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Collective motions in globally coupled tent maps with stochastic updating
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We study a generalization of globally coupled maps, where the elements are updated with propability
Whenp is below a thresholg,, the collective motion vanishes and the system is the stationary state in the
large size limit. We present the linear stability analysis.
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[. INTRODUCTION large size limit N—o) of Eg. (1), and the corresponding
stationary distribution is proportional i@, (x). Equation(3)
The globally coupled map§GCM) are introduced as a looks a little different from well-known form of GCM sys-
simple model capturing the essential features of nonlineatem
dynamical systems with many degrees of freeddm One
of the most interesting phenomena seen in such systems is L
the emergence of the collective motif+4]. The collective Xera(1) = (1= ) F(x( '))+ 2 Fox(0)), )
motion is characterized by a time dependence of the macro-
scopic variable in the large size lin{i5—16]. In this paper, which is obtained as a mean-field approximation for the
we consider a variation of GCM to include asynchronouscoupled map lattice with diffusion coupling. In the case of
updating. the tent map system, however, the diffusion fofB) is
The general form of GCM is written in the following way: scaled into Eq(1) [12].
The collective motions in GCML1) with Eqg. (3) are clas-
. . ., sified into two types according to the gradientf the tent
Xera (1) =T04(D)+ Nigl 904 (i")), (@) map. First, in the case a<1, the synchronized chaos is
stable. In this case, the mag—f(x) has the stable fixed
wheret represents discrete time stepspecifies each ele- point
ment,K gives the coupling strength, aitlis the system size.
All elements are updated synchronously in the deterministic a
way through the mean field X T2a+2° ©®

N Thus,p, (X)=8(x—X,), i.e.,g(x)=f(x) — f(x,). Since the

z g(x(i) 2 gradient off (x) is smaller than 1, the difference between any
pair of elements diminishes. Thus all the elements behave

Since the collective motions have been studied analyticallydentically after some initial transient. Here we concentrate

in globally coupled tent mapb—13|, we specifically con- on the long-term behavior and assume the system is one-

sider tent maps as follows: cluster state. Then temporal evolution fgr and h; is ob-

L tained as follows:

§—|X|),

g(x)=f(x)—f.

Z||—\

f(x)=a

==+ —(1+
(3) X'[+l 2 2+2a (1 K)|Xt| ’

_ hesr=alX, =[x, + (1+K)h]. )
Here f is a constant determined from the averagef ©f)

over the natural invariant measure of the mapf(x), i.e.,, ~WhenKis so large thaa(1+K)>1, the fixed point=0 is
unstable. Then, the motion of the mean field is one-

— dimensional chaos, which obeys HG).
f:f fx)p, (X)dx, (4) Second, in the case af>1, all elements are fully desyn-
chronized and behave as if they are mutually independent.
wherep, (X) represents the natural invariant density. By theNevertheless, the fluctuation of the mean field dose not van-
above choice 0f(x), h;=0 is a stationary solution for the ish in the large size limif2]. Thus, the system has a non-
trivial collective motion[5].
From a realistic viewpoint, however, the synchronous up-
*Electronic address: morita@sys.eng.shizuoka.ac.jp dating is not always plausible as models of real systems
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FIG. 1. Bifurcation diagram for evolution of the mean field as a
function of the updating rate in the case ofa=0.9, K=0.7, N 008 oo
=10°. For given values of, the value of the mean field is plotted oo oo
for 64 successive steps after*l€teps as transient. S010 005 0 005 odo Tt 00 °|~$‘° 005 00
t
[17-22. In some cases, for example, neural networks, an o1 9 0.10 . (f) .
independent choice of the times at which the state of a giver - p=0.9 . p=09
element is updated should provide a better approximation 0 0.05
Abramson and Zanette have numerically found that, for glo- _
0.00 LY T 0.00
bally coupled logistic map with completely stochastic updat- <* =
ing, the fluctuation of the mean field can vanish in the large 0.05
size limit[19]. In this paper, we study the stochastic updating
model as follows: 0,10 . . . 210
-0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
hl ht
_ f(x(i))+Kh; with probability p, FIG. 2. Examples of the return maps of the mean field are
Xer2() =) . , . (8)  shown @=1.625,K=0.4). While (a), (b), and(c) are obtained by

xi(1) with probability (1—p). the direct numerical calculation of Eq8) with the size ofN

=10°, (d), (e), and(f) are obtained by the numerical calculation of
Eq. (11) with 28 grids. (a) and(d) are forp=1, (b) and(e) are for
p=0.95, (c) and (f) are forp=0.9. We plot 2000 points after 10
steps as transient.

