ultrafilter on
ω and F = Rω/U . In V P, there exist {g1, . . . , gm} ⊂ Rω and a ((Rω ∩ V ) ∪
{g1, . . . , gm})∧-ultrafilter F ⊃ U that is countably generated over U such
that, letting G = ((Rω ∩ V ) ∪ {g1, . . . , gm})∧/F ,
(a) tpG([g1]F , . . . , [gm]F/F) is not countably generated in Defm(F, F ) but
(b) it is generated by a ⊂U -decreasing sequence 〈Zl | l < ω〉 of sets in

V ω
ω+ω/U that is not equal to [∅]U .

(2) Let E ⊂ ω1 be a stationary set and assume that P also has ProjCes(E).
Then P has the γ1 property.

Proofs of (1) and (2) of the main lemma are based on ones of [33, Theorem 2.] and
[33, Theorem 1.], respectively. The original proof frequently uses the countability of
Cohen forcing and the pigeonhole principle. However, in general, we cannot apply
such an argument to EPC∗

ℵ1
+ ProjCes(E) forcings. Many difficulties come from this

difference.
Note that the conjunction (a) and (b) of (1) of the main lemma does not directly

imply a contradiction since each Zl may not be a member of Defm(F, F ). Woodin
[33] proposed a question about it.

Problem 1 ([33]). Fix m ∈ ω. Suppose thatM be a model of ZFC−Replacement
and let F = (R)M = {r ∈ M | M |= “r is a real”}. Suppose 〈Ak | k < ω〉 is a
sequence of elements of M such that:

(1) M |= Ak+1 ⊂ Ak ⊂ Fm for each k and
(2) U = {A ∈ Defm(F, F ) | ∃k, M |= Ak ⊂ A} is an ultrafilter.

Must U be countably generated by elements of Defm(F, F )?

If this question is affirmative, (1) of the main lemma implies that P have the γ1
property.

proof of the main lemma. (1): Fix an EPC∗
ℵ1

forcing P and suppose that P
does not have the γ1 property. Let U be an ultrafilter on ω and F = Rω/U . We work
in V P. Since P does not have the γ1 property, there exist M , F , and a ⊂-decreasing
sequence 〈τn ⊂ ω | n < ω〉 such that

(1) Rω ∩ V ⊂M ⊂ Rω,
(2) F ⊃ U is a filter on ω that is generated by 〈τn ⊂ ω | n < ω〉 over U , and
(3) G := M∧/F is not γ1 over F.
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Pick a minimal {g1, . . . , gm} ⊂ M such that ((Rω ∩ V ) ∪ {g1, . . . gm})∧ /F is not γ1
over F. We assume that M = (Rω ∩ V ) ∪ {g1, . . . , gm}. By the minimality, for every
X ⊊ {g1, . . . , gm}, ((Rω ∩ V ) ∪X)∧/F 6= G. Thus trdeg(G/F) = m (see Note 4).

Now, define

W := {A ∈ Defm(F, F ) | 〈g1, . . . , gm〉 ∈F A} = tpG(〈[g1]F , . . . , [gm]F〉 /F)

where 〈g1, . . . , gm〉 ∈F A denotes {i ∈ ω | 〈g1(i), . . . , gm(i)〉 ∈ A[i]} ∈ F . Then,

W is uncountably generated. We shall construct a ⊂U -decreasing sequence Z⃗ =
〈Zl ∈ ((Vω+ω)ω ∩ V )/U | l < ω〉 that generates the uncountably generated ultrafilter
W on Defm(F, F ). This is the goal of the proof of (i). By Lemma 28, we have m > 1
and F is cofinal in G. In particular, by Lemma 20, W is generated by closures of
bounded open cells. Let n = m− 1. We define

M0 := (Rω ∩ V ) ∪ {g1, . . . gn},
G0 := M∧

0 /F , and

W0 := {A ∈ Defn(F, F ) | A× F ∈ W} = tpG0(〈[g1]F , . . . , [gn]F〉 /F),

Then, by the minimality of m and Lemma 24, G0 is γ1 over F and G is not γ1
over G0. Note that W0 is also generated by closures of bounded open cells. Fix a
⊂-decreasing sequence 〈Θk | k < ω〉 of closures of bounded open cells in Defn(F, F )
that generates W0. Assume that each Θk is defined by θk(v̄, f̄θk). By Lemmata 18,
22, and 25 and Note 4, gm defines an uncountable gap in G0 whose sides have
infinite cofinality and coinitiality. By Lemma 13, such a gap can be taken to be the
form 〈Φα([g1]F , . . . , [gn]F),Ψβ([g1]F , . . . , [gn]F) | α < κ, β < λ〉 where each Φα and
Ψβ are in Funcn(G0, F ) and κ and λ are regular cardinals with at least one of them
uncountable. By 4 and 5 in Note 1, we can assume that each Φα and each Ψβ are
continuous and bounded on some Θk. By Corollary 3, each Φα and each Ψβ can be
assumed to be bounded and continuous on Gn

0 . By (CH)V , both of κ and λ are less
than or equal to ℵ1. We shall assume that κ = ω and λ = ω1. Even if the type of the
gap is 〈ω1, ω〉 or 〈ω1, ω1〉, the following argument works. For each k < ω and x̄, define
Φ′
k(x̄) = maxl≤k Φl(x̄) and then Φk([g1]F , . . . , [gn]F) ≤ Φ′

k([g1]F , . . . , [gn]F) < [gm]F
for each k < ω and Φ′

k is continuous, bounded, and definable over F . Thus we
can assume that 〈Φk(x̄) | k < ω〉 is a non-decreasing sequence for each x̄ and hence
〈{〈x̄, y〉 | x̄ ∈ Θk ∧ Φk(x̄) ≤ y} | k ∈ ω〉 is a ⊂-decreasing sequence. This guarantees
that 〈Zl | l < ω〉 will be ⊂-decreasing. Note that, for each C ∈ W0, k < ω and α < ω1,
there exists k′ < ω and α′ < ω1 such that (Θk′ ×F )∩ [Φk′ ,Ψα′ ] ⊂ (C×F )∩ (Φk,Ψα)
and hence, by Lemma 17, 〈(Θk × F ) ∩ [Φk,Ψα] | k ∈ ω, α ∈ ω1〉 generates W . Notice
that 〈Θk[i],Φk[i]↾V,Ψα[i]↾V | i < ω〉 is in V for each k and each α. By Note 6, we
can assume that, for every i ∈ ω, Θk[i] is the closure of an open cell, Φk[i] and Ψα[i]
are bounded and countinuous functions while keeping them definable over F . For
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each α ∈ ω1, pick Nα ∈ ω and σα ∈ U such that τNα ∩ σα ⊂ {i ∈ ω | gm(i) <
Ψα[i](g1(i), . . . , gn(i))} and pick the definition ψα(v̄, w, f̄ψα) of Ψ̇α.

From now on, we work in the ground model until the end of the proof of the
main lemma. Let us assume that the results above are forced by p ∈ P and we get
P-names Ṁ , Ḟ , ġ1 . . . ġm, Ẇ , etc. Fix pα ≤ p, Nα ∈ ω, σα ∈ U , ΨV

α ∈ Funcn(F, F ),
and ψα(v̄, w, f̄ψα) ∈ formLOR(F) for each α < ω1 such that

pα ⊩ σ̇α = σ̌α , Ṅα = Ňα, Ψ̌V
α = Ψ̇α↾V, and ψ̌α(v̄, w, ˇ̄fψα) = ψ̇α(v̄, w, ˙̄fψα).

Fix T ∈ [ω1]
ℵ1 and an eventually centered 〈p̃α | α ∈ T 〉 such that p̃α ≤ pα for

each α. Shrinking T , we assume that N = Nα for each α ∈ T . Fix α0 ∈ T . For each
α ∈ T and l ∈ ω, let Ẋα

l be a P-name for a function on ω such that

p̃α0 ⊩ ∀i ∈ σ̌α, Ẋ
α
l (i) = (Θ̇l[i] × Ř) ∩ [Φ̇l[i], Ψ̌

V
α [i]].

Note that

p̃α0 ⊩ ∀l ∈ ω,
〈
Ẋα
l (i)

∣∣∣ α ∈ Ť , i ∈ σ̌α

〉
∈ V.(⋆)

Claim 5.

p̃α0 ⊩ ∀l < ω,
{
i ∈ ω

∣∣∣ ⋃{⋂{
Ẋα
l (i)

∣∣∣ α ∈ Ť \ β, i ∈ σ̌α

} ∣∣∣ β ∈ Ť
}
6= ∅
}
∈ Ǔ .

Proof. Suppose not. By (⋆), we take a condition q0 ≤ p̃α0 and a natural number
l < ω such that

q0 ⊩
{
i ∈ ω

∣∣∣ ⋃{⋂{
Ẋα
l (i)

∣∣∣ α ∈ Ť \ β, i ∈ σ̌α

} ∣∣∣ β ∈ Ť
}

= ∅
}
∈ Ǔ .

In particular, the above set meets {i ∈ τ̇N | Φ̇l[i](ġ1(i), . . . , ġn(i)) ≤
ġm(i), 〈ġ1(i), . . . ġn(i)〉 ∈ Θ̇l[i]} in the extension by q0.

Thus we get a condition q1 ≤ q0, a natural number i ∈ ω, tuples of functions
f̄ϕ, f̄θ ∈ Rω, and formulas ϕ, θ such that q1 forces that:

(1) ϕ̌(v̄, w, ˇ̄fϕ) defines Φ̇l,

(2) θ̌(v̄, ˇ̄fθ) defines Θ̇l,
(3) i ∈ τ̇N , so we have ġm(i) ≤ Ψ̇α[i](ġ1(i), . . . , ġn(i)) whenever α ∈ Ť and
i ∈ σ̇α,

(4) Φ̇l[i](ġ1(i), . . . , ġn(i)) ≤ ġm(i),
(5) 〈ġ1(i), . . . ġn(i)〉 ∈ Θ̇l[i], and

(6)
⋂{

Ẋα
l (i)

∣∣∣ α ∈ Ť \ β, i ∈ σ̌α

}
= ∅ for all β ∈ Ť .

By 1 to 5, for every r ≤ q1, we have

r ⊩ R |= ∃v̄∃w∃u

ϕ̌(v̄, w, ˇ̄fϕ(i)) ∧ θ̌(v̄, ˇ̄fθ(i)) ∧
∧
α∈Ǎ

∃wα
(
ψ̇α(v̄, wα,

˙̄fψα(i)) ∧ w ≤ u ≤ wα

)
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for all A ∈ [T ]<ω with r ⊩ ∀α ∈ Ǎ(i ∈ σ̇α). Note that this R is the set of reals
defined in the extension. Let us find a finite subset B of T and an extension q2 of q1
which are counter-examples to the above.

