He-Ne 0.63 • 1.15 µm Two-wavelength Laser

Tomoyuki Yamada

March, 1984

This work concerns a He-Ne laser simultaneously operated at $0.63 \,\mu\text{m}$ and $1.15 \,\mu\text{m}$. The competition effect between the $0.63 \,\mu\text{m}$ and $1.15 \,\mu\text{m}$ lines of a He-Ne laser is studied experimentally. The result is that the $1.15 \,\mu\text{m}$ line is much influenced by the $0.63 \,\mu\text{m}$ line but the $0.63 \,\mu\text{m}$ line is little by the $1.15 \,\mu\text{m}$ line. The output coupling of the simultaneously operated laser at $0.63 \,\mu\text{m}$ and $1.15 \,\mu\text{m}$ is predicted from the above result. This prediction agreed well with the measurement of the power coupled out of exit mirror.

The mode-locking of multiwavelength laser has scarecely been investigated yet. Stable self-locking of 0.63 μ m line is obtained under the simultaneous oscillation. The simultaneous self-locking of 0.63 μ m and 1.15 μ m lines of He-Ne laser is also achieved for a few minutes at the same frequency.

The self mode-locking of $1.15 \,\mu m$ laser is secured by lasing only the $1.15 \,\mu m$ line using a laser resonator with a dispersion prism.

The utility and the problems of the self-locked laser are studied by applying the mode-locked pulse of the laser to range finding. It is found that the frequency of the mode-locked pulse is very stable for some range of cavity length. The frequency of the pulse could be varied from 161 to 169 MHz. The frequency was stable to 10^{-5} . But it is also found that various troubles are caused by moving the end mirror of the cavity.

Compromising these conditions, a unique two-wavelength laser for optical measurement will be realized by self-locking 0.63 μ m and 1.15 μ m lines separately using a laser resonator with a dispersion prism.