Here the definition of the mean fiel@) is not changed. At
each time step, update the elements with probahlisatis-
fying 0<p=<1. When the updating rate is equal to 1, the

model (8) becomes the synchronous updating magdgl On Il. NUMERICAL RESULTS
the other hand, whep decreases to 0, the moded) ap-
proaches the completely asynchronous updating mi@#g! In this section, we present the numerical results for the

Thus, the value of (+p) represents the strength of the model(8). First, we examine the case ak1. Whenp=1,
asynchronousnism. The purpose of this paper is to investthe synchronized chaos is observed. On the other hand, when
gate how the collective behavior changes when the updating<1, some elements are updated and the others are fixed at
probability p varies, mainly by the linear stability analysis of €ach time step. Hence, even when a pair of elements have the
the stationary state in the large size limit. same value at a moment, they can have different values at the
There is another extension of GCM to include sequentianext time. As a result, the synchronized chaos is broken.
updating[22]. In this case, the state of the elements is up-Whenp is near 1, the synchronized state is blurred slightly.
dated according to a given sequence that is fixed during th&s p decreases, a sequence of bifurcations is sieeffig. 1).
evolution. Jianget al. showed numerically that the sequential It resembles the period doubling cascade. However, there is a
updating induces a variety of collective behaviors such adinite jump at this bifurcation in contrast of the usual period
spatial bifurcation cascades and traveling wave. In contragioubling bifurcation. This discontinuity is due to the fact that
to the stochastic updating, this type of asynchronousnisrthe mapf(x) is piecewise linear. Whep is smaller than a
does not reduce the collective motion. In this paper, we conthreshold valug., all elements fall into the fixed poir{6)
centrate on the stochastic updating model. One reason is thand the mean field; becomes 0. Thus, the collective motion
we are interested in the situation with almost synchronousanishes below the threshofx .
updating, where a portion of elements are not updated by Second, we examine the case af 1, where the non-
accident. Another reason is that the stochastic updatintrivial collective motion is seen fop=1. Figures 2a), 2(b),
model can be treated analytically with using the distributionand Zc) show the motions of the mean field for some values
function. of p, with a=1.625,K=0.4, andN=10°. The amplitude of
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motion of the mean field decreasespadecreases. 0.7—6e—60—0—6—¢—00 660900009006
It should be noted that the dynamics of each element is QOO0OO0O0O0O0O00OD00OD00O00000O0O0
not deterministic due to the updating rule. Thus, the mean- 06Fx*x 0 000 0000000000000
field value is blurred if the system size is finite. Even for xx ™XQ0000000000C00000O0
=1, the finite size effect works on the motion of the mean 05Fx x x x X0 0 0000000000004
field as an internal noisgb]. For that reason, it is useful to X X x x x xXQO0O0O000000000
consider the large size limit. In the large size limit, the en- 04 x x x x x x x Q00 0000000 0
semble of the elements is characterized by its distribution. Iri4 X XXX XXXXXRX™NQO0O000000
the synchronous updating case, the evolution of the distribu- 03 x x x x x x x x x x x QO 00 0 00 04
tion function p;(x) obeys the nonlinear Frobenius-Perron X X X X X X X XXX XX XMNO0000O0
equation 02F x x x x x X X Xx X X X X X X XxO2%0 O O 4

X X X X X X X X X X X X X X x O
+ — A X X X X X X X X X X X X X X X X
pt+l(x):f[pt(x);ht]zpt(er)apt(y )' (9) ™ X X X X X X X X X X X X X X x X
IR SR S W T WY T SR W N M | s s
where F represents the Frobenius-Perron operator, ynd b 085 (1')9 095 !

andy_ are the two preimage of, i.e., x=f(y.)+Kh;,.

Here the mean field is determined in the integral form, FIG. 3. Phase diagram of the collective motion éo+0.9. The

numerical results are obtained fd=10*. Circles and crosses rep-
h‘:f g(x) py(X)dx. (10)  resent the cases ¢h?)">>10"° and(h?"?<10°°, respectively.

Here the angular bracket denotes the average value of the enclosed
guantity over 2000 time steps. The solid line represents the theoret-

In the stochastic updating cas@<(1), the evolution of ical prediction(14).

pi(x) is described as

Pro1(X)=p Fpi(X);h ]+ (1= p)py(X). (12) distribution p,(x) = p, (x)] is realized forp smaller tharp...
In this section, we present the linear stability analysis of the
Despite the stochastic updating, the distribution functionstationary state to estimate the valuepgf
evolves in the deterministic way. First, we consider the case ak 1. This case is simpler,
In order to calculate Eq11) numerically, we approximate because all elements have the identical fixed valyg>0)
the distribution functiorp(x) by dividing the relevant inter- in the stationary state. Considering a small perturbation from
val of x into m small intervals. The evolution of the distribu- x, , we assume that every element has a positive value.
tion is described by thenxm transfer matrix that depends Sincep,(x) for x<0 is 0, the evolution op(x) is rewritten
on time through the mean field,. Here we construct the as
transfer matrix by applying the method by Binder and Cam-
pos[23]. Figures 2d), 2(e), and Zf) show the motion of the p
mean field calculated by this method with the parameter val- pr+1(X)= P
ues corresponding to Figs(a?, 2(b), and Zc), respectively.
The direct calculations of E48) compare successfully with £, Egs.(10) and (12, we obtain the dynamics of the
the results of Eq(11), except for the fluctuation due to the ean field obeys
finite size effect. As is seen from Fig(f2, whenp is smaller
than a threshold valug., the collective motion vanishes he 1=(—ap—apK+1—p)h,. (13)
like the case oA<<1. In the stationary state, all elements are
still scattered and behave chaotically in contrast to the casgnys, the stationary state is stable whenap—apK+1
of a<1. The fluctuation of the mean field resides for finite _ 5| <1 Consequently, the threshold valpg is estimated
size system$Fig. 2(c)]. Note that when the mean field van- 44
ishes, all elements are independent of each other, because the
coupling term becomes 0. The amplitude of the mean field 2
tends to decrease as asynchronousnism grows. This suggests pc=m.
that asynchronous updating weakens the coherence among