Let Φ ∈ Funcn(R,R) be a function defined by ϕ(v̄, w, f̄ϕ(i)) and
let Θ ∈ Defn(R,R) be a set defined by θ(v̄, f̄θ(i)). Define Xα :={
〈r̄, s〉 ∈ Rm

∣∣ r̄ ∈ Θ ∧ Φ(r̄) ≤ s ≤ ΨV
α [i](r̄)

}
for each α ∈ T with i ∈ σα. Note that

q1 ⊩ Φ̌ = Φ̇l[i]↾V ∧ Θ̌ = Θ̇l[i] ∧ ∀α ∈ Ť (i ∈ σ̌α → Ẋα
l (i) = X̌α).

Fix β ∈ T \ δ(α0, q1). Then,
⋂

{Xα | α ∈ T \ β, i ∈ σα} = ∅. For each α ∈ T \ β,
q1 and p̃α are compatible, and hence Xα is a bounded closed cell. Fix γ0 ∈ T \ β
such that i ∈ σγ0 . Since

⋂
{Xα ∩Xγ0 | α ∈ T \ β, i ∈ σα} = ∅ and Xγ0 is a compact

space, we can select A ∈ [T \ β]<ω such that
⋂
γ∈AX

γ ∩Xγ0 = ∅ and i ∈ σγ for all

γ ∈ A. Set B = A ∪ {γ0}. Thus
⋂
γ∈B(Θ × F ) ∩ [Φ,ΨV

γ [i]] = ∅. Pick a common

extension q2 of {q1, p̃γ | γ ∈ B}. Now,

R |= ¬∃v̄∃w∃u

(
ϕ(v̄, w, f̄ϕ(i)) ∧ θ(v̄, f̄θ(i)) ∧

∧
γ∈B

∃wγ
(
ψγ(v̄, wγ, f̄ψγ (i)) ∧ w ≤ u ≤ wγ

))
.

By the absoluteness of “|=” and by the completeness of RCF,

q2 ⊩ R |= ¬∃v̄∃w∃u

(
ϕ̌(v̄, w, ˇ̄fϕ(i)) ∧ θ̌(v̄, ˇ̄fθ(i)) ∧

∧
γ∈B

∃wγ
(
ψ̌γ(v̄, wγ,

ˇ̄fψγ (i)) ∧ w ≤ u ≤ wγ

))
.

However, q2 forces that σ̌γ = σ̇γ and ψ̌γ(v̄, w,
ˇ̄fψγ ) = ψ̇γ(v̄, w,

˙̄fψγ ) whenever
γ ∈ B. Thus we have

q2 ⊩ R |= ¬∃v̄∃w∃u

(
ϕ̌(v̄, w, ˇ̄fϕ(i)) ∧ θ̌(v̄, ˇ̄fθ(i)) ∧

∧
γ∈B

∃wγ
(
ψ̇γ(v̄, wγ,

˙̄fψγ (i)) ∧ w ≤ u ≤ wγ

))

and q2 ⊩ ∀γ ∈ B̌(i ∈ σ̇γ), which is a contradiction. □

For each l, i ∈ ω, fix names Żl,i and Żl such that

p̃α0 ⊩ Żl,i :=
⋃{⋂{

Ẋα
l (i)

∣∣∣ α ∈ Ť \ β, i ∈ σ̌α

} ∣∣∣ β ∈ Ť
}
, and

p̃α0 ⊩ Żl =
[〈
Żl,i

∣∣∣ i ∈ ω
〉]

Ǔ
∈ (V ω

ω+ω/U )̌.

Then, p̃α0 ⊩ ∅ 6= Żl ⊂ Fm, which means p̃α0 ⊩ ∃f ∈ (V ω
ω+ω), [f ]Ǔ ∈ Żl

and p̃α0 ⊩ ∀[f ]Ǔ ∈ Żl, {i ∈ ω | f(i) ∈ Ř} ∈ Ǔ . Furthermore, p̃α0 ⊩
“
〈
Żl

∣∣∣ l < ω
〉

is decreasing” by the selection of
〈

Θ̇l, Φ̇l

∣∣∣ l < ω
〉

. Let N = V ω
ω+ω/U .



38 2. DISCONTINUOUS HOMOMORHPISMS ON C(X) AND EPCℵ1

Note 7. Since p̃α0 ⊩ “ ∃x ∈ Ň
(
Ň |=

∧
l≤L x ∈ Żl

)
for each L < ω”, a set of

formulae {“x ∈ Żl” | l < ω} is a countable type of N in the extension by p̃α0.

Note 8. In the extension by p̃α0, the following are equivalent.

(P)
{
i ∈ ω |

〈
f̄(i), g(i)

〉
∈ Żl,i

}
is a member of Ǔ

(Q)
{
i ∈ ω | ∀∞α ∈ Ť

(
i ∈ σ̌α → f̄(i) ∈ Θ̇l[i] ∧ Φ̇l[i](f̄(i)) ≤ g(i) ≤ Ψ̌V

α [i](f̄(i))
)}

is a member of Ǔ .
(R) The intersection of

•
{
i ∈ ω | f̄(i) ∈ Θ̇l[i], Φ̇l[i](f̄(i)) ≤ g(i)

}
and

•
{
i ∈ ω | ∀∞α ∈ Ť

(
i ∈ σ̌α =⇒ g(i) ≤ Ψ̌V

α [i](f̄(i))
)}

is a member of Ǔ .

The equivalence (P) ⇐⇒ (Q) is by the definition of Żl,i and the implication (R) =⇒
(Q) is clear. For the implication (Q) =⇒ (R), we assume that the second statement
holds. For i in the set stated in (Q), select βi ∈ Ť which witnesses ∀∞α ∈ Ť (· · · ).
Let β ∈ Ť \ supi βi. Then, σ̌β ⊂

{
i ∈ ω | f̄(i) ∈ Θ̇l[i], Φ̇l[i](f̄(i)) ≤ g(i)

}
. Thus the

third statement holds.

Let us define

Ψ(i)(r̄) = sup{inf{ΨV
α [i](r̄) | α ∈ T \ β, i ∈ σα} | β ∈ T} ∈ R ∪ {+∞,−∞}

and, for each f̄ ∈ (Rω)n, let Ψ(f̄) denote the function on ω such that Ψ(f̄)(i) =
Ψ(i)(f̄(i)) for each i ∈ ω.

Note 9. The sequence
〈
sr̄β
∣∣ β ∈ T

〉
:=
〈
inf{ΨV

α [i](r̄) | α ∈ T \ β, i ∈ σα}
∣∣ β ∈ T

〉
is non-decreasing for each r̄ ∈ Rn. Since R ∪ {+∞,−∞} has the countable chain
condition, the sequence stops at some point in R ∪ {−∞,+∞}. In particular,
x ≤ supβ s

r̄
β if and only if ∃β ∈ T (x ≤ sr̄β).

Notes 8 and 9 imply that

p̃α0 ⊩ ∀l ∈ ω, Żl = {
〈
[f̄ ]Ǔ , [g]Ǔ

〉
∈ F̌m | [f̄ ]Ǔ ∈ Θ̇l ∧ Φ̇l([f̄ ]Ǔ) ≤ [g]Ǔ ≤ [Ψ̌(f̄)]Ǔ}.

Remark that each Żl may not be definable with parameters in F .

Claim 6.

p̃α0 ⊩ ∃∞α ∈ Ť , ∃l ∈ ω, ∀[f̄ ]Ǔ ∈ Θ̇l, [Ψ̌(f̄)]Ǔ ≤ Ψ̇α↾V ([f̄ ]Ǔ).

Proof. Towards a contradiction, let us assume that there exist q0 ≤ p̃α0 and
β ∈ T such that

q0 ⊩ ∀α ∈ Ť \ β̌, ∀l ∈ ω, ∃[f̄ ]Ǔ ∈ Θ̇l, Ψ̇α↾V ([f̄ ]Ǔ) < [Ψ̌(f̄)]Ǔ .
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Consider the statement Ψ̇α↾V ([f̄ ]Ǔ) < [Ψ̌(f̄)]Ǔ in the extension by q0. By the defini-
tion of Ψ, this implies that{

i ∈ ω
∣∣∣ ∃γ ∈ Ť , ∀ξ ∈ Ť \ γ,

(
i ∈ σ̌ξ =⇒ Ψ̇α[i]↾V (f̄(i)) < Ψ̌V

ξ [i](f̄(i))
)}

∈ Ǔ .

Recall that Ψ̇α↾V and
〈
Ψ̌V
ξ , σ̌ξ

∣∣ ξ ∈ Ť
〉

are in V . Taking the complement,⋂
γ∈Ť

⋃
ξ∈Ť\γ

{i ∈ σ̌ξ | Ψ̌V
ξ (i)(f̄(i)) ≤ Ψ̇α[i]↾V (f̄(i))} /∈ Ǔ .

If {i ∈ ω | Ψ̌V
ξ [i](f̄(i)) ≤ Ψ̇α[i]↾V (f̄(i))} ∈ Ǔ for uncountably many ξ ∈ Ť ,

then the set above is in Ǔ . Thus we have Ψ̇α↾V ([f̄ ]Ǔ) < [Ψ̌(f̄)]Ǔ =⇒ ∀∞ξ ∈
Ť , Ψ̇α↾V ([f̄ ]Ǔ) < Ψ̌V

ξ ([f̄ ]Ǔ) and hence

q0 ⊩ ∀α ∈ Ť \ β̌, ∀l ∈ ω, ∃[f̄ ]Ǔ ∈ Θ̇l, ∃γ ∈ Ť , ∀ξ ∈ Ť \ γ, Ψ̇α↾V ([f̄ ]Ǔ) < Ψ̌V
ξ ([f̄ ]Ǔ).

Fix α ∈ T \ β. Then there exist γ ∈ T and q1 ≤ q0 such that

q1 ⊩ ∀l ∈ ω, ∃[f̄ ]Ǔ ∈ Θ̇l, ∀ξ ∈ Ť \ γ̌, Ψ̇α↾V ([f̄ ]Ǔ) < Ψ̌V
ξ ([f̄ ]Ǔ).

Fix ξ ∈ T \ (δ(α0, q1) ∪ α ∪ γ) and a common extension r ∈ P of q1 and p̃ξ. Then,

r ⊩ ∀l ∈ ω, ∃[f̄ ]Ǔ ∈ Θ̇l, Ψ̇α↾V ([f̄ ]Ǔ) < Ψ̌V
ξ ([f̄ ]Ǔ) and

r ⊩ ∃l ∈ ω, ∀[f̄ ] ∈ Θ̇l, Ψ̌V
ξ ([f̄ ]Ǔ) = Ψ̇ξ↾V ([f̄ ]Ǔ) < Ψ̇α↾V ([f̄ ]Ǔ),

which is a contradiction. □
Claim 7. p̃α0 ⊩ “

〈
Żl

∣∣∣ l < ω
〉
generates Ẇ”.

Proof. In the forcing extension by p̃α0 , fix any α ∈ ω1 and k ∈ ω. Then, by
Claim 6, there exist β ∈ T \ α and k0 ∈ ω \ k such that ∀[f̄ ]Ǔ ∈ Θ̇k0 , [Ψ̌(f̄)]Ǔ ≤
Ψ̇β↾V ([f̄ ]Ǔ) ≤ Ψ̇α↾V ([f̄ ]Ǔ). Then, Żk0 ⊂ (Θ̇k × F ) ∩ [Φ̇k, Ψ̇α]. □

˙⃗
Z =

〈
Żl

∣∣∣ l < ω
〉

has been constructed in the forcing extension by p̃α0 . (i) has

been shown.

(2): Assuming that P also has ProjCes(E), we continue the argument from
the proof of (1). Our goal is to show a contradiction. Define Dl := {p ≤ p̃α0 |
p decides Żl, Θ̇l, and Φ̇l} for each l ∈ ω. Since p̃α0 ⊩ “ġm /∈ V ”, there are no atoms
below p̃α0 . Pick a maximal anti-chain Al ⊂ Dl with Al+1 ⊂ Al↓ := {q ∈ P | ∃r ∈
Al, q ≤ r ∧ q 6= r} for each l ∈ ω.

Recall that N = V ω
ω+ω/U . Choose a sequence 〈Z,Θ,Φ〉 :

⋃
l<ω Al → N ×

Defn(F, F ) × Funcn(F, F ) such that

r ⊩ Ž(r) = Żl ∧ Θ̌(r) = Θ̇l ∧ Φ̌(r) = Φ̇l↾V
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for each l ∈ ω and each r ∈ Al. Fix a large enough regular cardinal κ and a sequence
of countable elementary submodels X ≺ Y0 ≺ Y1 ≺ · · · ≺ Yj0+1 ≺ Hκ such that

• X has U , P, p̃α0 , N , Z, Φ, Θ, Ψ, 〈p̃ξ | ξ ∈ T 〉, 〈Al | l < ω〉,
〈
ΨV
α , σα

∣∣ α ∈ T
〉
,

and the sequences of names
〈

Θ̇l, Φ̇l, Żl

∣∣∣ l < ω
〉

and
〈

Ψ̇α, σ̇α

∣∣∣ α ∈ ω1

〉
as

elements,
•
⋃
l<ω Al ⊂ X,

• E ∈ Y0 and ω1 ∩ Y0 ∈ E,
• X ∈ Y0, so αX := min(T \ X) ∈ Y0 and S ∈ Y0 for some finite set S ⊂ F

such that ΨV
αX

∈ Funcn(F, S),
• j0 = |S|,
• each Yj+1 has Yj and a Yj-generic filter dj for P as elements, and
• each dj has p̃α0 and p̃αX

as elements.

Since P has a ces(E) projection, P projects into Y0. Thus, by Lemma 6, Πi<jdi∩Y0 ⊂
Pj ∩ Y0 is a generic filter over Y0.

1 Set

• FX = F ∩X,
• Fj = F ∩ Yj for each j ≤ j0 + 1,
• rj,l ∈ dj ∩ Al for each j ≤ j0 and each l ∈ ω
• Tj = T ∩ Yj for each j ≤ j0 + 1,
• Sd = {ξ ∈ S | p̃ξ ∈ d} for each S ⊂ ω1 and each d ⊂ P, and
• ZV (r; ξ) = (Θ(r) × F ) ∩ [Φ(r),ΨV

ξ ] (note that ZV ∈ X).

Note that, for each for each j ≤ j0, each N ∈ {X,Y0, . . . , Yj}, and each S ∈ [T ]ℵ1∩N ,
Sdj ∩ N is cofinal in ω1 ∩ N . Indeed, for each α ∈ ω1 ∩ N , it can be shown that
D = {q ≤ p̃α0 | ∃ξ ∈ S \ α, q ⊩ “p̃ξ ∈ ĠP”} ∈ N is dense as in Lemma 4. We pick

r ∈ dj ∩ N (for r ∈ N , use ccc) and ξ ∈ S \ α such that r ⊩ “p̃ξ ∈ ĠP”. Thus
{q ∈ P | q ≤ p̃ξ} ∈ N is dense below r, p̃ξ ∈ dj and hence ξ ∈ Sdj \ α.

Recall that m = trdeg(G,F) and n = m − 1. Note that Defm(F, F ) ∩ Yj =
Defm(F, Fj). Define

W0(j) = {A ∈ Defn(F, Fj) | ∃l ∈ ω, Θ(rj,l) ⊂ A} and

WΠ(j) =
{
C ∈ Defm(j+1)(F, F0)

∣∣∣ ∃k̄, ∃ξj ∈ T
dj
0 , · · · , ∃ξ0 ∈ T d00 , Πi≤jZ

V (ri,ki ; ξi) ⊂ C
}
.

Then each W0(j) is an ultrafilter. Indeed, if A ∈ Defn(F, Fj), then

Yj |= “ p̃α0 ⊩ “ ∃l < ω, (Θ̇l ⊂ Ǎ) ∨ (Θ̇l ∩ A = ∅)””

and hence

{r ≤ p̃α0 | ∃l < ω, r ⊩ “Θ̇l ⊂ Ǎ” ∨ r ⊩ “Θ̇l ∩ Ǎ = ∅”} ∈ Yj

1This is the only use of ProjCes(E), and it is used only in the last part of this proof. So it is
expected that ProjCes(E) can be omitted from this proof.
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is a dense set and hence there exist l < ω and r ∈ dj such that r ⊩ “Θ̇l ⊂ Ǎ” or r ⊩
“Θ̇l ∩ Ǎ = ∅”. We assume that the former case occurs. Since dj is a filter and r, rj,l ∈
dj, there exists a common extension s ∈ dj such that s ⊩ “Θ̇l ⊂ Ǎ and Θ̇l = Θ̌(rj,l)”.
So A ∈ W0(j). By a similar argument, WΠ(0) is an ultrafilter and each WΠ(j) is
a filter. We shall implicitly use argument like the above “dense argument with
elementarity”.

Since, for each j ≤ j0, by dense argument with elementarity, 〈Z(rj,l) | l < ω〉
forms a countable type in N (see Note 7), hence we select ē := 〈ēj | j ≤ j0〉 =〈
b̄⌢j b

′
j

∣∣ j ≤ j0
〉
∈
⋂
l<ω(Z(r0,l)∩Y1)×· · ·×(Z(rj0,l)∩Yj0+1). Note that ēj ∈ Fmj+1. Set

c̄ := 〈c̄j | j ≤ j0〉 =
〈
b̄⌢j ΨV

αX
(b̄j)

∣∣ j ≤ j0
〉
. To show that WΠ(j0) is not an ultrafilter,

we first prove the following claim.

Claim 8. Every C ∈ WΠ(j) ∩X contains c̄ =
〈〈
b̄i,Ψ

V
αX

(b̄i)
〉 ∣∣ i ≤ j

〉
.

Proof. Pick k̄ and ξi ∈ T di0 such that Πi≤jZ
V (ri,ki ; ξi) ⊂ C. For each i ≤ j, by

pigeonhole principle, any common extension r ∈ di of ri,ki and p̃ξi forces that

∃k ≥ ki, ∃∞ξ ∈ T Ġ, (Θ̇k × F ) ∩ [Φ̇k, Ψ̇ξ] ⊂ ZV (ri,ki ; ξi).

By dense argument with elementarity, there exist k′i ≥ ki and Si ∈ [T ]ℵ1 ∩ Y0 such
that

Y0 |= “ ∀η ∈ Si, Z
V (ri,k′i ; η) ⊂ ZV (ri,ki ; ξi) ”.

So we have

Y0 |= “ ∀η0 ∈ S0, · · · , ∀ηj ∈ Sj, Πi≤jZ
V (ri,k′i ; ηi) ⊂ C ”.

By elementarity X ≺ Y0, we assume that 〈Si | i ≤ j〉 ∈ X. Fix any i ≤ j. Pick
ηi ∈ Sdii ∩X. Then, there exists s ∈ di (not a member of X) that extends ri,k′i , p̃ηi ,
and p̃αX

such that

Yi |= “s ⊩ “ ∃k < ω, Θ̇k ⊂ F [Φ̇k′i
< Ψ̇αX

< Ψ̇ηi ] = F [Φ̌(ri,k′i) < Ψ̌V
αX

< Ψ̌V
ηi

] ””.

By elementary dense argument, pick k < ω such that Θ(ri,k) ⊂ F [Φ(ri,k′i) < ΨV
αX

<

ΨV
ηi

]. Since b̄i ∈ Θ(ri,k) ∩ Θ(ri,k′i), c̄i =
〈
b̄i,Ψ

V
αX

(b̄i)
〉
∈ ZV (ri,k′i ; ηi). Therefore,

c̄ ∈ C. □

Claim 9. WΠ(j0) is not an ultrafilter on Defm(j0+1)(F, F0).

Proof. Otherwise, WΠ(j0) ∩ X is also an ultrafilter on Defm(j0+1)(F, FX). By
the previous claim, C ∈ WΠ(j0) ∩ X if and only if c̄ ∈ C. It is easily seen that
[H]WΠ(j0)∩X 7→ H(c̄) defines an isomorphism UltF(FX ,WΠ(j0) ∩ X) → RF (FX(c̄))
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(for surjectivity, see Lemma 13). Thus UltF(FX ,WΠ(j0) ∩ X) ' RF (FX(c̄)) ⊂
RF (FX(b̄, S)) and hence

trdeg(UltF(FX ,WΠ(j0) ∩X)/FX) ≤ trdeg(RF (FX(b̄, S))/FX) ≤ n(j0 + 1) + j0.

However, WΠ(j0) ∩ X is generated by open cells, so trdeg(UltF(FX ,WΠ(j0) ∩
X)/FX) = m(j0 + 1), which is a contradiction. □

Define ȷ̃ := max{j < j0 | WΠ(j) is an ultrafilter on Defm(j+1)(F, FX)} and ā :=
〈ēj | 0 ≤ j ≤ ȷ̃〉. Note that ā ∈

⋂
WΠ(ȷ̃) ∩ Yȷ̃+1 To facilitate our argument, for

A ⊂ FmA , B ⊂ FmB , and E ⊂ FmA+mE+mB , we define

(A)E := {ȳ ∈ FmE+mB | A× {ȳ} ⊂ E} and

E(B) := {ȳ ∈ FmA+mE | {ȳ} × B ⊂ E}

through the proof. For ā ∈ F<ω, we abbreviate (ā)E = ({ā})E and E(ā) = E({ā}).

Claim 10. 〈〈
[Φ(rȷ̃+1,k)]W0(ȷ̄+1), [Ψ

V
α ]W0(ȷ̄+1)

〉 ∣∣∣ k < ω, α ∈ T
dȷ̃+1

0

〉
is not a gap in Ult(RF (F0(ā)),W0(ȷ̃+ 1)).

Proof. Toward a contradiction, we assume that it is a gap. We will show
that WΠ(ȷ̃ + 1) is an ultrafilter. Fix any C ∈ Defm(ȷ̃+2)(F, F0). Then, (ā)C ∈
Defm(RF (F0(ā)), F0). By the assumption, the set

{(A× F ) ∩ [Φ(rȷ̃+1,k),Ψ
V
α ] | A ∈ W0(ȷ̃+ 1), k < ω, α ∈ T

dȷ̃+1

0 }
generates an ultrafilter on Defm(F, RF (F0(ā))) (see Lemma 17). Thus there exist

l ∈ ω and ξȷ̃+1 ∈ T
dȷ̃
0 such that

ZV (rȷ̃+1,l; ξȷ̃+1) ⊂ (ā)C or

ZV (rȷ̃+1,l; ξȷ̃+1) ⊂ Fm \ (ā)C = (ā)(Fm \ C).

We assume that the former case occurs and we shall show that C ∈ WΠ(ȷ̃+1). Since

ā ∈ C(Z(rȷ̃+1,l; ξȷ̃+1)) ∈ Defm(ȷ̃+1)(F, F0), hence C(Z(rȷ̃+1,l; ξȷ̃+1)) ∈ WΠ(ȷ̃). Select

k0, . . . , kȷ̃ ∈ ω and ξ̄ ∈ Πi≤ȷ̃T
di
0 , such that

Πi≤ȷ̃Z
V (ri,ki ; ξi) ⊂ C(ZV (rȷ̃+1,l; ξȷ̃+1)).

Thus

Πi≤ȷ̃+1Z
V (ri,ki ; ξi) ⊂ C

and hence C ∈ WΠ(ȷ̃+ 1). □
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Fix Λ0 ∈ Funcn(F, RF0(ā)) such that

[Φ(rȷ̃+1,k)]W0(ȷ̄+1) < [Λ0]W0(ȷ̄+1) < [ΨV
α ]W0(ȷ̄+1)(1)

for each k ∈ ω and each α ∈ T
dȷ̃+1

0 . Let λ0(x̄, y, f̄λ0(ā)) be the definition of Λ0 where

f̄λ0 ∈ (Funcm(ȷ̃+1)(F, F0))
<ω. Define A := {z̄ ∈ Fm(ȷ̃+1) | F |= ∀x̄∃!yλ0(x̄, y, f̄λ0(z̄))}

and f := {〈ū, x̄, y〉 | F |= (ū ∈ A → (λ0(x̄, y, f̄λ0(ū))) ∧ (ū /∈ A → y = 0)} ∈
Funcm(ȷ̃+1)+n(F, F0). Let Λ(ū)(x̄) = f(ū, x̄) and then Λ(ā) = Λ0. Note that Πi≤ȷ̃+1di∩
Y0 is a Y0-generic. Let Pȷ̃+2 = Πj≤ȷ̃+1Pj where each Pj = P. Let ιj : V Pj → V Pȷ̃+2

be
the cannonical embedding of names and, for a Pj name ẋ, let ẋj = ιj(ẋ). To show
that

r̄ ⊩Pȷ̃+2 “∀α ∈ T Ġ
ȷ̃+1

, ∃l < ω, ∀ū ∈ Πi≤ȷ̃Ż
i
l , ∀x̄ ∈ Θ̇ȷ̃+1

l , Λ(ū)(x̄) < Ψ̇ȷ̃+1
α (x̄)”

for some r̄ ∈ Πi≤ȷ̃+2dȷ̃+1 ∩ Y0, we assume that, toward a contradiction,

r̄ ⊩Pȷ̃+2 “∃α ∈ T Ġ
ȷ̃+1

, ∀l < ω, ∃ū ∈ Πi≤ȷ̃Ż
i
l , ∃x̄ ∈ Θ̇ȷ̃+1

l , Ψ̇ȷ̃+1
α (x̄) ≤ Λ(ū)(x̄)”

for some r̄ ∈ Πi≤ȷ̃+1dȷ̃+1 ∩ Y0. By dense argument with elementarity, pick α ∈ T
dȷ̃+1

0

and r̄′ ≤ r̄ in Πi≤ȷ̃+1di ∩ Y0 such that

r̄′ ⊩Pȷ̃+2 “∀l < ω, ∃ū ∈ Πi≤ȷ̃Ż
i
l , ∃x̄ ∈ Θ̇ȷ̃+1

l , Ψ̇ȷ̃+1
α (x̄) ≤ Λ(ū)(x̄)”.

On the other hand, since [Λ(ā)]W0(ȷ̄+1) < [ΨV
α ]W0(ȷ̄+1), there exists l0 < ω such that

F |= ∀x̄ ∈ Θ(rȷ̄+1,l0), Λ(ā)(x̄) < ΨV
α (x̄).

So {ū ∈ Fmȷ̃ | F |= ∀x̄ ∈ Θ(rȷ̄+1,l0), Λ(ū)(x̄) < Ψα(x̄)} ∈ WΠ(ȷ̃)+ = WΠ(ȷ̃). Pick
l ≥ l0 such that

∀ū ∈ Πi≤ȷ̃Z(ri,l), ∀x̄ ∈ Θ(rȷ̄+1,l), Λ(ū)(x̄) < ΨV
α (x̄).(2)

Let si ≤ r′i, ri,l for i ≤ ȷ̃+ 1. Furthermore, let sȷ̃+1 extends p̃α. Then, s̄ forces that;

(1) ∃ū ∈ Πi≤ȷ̃Ż
i
l , ∃x̄ ∈ Θ̇ȷ̃+1

l , Ψ̇α(x̄) ≤ Λ(ū)(x̄),

(2) Żi
l = Z(ri,l) for i ≤ ȷ̃,

(3) Θ̇ȷ̃+1
l = Θ(rȷ̃+1,l), and

(4) Ψ̇α = ΨV
α ,

which contradicts to (2).
Therefore, by pigeonhole principle, there exists r̄ ∈ Πi≤ȷ̃+1di ∩ Y0 such that

r̄ ⊩Pȷ̃+2 “∃l < ω, ∃∞α ∈ T Ġ
ȷ̃+1

, ∀ū ∈ Πi≤ȷ̃Ż
i
l , ∀x̄ ∈ Θ̇ȷ̃+1

l , Λ(ū)(x̄) < Ψ̇ȷ̃+1
α (x̄)”.

Since ri,l ∈ di ∩ Y0 for i ≤ ȷ̃+ 1,

s̄ ⊩Pȷ̃+2 “∃∞α ∈ T Ġ
ȷ̃+1

, ∀ū ∈ Πi≤ȷ̃Z(ri,l), ∀x̄ ∈ Θ̇ȷ̃+1
l , Λ(ū)(x̄) < Ψ̇ȷ̃+1

α (x̄)”(3)
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for some s̄ ∈ Πi≤ȷ̃+1dȷ̃+1 ∩ Y0 and some l < ω. By elementarity Y0 ≺ Yȷ̃+1, the above
(3) holds in Yȷ̃+1. Since ā ∈ Πi≤ȷ̃Z(ri,l), we have

Yȷ̃+1 |= “s̄ ⊩Pȷ̃+2 “∃∞α ∈ T Ġ
ȷ̃+1

, ∀x̄ ∈ Θ̇ȷ̃+1
l , Λ(ā)(x̄) < Ψ̇ȷ̃+1

α (x̄)””

and hence

Yȷ̃+1 |= “sȷ̃+1 ⊩ “∃∞α ∈ T Ġ, ∀x̄ ∈ Θ̇l, Λ(ā)(x̄) < Ψ̇α(x̄)””.

Thus, since
〈

[Ψ̇α]Ẇ0

∣∣∣ α < ω1

〉
is a decreasing sequence in the forcing extension,

Yȷ̃+1 |= “sȷ̃+1 ⊩ “∀α < ω1, [Λ(ā)]Ẇ0
< [Ψ̇α]Ẇ0

””.

On the other hand, some p ∈ dȷ̃+1 forces that

∀l < ω, [Ψ̇l]Ẇ0
< [Λ(ā)]Ẇ0

.

Indeed, if not, for some l, k < ω, some p ∈ dȷ̃+1 forces that

(1) ∀x̄ ∈ Θ̇k, Λ(ā)(x̄) ≤ Ψ̇l(x̄), that
(2) Θ̇k = Θ(rȷ̃+1, k), and that

(3) Φ̇l = Φ(rȷ̃+1, l),

which contradicts to (1).
Therefore, in the extension by some q ≤ p̃α0 , Λ(ā)([ġ1]Ḟ , . . . , [ġn]Ḟ) interpo-

lates
〈

Φ̇k([ġ1]Ḟ , . . . , [ġn]Ḟ), Ψ̇α([ġ1]Ḟ , . . . , [ġn]Ḟ)
∣∣∣ k < ω, α < ω1

〉
, which is a contra-

diction. □
By Theorem 7, we have the main theorem as a corollary of the main lemma. By

a standard bookkeeping argument, we have the next corollary.

Corollary 4. For any stationary set E ⊂ ω1, the following are consistent
relative to ZFC:

(1) ¬NUB + MA(EPC∗
ℵ1

+ ProjCes(E) + “size ≤ ℵ1”) + ¬CH
(2) ¬NUB + MA(EPCℵ1 + ProjCes(E)) + ¬CH
(3) ¬NDH + MA(EPC∗

ℵ1
+ ProjCes(E) + “size ≤ ℵ1”) + ¬CH

(4) ¬NDH + MA(EPCℵ1 + ProjCes(E)) + ¬CH

Furthermore, if Woodin’s question (see Problem 1) is affirmative, then the condition
ProjCes(E) can be omitted from the above.



CHAPTER 3

Examples and preservation properties of EPC

1. An example: Ladder system coloring uniformization

In this section, we introduce an example of a forcing that has both properties
EPCℵ1 and ProjCes(E), which is obtained by the uniformization of a ladder system
coloring.

Definition 23. For E ⊂ ω1 ∩ Lim, a sequence C⃗ := 〈Cα | ξ ∈ E〉 is a ladder

system on E if each Cα has order type ω and its supremum is α. ζ⃗α := 〈ζα,n | n < ω〉
denotes the increasing enumeration of Cα. We define Cα,N := {ζα,n | n ≥ N} for

each α ∈ E and each N ∈ ω. For ν ≤ ω, a ν-coloring of a ladder system C⃗ on E is a

sequence l⃗ = 〈lξ : Cξ → ν | ξ ∈ E〉. A ν-coloring l⃗ can be uniformized if there exists
φ : ω1 → ν such that {ξ ∈ Cα | φ(ξ) 6= lα(ξ)} is finite for each α ∈ E. A coloring
denotes a ν-coloring for some ν ≤ ω.

Definition 24. Let E, l⃗, and C⃗ be as in Definition 23. The uniformization of a

ladder system coloring l⃗ on E is the forcing

P(⃗l) :=

p : E
finite partial−−−−−−−→ ω

∣∣∣∣∣∣
⋃

ξ∈dom(p)

lξ↾Cξ,p(ξ) is a function


with the relation q ≤ p : ⇐⇒ q ⊃ p. For each p ∈ P(⃗l), we define lp =⋃
ξ∈dom(p) lξ↾Cξ,p(ξ). Let

ULC(E) = {P(r⃗) | r⃗ is a ladder system ν-coloring on E for some ν ≤ ω}.

ULC was introduced by K. J. Devlin and S. Shelah [17], and it is partially
motivated by Whitehead’s conjecture, which asserts every Whitehead group, which
is an abelian group A with Ext1(A,Z) = 0, is a free abelian group.

Theorem 8 (([19, Ch. XIII], [17, 5.2 Theorem])). • There exists a non-
free Whitehead group of size ℵ1 if and only if there exists a ladder system
C⃗ on some stationary set E ⊂ ω1 such that every 2-coloring of C⃗ can be
uniformized.

45
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• For any stationary set E ⊂ ω1, MA(ULC(E)) + ¬CH implies that every
coloring of any ladder system on E can be uniformized.

Note that p, q ∈ P(⃗l) are compatible if and only if both p ∪ q and lp ∪ lq are
functions.

Theorem 9. Let l⃗ be a ladder system coloring on ω1 ∩ Lim. Then, the uni-

formization P(⃗l) of l⃗ is EPCℵ1, that is, for each sequence p⃗ =
〈
pα ∈ P(⃗l)

∣∣∣ α < ω1

〉
,

there exists T ∈ [ω1]
ℵ1 such that

∀r ∈ P(⃗l)(∃β ∈ T (r ‖ pβ) =⇒ ∃γ0 < ω1({pξ | ξ ∈ T \ γ0} ∪ {r} is centered.))

To prove this theorem, we use the next lemma.

Lemma 29. For any sequence K⃗ =
〈
Kϵ ∈ [ω1]

<ℵ0
∣∣ ϵ < ω1

〉
and any countable

model N ≺ Hκ with K⃗ ∈ N , there exists α ∈ ω1 \N such that ω1 ∩N /∈ Kα.

Proof. Fix ϵ ∈ ω1 \ N . Pick δ ∈ ω1 ∩ N with Kϵ ∩ N = Kϵ ∩ δ. Note that
Kϵ ∩ N ∈ N . Then, for each γ ∈ (ω1 \ δ) ∩ N , by elementarity, N |= ∃α ∈
ω1 \ γ(Kα ∩ γ = Kϵ ∩N). So

N |= ∀γ ∈ ω1 \ δ(∃α ∈ ω1 \ γ(Kα ∩ γ = Kϵ ∩N)).

Thus we get a strictly increasing sequence γ̄ = 〈γξ | ξ < ω1〉 ∈ ωω1
1 ∩ N such that

δ < γ0 and that, for each η < ω1, Kγη ∩ supξ<η γξ = Kϵ∩N . Then
〈
Kγξ \ δ

∣∣ ξ < ω1

〉
is a �-increasing sequence (see Definition 13). Therefore, ω1 ∩ N /∈ Kγξ for some
ξ < ω1. □

Note that sup(dom(lp)) = max(dom(p)) for each non-empty p ∈ P. We proceed
to the proof of Theorem 9.

proof of Theorem 9. Let p⃗ =
〈
pα ∈ P(⃗l)

∣∣∣ α < ω1

〉
be a sequence of con-

ditions. Let κ be a large enough regular cardinal and fix a countable elemen-

tary submodel N ≺ Hκ that contains p⃗, C⃗, and l⃗. Fix α ∈ ω1 \ N with
ω1 ∩ N /∈ dom(pα) byLemma 29. Then pfixed := pα↾N and lfixed := lpα↾(ω1\N)↾N
are in N because they are finite sequences of elements of N . Pick δ ∈ ω1 ∩ N
greater than max (dom (pfixed) ∪ dom (lfixed)). By a similar argument to the proof of
Lemma 29, we have

N |= ∀β ∈ ω1 \ δ
(
∃γ ∈ ω1 \ β

(
pfixed = pγ↾β ∧ lfixed = lpγ↾(ω1\δ)↾β

))
.
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Thus there exists an increasing sequence γ̄ = 〈γη | η < ω1〉 ∈ ωω1
1 ∩ N such that

pfixed = pγ0↾δ, lfixed = lpγ0 ↾δ,
pfixed = pγη′ ↾ sup

(
δ ∪ dom(pγη)

)
+ 1, and

lfixed = l
pγη′ ↾(ω1\δ)↾ sup

(
δ ∪ dom(pγη)

)
+ 1

for all η < η′ < ω1. So we get T ∈ [ω1]
ℵ1 ∩N such that

(1) pfixed = pγ↾δ for all γ ∈ T ,
(2) lfixed = lpγ↾(ω1\δ)↾δ for all γ ∈ T ,
(3) 〈dom(pγ) \ δ | γ ∈ T 〉 is �-increasing, and
(4)

〈
dom(lpγ↾(ω1\δ)) \ δ

∣∣ γ ∈ T
〉

is �-increasing.

Suppose that β ∈ T , r ∈ P(⃗l), and r ‖ pβ. Then both r ∪ pβ and lr ∪ lpβ are
functions. Pick γ(β, r) ∈ T such that

dom (r) ∪ dom (pβ) �
(
dom

(
pγ(β,r)

)
\ δ
)
∪
(
dom

(
lpγ(β,r)↾(ω1\δ)

)
\ δ
)
.

We shall show that {r} ∪ {pβ | β ∈ T \ γ(β, r)} is centered. Fix any Γ ∈ [T \
γ(β, r)]<ℵ0 . Note that, for each γ ∈ Γ, the domains of pγ↾(ω1\δ) and lpγ↾(ω1\δ)↾(ω1\δ)
are disjoint from the domains of r ∪ pβ and lr ∪ lpβ , respectively. Then, both

r ∪
⋃
γ∈Γ

pγ = r ∪
⋃
γ∈Γ

pγ↾δ ∪
⋃
γ∈Γ

pγ↾(ω1 \ δ)

= r ∪ pβ↾δ ∪
⋃
γ∈Γ

pγ↾(ω1 \ δ)

and

lr ∪
⋃
γ∈Γ

lpγ = lr ∪
⋃
γ∈Γ

lpγ↾δ ∪
⋃
γ∈Γ

lpγ↾(ω1\δ)↾δ ∪
⋃
γ∈Γ

lpγ↾(ω1\δ)↾(ω1 \ δ)

= lr ∪ lpβ↾δ ∪ lpβ↾(ω1\δ)↾δ ∪
⋃
γ∈Γ

lpγ↾(ω1\δ)↾(ω1 \ δ)

are functions. Therefore {pξ | ξ ∈ Γ} ∪ {r} has a common extension. □
Corollary 5. Any uniformization of a ladder system coloring on any E ⊂

ω1 ∩ Lim is EPCℵ1.

Proof. Let l⃗ be a ladder system coloring on E. Let r⃗ be a ladder system coloring

on ω1 ∩ Lim that extends l⃗. Fix any sequence p⃗ = 〈pα | α < ω1〉 in P(⃗l). Then p⃗ is
a sequence in P(r⃗). So there exists T ∈ [ω1]

ℵ1 such that p⃗↾T is eventually centered

in P(r⃗). For Γ ∈ [P(⃗l)]<ℵ0 , Γ has common extension iff both
⋃

Γ and
⋃
p∈Γ l

p are

functions. Thus p⃗↾T is also evenrually centered in P(⃗l). □
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Theorem 10. Let E ⊂ ω1 be a stationary set whose complement Ec = ω1 \E is

also stationary. For any ladder system coloring l⃗ on E, P(⃗l) has a ces(Ec) projection.

Proof. Let κ ∈ Reg be large enough. Suppose that N ≺ Hκ is countable and

P, Ec ∈ N and ω1∩N ∈ Ec. Fix any p ∈ P(⃗l). Then p↾N ∈ N and, since ω1∩N /∈ E,

lp↾N ∈ N . By elementarity, there exists p(N) ≤ p↾N in N such that lp↾N ⊂ lp
(N)

.
We shall show that p(N) is a projection of p on N . Fix any q ≤ p(N) in N . Then
q, lq ⊂ N , p↾N ⊂ q, and lp↾N ⊂ lq. Thus both p ∪ q and lp ∪ lq are functions. □

So, in conjunction with our Main Theorem, we have the consequence:

Corollary 6. ZFC +¬NUB +Whitehead’s conjecture fails+¬CH is consistent
relative to ZFC.

2. Preservation of set theoretical objects and cardinal invariants

2.1. Cichoń-Blass diagram. Cichoń-Blass diagram in Figure 1 is the diagram
of relationships between cardinal invariants of the continuum. Not all cardinal in-
variants in the diagram are defined in this paper. We shall define some invariants
only when they are necessary.

Cohen forcing raise the covering number of meager sets cov(M), that is the
least cardinality of a family of meager sets in the set R of reals that covers R.
Since Cohen forcing is EPCℵ1 and ProjCes(ω1), for each stationary set E ⊂ ω1,
MA(EPCℵ1 + ProjCes(E)) + ¬CH implies cov(M) > ℵ1 [6]. On the other hand,
in the Cohen model (an extension by Cohen forcing of a ground model in which
CH holds), the least cardinality of mad families a, the groupwise density number
g, and the uniformity of meager sets non(M) are ℵ1, see [9, Theorem 3.3.22], [23,
Proposition 6.], and [11, Theorem 1.18.]. In this section, we shall define non(M) and
a and show that it is consistent that these invariants are ℵ1 with MA(EPCℵ1)+¬CH.

2.2. Preservation of the uniformity of meager sets.

Definition 25 (E.g., see Bartoszyński, Judah [9]). The uniformity of meager
sets non(M) is the minimum size of non-meager sets in the set of reals.

Definition 26 (E.g., see Bartoszyński, Judah [9]). An uncountable set X of
reals is a Luzin set if it has a countable intersection with every nowhere dense set.

Note the following:

• The word “every nowhere dense set” in the definition of Luzin sets can be
replaced with “every meager set”.

• Every Luzin set is non-meager.
• Every uncountable subset of a Luzin set is also a Luzin set.
• Cohen forcing Cω1 adds a Luzin set of size ℵ1, See LEMMA 8.2.6 in [9].
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ℵ1 m mk mω p

e

add(N )

cov(N )

non(N )

cof(N )

add(M) cov(M)

non(M) cof(M)

b d

h s

g

a r

u

i

c

Figure 1. Cichoń’s diagram and the Blass diagram combined. An
arrow x → y means that ZFC proves x ≤ y [21].

Theorem 11. Every EPC∗
ℵ1

forcing preserves Luzin sets of size ℵ1.

Proof. Let P be an EPC∗
ℵ1

forcing notion and X = {xα | α < ω1} be a Luzin
set. Suppose that, toward a contradiction,

p ⊩ “X̌ is not a Luzin set”

for some p ∈ P. Then we can select a name Ḟ ∈ V P for a nowhere dense set that has
an uncountable intersection with X in the extension by p. Let Ṫ ∈ V P be a name such

that p ⊩ “Ṫ =
{
α
∣∣∣ xα ∈ Ḟ

}
”. Define S0 =

{
ξ < ω1

∣∣∣ q ⊩ “ξ̌ ∈ Ṫ” for some q ≤ p
}

and, for every ξ ∈ S0, select pξ ≤ p which forces that “ξ̌ ∈ Ṫ”. Pick an uncountable
subset S of S0 and an eventually centered sequence 〈p̃ξ | ξ ∈ S〉 where p̃ξ ≤ pξ. Let
{Un | n < ω} be a set of an open basis of the set of reals. For each ξ < ω1, select
nξ < ω such that X↾(S \ξ) is dense in Unξ

. By the pigeonhole principle, select n < ω
such that nξ = n for cofinal ξ’s. Then X↾(S \ ξ) is dense in Un for each ξ < ω1. Let

α0 = minS. Since Ḟ is nowhere dense in the extension, we pick a non-empty open
set W ⊂ Un and q ≤ p̃α0 such that q ⊩ “Ḟ ∩ W̌ = ∅”. X↾(S \ δ(q, α0)) is dense in
Un, so it is also dense in W . Pick β ∈ S \ δ(q, α0) such that xβ ∈ W and a common
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extension r of q and p̃β. Then r forces that “x̌β ∈ Ḟ” and that “Ḟ ∩ W̌ = ∅”. It
contradicts xβ ∈ W . □

Theorem 12. Every EPC∗
ℵ1

forcing of size ℵ1 preserves non-meager sets.

Proof. Let P = {pα | α ∈ ω1} be an EPC∗
ℵ1

forcing of size ℵ1. Let X be a

Polish space and A ⊂ X be a non-meager set. Let Ḟn for n ∈ ω be P-names
for closed nowhere dense subsets of X and suppose towards a contradiction that
P ⊩ “Ǎ ⊂

⋃
n Ḟn”.

For each p ∈ P and each n ∈ ω, let D(p, n) =
{
x ∈ X

∣∣∣ p ⊩ “x̌ ∈ Ḟn”
}

; this

is a closed nowhere dense set since p ⊩ “Ď(p, n) ⊂ Ḟn”. For each β ∈ ω1, select
xβ ∈ A \

⋃
α≤β

⋃
n<ωD(pα, n). For each β ∈ ω1, pick qβ ∈ P and nβ ∈ ω such

that qβ ⊩ “x̌β ∈ Ḟnβ
”. Let T ∈ [ω1]

ℵ1 and n ∈ ω such that n = nβ for each

β ∈ T . Let S ∈ [T ]ℵ1 and rβ ≤ qβ for β ∈ S be as in the definition of EPC∗
ℵ1

.
Let α0 = min(S) and rα0 = pβ0 . Let B be a countable open basis for X and let

B0 =
{
O ∈ B

∣∣∣ r ⊩ “Ḟn ∩ Ǒ = ∅” for some r ≤ rα0

}
. For each O ∈ B0, select rO as

in the definition of B0. Fix β ∈ T \
(
supO∈B0

δ(α0, rO) ∪ β0
)
. Since xβ /∈ D(pβ0 , n) =

D(rα0 , n), “x̌β /∈ Ḟn” is forcable below rα0 and hence r ⊩ “Ǒ ∩ Ḟn = ∅” for some
open neighborhood O of xβ0 and some r ≤ rα0 . Thus O ∈ B0. A common extension

of rβ and rO forces x̌β ∈ Ḟn and x̌β /∈ Ḟn simultaneously, a contradiction. □
2.3. Preservation of the least cardinality of mad families.

Definition 27. A family F ⊂ [ω]ℵ0 of infinite subsets of ω is an almost disjoint
family if the intersection of any distinct pair A,B ∈ F is finite. A family A ⊂ [ω]ℵ0

is a maximal almost disjoint (mad) family if it is maximal with respect to the order
⊂ among almost disjoint families. a is the least cardinality of infinite mad families.

A mad family preserved by the Cohen forcing can be constructed in a model of
CH [28]. This is a reason that a = ℵ1 in the Cohen model. To construct a mad
family which is preserved by any EPCℵ1 forcing, we use the following forcing poset
that adds a mad family.

Definition 28 (Hechler [22]). For ordinal γ, we define

Aγ =
{
p : Fp × np → 2

∣∣ Fp ∈ [γ]<ℵ0 , np < ω
}
.

For conditions q, p ∈ Aγ, q ≤ p iff q ⊃ p and |q−1[{1}] ∩ Fp × {i}| ≤ 1 for all
i ∈ nq \ np.

Theorem 13 (Hechler [22]). Aγ adds a maximal almost disjoint family

Ȧ =
{
Ȧα =

{
n ∈ ω

∣∣∣ p(α, n) = 1 for some p ∈ ĠAγ

} ∣∣∣ α < γ
}
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whenever γ ≥ ω1.

The framework of the proof of Theorem 13 does not change to one of Theorem 14
which is about the preservation of the maximality of Ȧ in the extension with Aγ

followed by EPCℵ1 forcing.

Proof. First, we shall show that each Ȧα is forced to be infinite. Fix any p ∈ Aγ,
α < γ, and n < ω and we shall show that

p ⊩ “Ȧα \ n is non-empty”.

Fix any q ≤ p. Fix i ∈ ω greater than both of n and nq, and choose r ≤ q with

r(α, i) = 1. Then r ⊩ “i ∈ Ȧα \ n”.
Second, we shall show that distinct Ȧα and Ȧβ are forced to have a finite inter-

section. Toward a contradiction, suppose p ⊩ “Ȧα ∩ Ȧβ is infinite”. Extending p,
we may assume that α, β ∈ Fp. By the assumption,

p ⊩ “there is q ∈ ĠAγ and i > np such that q(α, i) = q(β, i) = 1”.

So we get r ≤ p and i < np such that r(α, i) = r(β, i) = 1, this contradicts the
definition of the order relation of Aγ.

Finally, we shall show the maximality of Ȧ. Toward a contradiction, fix a name
Ḃ ∈ V Aγ for an infinite set of natural numbers and we assume that

p ⊩ “Ȧα ∩ Ḃ is finite for each α < γ”.

Select a sequence
〈
pα ≤ p, τα ∈ [ω]<ℵ0

∣∣ α < γ
〉

such that

pα ⊩ “Ȧα ∩ Ḃ = τα”

for each α < γ. Without loss of generality, we may assume that α ∈ Fpα for each
α < γ. By the delta system lemma and the pigeonhole principle, we pick T ∈ [γ]ℵ1 ,
R ∈ [γ]<ℵ0 , n < ω, q : R× n→ 2 and τ ∈ [ω]<ℵ0 such that

(1) τα = τ and npα = n for each α ∈ T ,
(2) 〈Fpα | α < γ〉 forms a delta system with root R, and
(3) pα↾(R× n) = q for each α ∈ T .

Let α0 = minT . Refer to Figure 2 for discussion from this point forward. Choose
m > max(τ ∪ n) and r ≤ pα0 such that m < nr and that

r ⊩ “m̌ ∈ Ḃ and
⋃
α∈R

Ȧα ∩ Ḃ ⊂ m̌”.

Remark that r(α,m) = 0 for each α ∈ R since r(α,m) = 1 implies r ⊩ “m̌ ∈ Ȧα”.
Pick η ∈ T \ R such that Fpη ∩ Fr = R. Notice that pη and r are compatible since
pη↾(dom(pη) ∩ dom(r)) = pη↾(R × n) = q ≥ r. Let s : (Fpη \ R) × (nr \ n) → 2 be a
function such that s(ξ, i) = 1 if and only if (ξ, i) = (η,m). Then t = pη∪s∪r : (Fpη ∪
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Fr) × nr → 2 is a common extension of r and pη. We have t ⊩ “m̌ ∈ Ȧη ∩ Ḃ”, this

contradicts pη ⊩ “Ȧη ∩ Ḃ = τ̌” and m > max τ . □

Figure 2. Domains of pη, r, and s.

ω

γ
dom(pη)

n m

dom(r)

nr

R

Fpη

Fr

dom(s)

η
s(η,m) = 1

We shall prove that Aγ is an example of EPCℵ1 forcing.

Lemma 30. Aγ is EPC∗
ℵ1
.

Proof. Fix any ω1-sequence 〈pα ∈ Aγ | α ∈ ω1〉. By the delta system lemma
and the pigeonhole principle, we take T ∈ [ω1]

ℵ1 , R ∈ [γ]<ℵ0 , and n < ω such that

(1) 〈Fpα | α ∈ T 〉 forms a delta system with root R,
(2) pα↾(R× n) = pβ↾(R× n) for each α, β ∈ T , and
(3) npα = n.

We shall show that 〈pα | α ∈ T 〉 is an eventually centered sequence.
Fix any α0 ∈ T and q ≤ pα0 . Pick δ < ω1 such that Fq ∩ Fpξ = R whenever

ξ ∈ T \ δ. Fix any finite subset Γ ⊂ T \ δ. Define s = q ∪
⋃
ξ∈Γ pξ ∪ s0 where

s0 : (
⋃
ξ∈Γ Fpξ \ R) × (nq \ n) → {0}. Then, s is a common extension of {q} ∪ {pξ |

ξ ∈ Γ}. □
Theorem 14. Let A = Aω1 be the forcing adding a mad family of size ℵ1

and Ṗ be an A-name for an EPC∗
ℵ1

forcing notion. Then, the two step itera-

tion Q = A ∗ Ṗ forces that a = ℵ1. In practice, Ṗ preserves the mad family

Ȧ =
{
Ȧα =

{
n ∈ ω

∣∣∣ p(α, n) = 1 for some p ∈ ĠA

} ∣∣∣ α < ω1

}
added by A in the

extension with A.
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Proof. Suppose not, we take 〈p, q̇〉 ∈ Q and a name Ḃ such that

〈p, q̇〉 ⊩ “Ḃ ⊂ [ω]ℵ0 and each Ḃ ∩ Ȧα is finite”.

Select
〈
〈pα, q̇α〉 ∈ Q, τα ∈ [ω]<ℵ0

∣∣ α < ω1

〉
below 〈p, q̇〉 such that

〈pα, q̇α〉 ⊩ “Ḃ ∩ Ȧα = τ̌α”

for each α < ω1.
Let Ṡ0 = {

〈
ξ̌, pξ

〉
| ξ ∈ ω1}. There exists p∗ ∈ A with p∗ ≤ p such that

p∗ ⊩ “Ṡ0 = {ξ < ω1 | pξ ∈ Ġ} is uncountable” since A has the ccc. Pick A-names Ṡ

and ˙̃qξ for ξ < ω1 such that

p∗ ⊩ “ Ṡ ∈ [Ṡ0]
ℵ1 and

〈
˙̃qξ ≤ q̇ξ

∣∣∣ ξ ∈ Ṡ
〉

is eventually centered”.

Define T0 =
{
ξ ∈ ω1

∣∣∣ there exists a common extension p of p∗ and pξ that forces ξ̌ ∈ Ṡ
}

.

Then p∗ forces that Ṡ ⊂ Ť0 and hence T0 is uncountable. Select 〈p̃ξ ≤ p∗ | ξ ∈ T0〉
such that p̃ξ ≤ pξ, that p̃ξ ⊩ “ξ̌ ∈ Ṡ”, and that ξ ∈ Fp̃ξ .

By the delta system lemma and the pigeonhole principle, pick T ∈ [T0]
ℵ1 , τ ∈

[ω]<ℵ0 , and n ∈ ω such that

(1)
〈
p̃α, ˙̃qα

〉
⊩ “Ḃ ∩ Ȧα = τ̌” for each α ∈ T ,

(2) 〈Fp̃α | α ∈ T 〉 forms a delta system with root R,
(3) np̃α = n for each α ∈ T , and
(4) p̃α↾(R× n) = p̃β↾(R× n) for each α, β ∈ T .

Let α0 = minT . Pick 〈p0, q̇0〉 ≤
〈
p̃α0 , ˙̃qα0

〉
and m > max(τ∪n) such that np0 > m

and that 〈
p0, q̇0

〉
⊩ “m̌ ∈ Ḃ and

⋃
α∈Ř

(Ḃ ∩ Ȧα) ⊂ m̌”.

Note that p0(α,m) = 0 for each α ∈ R. Pick p1 ≤ p0 and δ < ω1 such that

p1 ⊩ “δ̌ = δ̇(α̌0, q̇0) ” and that m < np1 . Pick η ∈ T \(δ∪R) such that Fp1∩Fp̃η = R.
Recall that η ∈ Fp̃η . Define s = p1 ∪ p̃η ∪ s0 where s0 : (Fp̃η \ R) × (np1 \ n) → 2
such that s0(ξ, i) = 1 if and only if 〈ξ, i〉 = 〈η,m〉. Note that s ∈ A is a common

extension of p1 and p̃η and that s ⊩ “m ∈ Ȧη and η ∈ Ṡ \ δ̇(α̌0, q̇0)”. There exists q̇+

such that s ⊩ “q̇+ is a common extension of q̇0 and ˙̃qη”. Thus, 〈s, q̇+〉 is a common

extension of 〈p1, q̇0〉 and
〈
p̃η, ˙̃qη

〉
and hence 〈s, q̇+〉 ⊩ “m ∈ Ḃ ∩ Ȧη = τ ⊂ m”, which

is a contradiction. □

Other than the mad family added by A, there is a kind of mad families which is
preserved by EPC∗

ℵ1
of size ≤ ℵ1.



54 3. EXAMPLES AND PRESERVATION PROPERTIES OF EPC

Definition 29. For a family A ⊂ P(ω), define

I+(A) = {x ⊂ ω | x is not covered by finitely many elements of A} .

A family A ⊂ [ω]ℵ0 is tight if for every countable collection {bn ∈ I+(A) | n ∈ ω},
there is a ∈ A such that, for all n ∈ ω, |a ∩ bn| = ℵ0.

Note that any tight almost disjoint family is mad. When c = b, tight mad families
exist, see Corollary 3.4 in [24].

Theorem 15. Any EPC∗
ℵ1

forcing P of size ℵ1 preserves tight families.

Proof. Let P = {pα | α ∈ ω1}. Suppose that A is a tight family and ḃn
for n ∈ ω are P-names for elements of I+(A). Then, for p ∈ P and n ∈ ω,

c(p, n) =
{
i ∈ ω

∣∣∣ q ⊩ “̌i ∈ ḃn” for some q ≤ p
}

is a member of I+(A). Since

Cα = {c(pξ, n) | ξ ≤ α, n < ω} is a countable family of members of I+(A), there
exists aα ∈ A such that, for each c ∈ Cα, |aα ∩ c| = ℵ0. Suppose that, towards a
contradiction,

P ⊩ “for each a ∈ Ǎ, there exists n < ω such that |a ∩ ḃn| < ℵ0”.

Thus

pα ⊩ “|ǎα ∩ ḃn| < ℵ0 for some n”.

Choose a sequence
〈
qα ≤ pα, nα ∈ ω, τα ∈ [ω]<ℵ0

∣∣ α < ω1

〉
such that qα ⊩

“ǎα ∩ ḃnα = τ̌α ” for each α ∈ ω1. Select T ∈ [ω1]
ℵ1 , n, τ such that nβ = n and

that τβ = τ for β ∈ T . Let S ∈ [T ]ℵ1 and rα ≤ qα for α ∈ S be as in the definition
of EPC∗

ℵ1
. Let α0 = min(S) and rα0 = pβ. Then, for each i ∈ c(pβ, n), select an

extension si of rα0 = pβ which forces ǐ ∈ ḃn. Pick γ ∈ T \
(

supi∈c(rα0 ,n)
δ(α0, si) ∪ β

)
.

Then, |aγ ∩ c(pβ, n)| = ℵ0. So we can select i ∈ aγ ∩ c(pβ, n) \ τ . Then a common

extension s of rγ and si forces ǐ ∈ ḃn ∩ ǎγ = τ̌ , a contradiction. □

2.4. Preservation of the groupwise density number. The groupwise den-
sity number g was introduced in Blass-Laflamme [7] to provide a formulation of
combinatorial properties of filters. An example of combinatorial properties is that,
whenever every two non-principal ultrafilters U and V are given, there exists a finite-
to-one function f : ω → ω such that f(U) = f(V ). The consistency of these proper-
ties was initially given by the forcing method by Blass-Shelah [10]. Blass-Laflamme
[7] defined the groupwise density number g and showed that these properties are
consequences of u < g where u is called the ultrafilter number, which is the least car-
dinality of a family of infinite sets of natural numbers that generates a non-principal
ultrafilter on ω.
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Definition 30. A family G ⊂ [ω]ℵ0 of infinite sets of natural numbers is group-
wise dense if

(1) G is ⊂∗-downward closed and
(2) For every increasing sequence n⃗ = 〈ni | i < ω〉, there exists X ∈ [ω]ℵ0

such that
⋃
i∈X [ni, ni+1) ∈ G .

The groupwise density number g is defined as follows:

g = min
{
|G| : G is a family of groupwise dense families such that

⋂
G = ∅

}
.

The cofinality of a non-trivial ultrapower Rω/U of R is an upper bound for the
groupwise density number.

Theorem 16 (Blass, Mildenberger THEOREM 3.1 in [8]). If U is a non-principal
ultrafilter on ω, then g ≤ cof(ωω/U).

Notice that our main result, which is the consistency of MA(EPCℵ1 +
ProjCes(E)) + “some Rω/U is β1” + c = ℵ2, is given by the ω2-length finite sup-
port iteration of EPC∗

ℵ1
+ ProjCes(E) forcing notions of size ≤ ℵ1.

Corollary 7. Assume that CH holds and E ⊂ ω1 is stationary. Any finite
support iteration P of ω2-length EPC∗

ℵ1
+ ProjCes(E) forcing notions of size ≤ ℵ1

forces g = ℵ1.

Proof. If cof(Rω/U) > ℵ1 and Rω/U is the union
⋃
α<ω1

Rα of a continuously
⊂-increasing sequence of ordered fields, then some Rα is not α1. So cof(Rω/U) > ℵ1

implies that Rω/U is not β1. Thus, in the extension model, cof(Rω/U) = ℵ1 for some
non-principal ultrafilter U ⊂ P(ω). Since Rω/U and ωω/U are mutually cofinal,
hence cof(ωω/U) = cof(Rω/U) = ℵ1. By Theorem 16, g = ℵ1. □

Corollary 8. MA(EPC∗
ℵ1

+ ProjCes(E) + “size < ℵ2”) + “ non(M) = a =
g = ℵ1” + “c = cov(M) = ℵ2” and MA(EPC∗

ℵ1
+ “size < ℵ2”) + “ non(M) = a =

ℵ1” + “c = cov(M) = ℵ2” is consistent relative to ZFC.

Proof. Our ground model is the forcing extension by Cω1Ȧω1 in which CH holds.
By the standard bookkeeping, we force that MA(EPC∗

ℵ1
) + c = ℵ2 or MA(EPC∗

ℵ1
+

ProjCes(E)) + c = ℵ2 by a finite support iteration of EPC∗
ℵ1

forcings or EPC∗
ℵ1

+
ProjCes(E) forcings. Since a Luzin set and a mad family which are of size ℵ1

exist in our ground model and since any EPC∗
ℵ1

forcing notion preserves them, in the
extension model, non(M) = a = ℵ1 holds. In addition, in the model for MA(EPC∗

ℵ1
+

ProjCes(E)) + c = ℵ2 that we constructed, g = ℵ1 by the previous colollary. □

2.5. Mutual Independency between MA(σ-centered) and MA(EPCℵ1).
We proceed to the independency of MA(σ-centered) from MA(EPCℵ1).
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Definition 31. A family S ⊂ [ω]ℵ0 has the strong finite intersection property
iff for every finite subset F ⊂ S,

⋂
F is infinite. An infinite set K ∈ [ω]ℵ0 is a

pseudo-intersection of S iff for every S ∈ S, K \S is finite. The pseudo-intersection
number p is the least cardinality of S ⊂ [ω]ℵ0 which has the strong finite intersection
property but has no pseudo-intersection.

Theorem 17 (Bell [5] e.g., see Theorem III.3.61 in [28]). p =
min {κ | MAκ(σ-centered) fails}.

Theorem 18 (Barnet [3]). There exists a model of ZFC + MA(σ-centered) +
“a non-uniformizable ladder system coloring exists”.

By Theorem 9, Figure 1, Theorem 17, Theorem 18 and the Main Theorem, we
have the following.

Corollary 9. Both of MA(EPCℵ1 + “size < ℵ2”) and MA(EPC∗
ℵ1

) does not
imply MA(σ-centered). Furthermore, MA(σ-centered) does not imply both of
MA(EPCℵ1 + “size < ℵ2”) and MA(EPC∗

ℵ1
).

3. Kunen forcing

Using Kunen forcings, we give a more detailed description of the position of
EPCℵ1 and EPC∗

ℵ1
within other well-known forcing properties (see Section 2 in Chap-

ter 1). In particular, we give examples of EPC∗
ℵ1

forcing notions which are not EPCℵ1

and precaliber ℵ1 forcing notions that are not EPC∗
ℵ1

.
Each Kunen forcing is defined according to a pregap, hence we shall start with

defining what is pregap.

Definition 32. For ω-sequences f and g of reals and for a natural number k < ω,
define

f <k g : ⇐⇒ ∀n ≥ k, f(n) < g(n) and

f <∗ g : ⇐⇒ ∃k < ω, f <k g.

Definition 33. Let κ and λ be regular cardinals. Let (F ,G) = (fα, gβ | α <
κ, β < λ) be a pair of a κ-sequence and a λ-sequence of ω-sequences of rationals.

• (F ,G) is a (κ, λ)-pregap if fα <
∗ gβ for all α < κ and β < λ.

• (F ,G) is filled by h ∈ Rω if fα <
∗ h <∗ gβ for all α < κ and β < λ.

• (F ,G) is a (κ, λ)-gap in Rω (in Qω) if it is a (κ, λ)-pregap which is not filled
by any h ∈ Rω (h ∈ Qω).

• A κ-pregap (κ-gap) is a (κ, κ)-pregap ((κ, κ)-gap).
• For relations R,S ∈ {6=, <,≤, . . .}, (Rκ, Sλ)-pregap ((Rκ, Sλ)-gap) is a

(κ′, λ′)-pregap ((κ′, λ′)-gap) for some regular cardinals κ′Rκ and λ′Sλ.
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In this section, we fix a (κ, λ)-pregap (F ,G) = (fα, gβ | α < κ, β < λ) in
(ωQ, <∗). The Kunen forcing generates an interpolation of (F ,G):

Definition 34. Let K(F ,G) be the set

{(Lp, Rp, sp) ∈ [κ]<ℵ0 × [λ]<ℵ0 ×Q<ω | ∀(α, β) ∈ Lp ×Rp, fα(k) <|sp| gβ(k)}.
For p, q ∈ K(F ,G), q ≤ p iff

(1) Lq ⊃ Lp, Rq ⊃ Rp, sq ⊃ sp,
(2) for each (α, β) ∈ Lp ×Rp, ∀k ∈ |sq| \ |sp|, fα(k) < sq(k) < gβ(k).

The following is essentially the only case in which the Kunen poset is not ccc.

Definition 35. An ω1-gap (F ,G) is special if there exists k < ω such that

• ∀α < ω1, fα <
k gα ((F ,G) is well-formed over k) and

• ∀ ̸=α, β < ω1, ∃n ≥ k, fα(n) ≥ gβ(n) or fβ(n) ≥ gα(n)

Definition 36. A pregap (F ′,G ′) is equivalent to (F ,G) if F and F ′ are mutu-
ally cofinal and G and G ′ are mutually coinitial.

Combining already known facts (e.g., see [27]), we summarize the relation be-
tween the form of a pregap and its Kunen poset and prove the unknown parts.

Theorem 19. (O): The following are equivalent:
(1) K(F ,G) is ccc.
(2) (F ,G) is not equivalent to a special ω1-gap.

(A): The following are equivalent:
(1) K(F ,G) is (K).
(2) K(F ,G) is PCℵ1.
(3) (κ, λ) 6= (ω1, ω1) or some f ∈ ωR fills (F ,G).

(B): The following are equivalent:
(1) K(F ,G) is σ-centered.
(2) min(κ, λ) ≤ ω or some f ∈ ωR fills (F ,G).

(C): The following are equivalent:
(1) K(F ,G) is EPC∗

ℵ1
.

(2) κ 6= ω1 and λ 6= ω1.
(D): The following are equivalent:

(1) K(F ,G) is EPCℵ1.
(2) K(F ,G) is countable.
(3) max(κ, λ) ≤ ℵ0.

The equivalence (O) is a classical result by Kunen, see [27].

Lemma 31 (For (A) (1) → (3)). If (F ,G) is an ω1-gap in (ωR, <∗), then K(F ,G)
does not have property (K).
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Forms of pregaps Property of Kunen p.o.

(O) Not equivalent to a special ω1-gap ccc
(A) Not an ω1-gap in (ωR, <∗) (K)

PCℵ1

(B) Not a (≥ ω1,≥ ω1)-gap in (ωR, <∗) σ-centered
(C) ( 6= ω1, 6= ω1)-pregap EPC∗

ℵ1

(D) countable pregap EPCℵ1

Countable

Proof. We assume that, toward a contradiction, (F ,G) is an ω1-gap in (ωR, <∗)
such that K(F ,G) is (K). By pigeonhole principle, pick T ∈ [ω1]

ℵ1 and k < ω such
that (F↾T,G↾T ) is well-formed over k. Fix s ∈ kQ and let pα = ({α}, {α}, s) for each
α < ω1. Then p̄ = (pα | α ∈ T ) is an ω1-sequence in K(F ,G). Since K(F ,G) has
property (K), there exists S ∈ [T ]ℵ1 such that p̄↾S is linked. Then, for each α, β ∈ S,
pα ∧ pβ = ({α, β}, {α, β}, s) is a condition, and hence ∀ ̸=α, β ∈ S, fα <

k gβ. Let
f(n) = supα∈S fα(n) if n ≥ k, else f(n) = 0. Then fα ≤k f ≤k gβ for each α, β ∈ S.
Since (fα, gα | α ∈ S) is a gap in Rω, there exists α < ω1 such that f <∗ fα or
gα <

∗ f , a contradiction. □
The following three lemmata are proved in [27].

Lemma 32 (For (A) (3) → (2)). If a side of (F ,G) is greater than ω1, then
K(F ,G) is PCℵ1.

Lemma 33 (For (A) (3) → (2) and (B) (2) → (1)). If a side of (F ,G) is countable,
then K(F ,G) is σ-centered.

Lemma 34 (For (A) (3) → (2) and (B) (2) → (1)). If (F ,G) is filled by h ∈ ωR,
then K(F ,G) is σ-centered.

We have now successfully proven (A). We shall proceed to finish to prove (B).

Lemma 35 (For (B) (1) → (2)). If (F ,G) is a (≥ ω1,≥ ω1)-gap in (ωR, <∗), then
K(F ,G) is not σ-centered.

Proof. Let (F ,G) = (fα, gβ | α < κ, β < λ) be an (κ, λ)-gap in (ωR, <∗)
where λ ≥ κ ≥ ω1 are regular. Toward a contradiction, we assume that K(F ,G)
is σ-centered. Cover K(F ,G) =

⋃
n<ωKn by a countable family of centered sets.

Let 0̄k : k → {0} for each k < ω. For each (α, β) ∈ κ × λ, select kα,β ∈ ω such
that fα <kα,β gβ and let pα,β = ({α}, {β}, 0̄kα,β

) ∈ K(F ,G). We pick T ∈ [κ]κ,

(Sα ∈ [λ]λ | α ∈ T ), and k, n ∈ ω such that, for each α ∈ T and each β ∈ Sα,

(1) pα,β ∈ Kn and
(2) kα,β = k.
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Fix α0 ∈ T and let g(n) = infβ∈Sα0
gβ(n) for each n < ω. Then, for each (ξ, η) ∈ κ×λ,

there exists (α, β) ∈ (κ \ ξ) × (λ \ η) such that α ∈ T and β ∈ Sα. Note that
({α, α0}, {β, β′}, 0̄k) is a condition for each β′ ∈ Sα0 , and hence

fξ <
∗ fα ≤k g <∗ gβ <

∗ gη

Thus g fills the gap, a contradiction. □

Lemma 36 (For (C) (2) → (1)). If (F ,G) is a ( 6= ω1, 6= ω1)-pregap, then K(F ,G)
is EPC∗

ℵ1
.

Proof. Let (F ,G) = (fα, gβ | α < κ, β < λ). The case min(κ, λ) ≤ ω is simple
by pigeonhole principle, so we may assume that κ, λ ≥ ω2. Fix any p̄ = (pα ∈
K(F ,G) | α < ω1). Then there exists (γ, δ) ∈ κ × λ such that supξ<ω1

Lpξ < γ

and that supξ<ω1
Rpξ < δ. Pick T ∈ [ω1]

ℵ1 , k < ω and s ∈ kQ such that, for each

α ∈ T , |spα | ≤ k and ∀(ξ, η) ∈ Lpα × Rpα , fξ <
k fγ <k< gδ <

k gη. For each
α ∈ T , let p̃α = (Lpα ∪ {γ}, Rpβ ∪ {δ}, sα) where sα is an extension of spα such that
sα(i) = 2−1(max{fξ(i) | ξ ∈ Lpα} + min{gξ(i) | ξ ∈ Rpα}) for |s| ≤ i < k. Then
p̃α ≤ pα is a condition. We proceed to prove (p̃α | α ∈ T ) is eventually centered. Fix

any α ∈ T , q ≤ p̃α, and finite Γ ⊂ T . Then r =
(⋃

ξ∈Γ Lp̃ξ ∪ Lq,
⋃
ξ∈ΓRp̃ξ ∪Rq, sq

)
an condition which extends q and each p̃ξ (ξ ∈ Γ). □

Lemma 37 (For (C) (1) → (2)). If K(F ,G) is EPC∗
ℵ1
, then (F ,G) is a ( 6= ω1, 6=

ω1)-pregap.

Proof. Toward a contradiction, let us assume that (F ,G) is (ω1, λ)-pregap and
that K(F ,G) is EPC∗

ℵ1
. Let pα = ({α}, ∅, ()) for each α ∈ ω1. Pick T ∈ [ω1]

ℵ1

and eventually centered sequence (p̃α ≤ pα | α ∈ T ). Shrinking T , we assume
that ∀α ∈ T, m = |sp̃α |. Pick α ∈ T and let γ = maxLp̃α . Select S ∈ [T \ γ]ℵ1 ,
k ∈ ω, l ≥ max{m, k} and a rational number ε > 0 such that, for each η ∈ Lp̃α ,
each δ ∈ Rp̃α , and each ξ ∈ S, fη <

k fγ <
k fξ, gδ and fγ(l) + ε < fξ(l), gδ(l). Let

q ≤ p̃α such that sq(l) = fα(l) + ε. Then q is incompatible to p̃ξ for each ξ ∈ S, a
contradiction. □

Lemma 38 (For (D) (3) → (2)). If a pregap (F ,G) is countable, then K(F ,G) is
countable.

Proof. Immediate. □

Lemma 39 (For (D) (1) → (3)). If K(F ,G) is EPCℵ1, then (F ,G) is countable.

Proof. The proof is similar to and simpler than Lemma 37. □
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4. Questions

H. Woodin [33] asked whether the existence of discontinuous homomorphisms
on C(X) is relatively consistent with ZFC + MA + ¬CH. The property eventual
precaliber ℵ1 is quite stronger than ccc (actually, stronger than precaliber ℵ1), hence
MA(EPCℵ1) is quite weaker than MA, a fortiori, so is MA(EPCℵ1 + ProjCes(E)).
Thus the consistency of the existence of discontinuous homomorphisms on C(X)
with MA + ¬CH remains open.

Problem 2. The following remain open.

(1) The consistency of MA + ¬NDH + ¬CH.
(2) Woodin’s question (see Problem 1).
(3) The consistency of MA(EPCℵ1) + ¬NUB + ¬CH.
(4) The consistency of full ladder system coloring uniformization+¬NUB +
¬CH.

Note that 2 =⇒ 3 =⇒ 4.

In Table 1, we summarize known and unknown consistency results of each com-
bination of truth values of the continuum hypothesis (CH), automatic continuity of
homomorphisms of C(X) (NDH), and Whitehead’s conjecture (WhC).

Table 1. Consistency of each combination of truth values of CH,
NDH, and WhC

CH NDH WhC consistency

T T Any inconsistent (Dales [14], Esterle [20])
T F T consistent (consequences of V = L (Shelah [30]))
T F F consistent (Shelah [31])
F T T ?
F T F consistent (MA + NDH is consistent by Woodin [34])
F F T ?
F F F consistent (our result, Devlin and Shelah [17])
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