elements. On the other hand, the frequency of the collectian the case of Fig. 1p,=0.7D Thetheoretical predic
. c_ . . e e =

motion is proportional to the updating rape This can be . . i . : :
explained by the fact that the time scale is given ly. 1/ g;)n agrees well with the numerical simulati¢ee also Fig.

Second, we consider the caseaof 1. The stationary dis-

IIl. LINEAR STABILITY ANALYSIS tribution functionp,, (x) is expanded into series of step func-
OF THE STATIONARY STATES tions as followg9,12):

a—2x+2Kh;

e | T(LPp). (12

(14)

The result of numerical simulation indicates that there ex-
ists a thres_hold va_lluyaC for_ updating rate. It is observed that p, (X)= 2 Cil(X—Xy),
the collective motion vanishes, and the stationary gtattin k=1

046201-3



SATORU MORITA AND TSUYOSHI CHAWANYA PHYSICAL REVIEW E65 046201

X =f40), (15 vl =Kh,. (23)

C=C{(f*" YTt 1, Taking Eq.(22) into account, the evolution af, is described
as
where 6(x) is a step function: 1 fox=0 and 0 forx<0.
Thus, X, and C represent the locations and the heights of i J.
the steps ip, (), respectively. We choog@, to satisfy the Ut+1:j21 Jijoes (24
normalization condition

d

where the matrixJ;; is given by

— C.X zf dxp, (X)=1. 16
gl KAk Py (X) (16) KLy KL, KLz --- KL;-; KL
If there exists suctk, that satisfiesf“¢(0)=0 and f(0) 1 0 o - 0 0
#0 for Vk<k,, the sum overk is taken from 1 tok,. 0 1 o .- 0 0
Otherwise, the sum is taken from 1 «a Jij=

Before treating the case of stochastic updating, let us ana-

lyze how the stationary state is affected by adding external o 0 o 0 0
force with infinitesimal amplitudes for p=1 and K=0. 0 0 1
Here we assume that the external force changésr every (25

element by the given amount. Thus, when the fofgeis o . o
applied at =0, the distribution function at=1 is expressed The characteristic equation of the mat(B5) is given as

as d

P10 80) = py (X~ B0). a” M=K LA (26

In the limit of 5,—0, the response of the mean field after \hich coincides with the results of Refd2,24). The roots

steps Is written as of Eq. (26) are denoted ag; . In the case of the synchronous

updating p=1), if all wx; lie within the unit circle in the

complex plane, the stationary state is stdlai4)].

whereL . is the linear coefficient for the response with delay - 1L)etHu:r:3vv(\; :je(;[;:rr]ré i?“:r:/ee;?;rlghggggfl;’SEqu{gn_?_h(if’e (
. t . . 1

of 7 steps[12]. From Eq.(15), we calculate. . as follows: vl represents the contribution from the past perturbations

hT: Lfﬁo, (18)

o throughi times of updating. Taking into account that the
— > CiXis 1. (199  elements are updated with probabilfyand fixed with prob-

k=1 ability 1—p, we obtain
When the temporal series of the external force is given as . d .
{8}, the mean fieldh, is obtained as v't+1=21 [pJij+(1—p) &It (27)

=
he=> L.6_ ., (20) The characteristic equation for E@Q7) is given as
A—1+p)\® A—1+p)\®

within the linear approximation. Introducing a cutaff the (28)
state at the timet can be described approximately by

d-dimensional vector

T

Comparing Eq(28) with Eq. (26), A in Eq. (26) is replaced
with (A\—1+p)/p in Eqg. (28), and thus the stability condi-
tion for Eq. (27) becomes

p p

U=(61-1,0-2,6t-3, - - - ,0t—q)- (21)

In order to obtain the stability condition accurately, we must

take the limit ofd—c. When the components af; is de- [1=ptpuf<1 (foralli). 29

noted aw;, we obtain This condition means aj; lie within the circle with center
d (1-1/p,0) and radius X in the complex planéFig. 4). In
Z ol 22) the limit p— 0, the condition(29) becomes Rea¢;)<1. Con-
~ vt sequently, if allu; satisfy Ref;)<1, the system has the

thresholdp...

The next step is to consider the casepefl andK#0. In For example, we investigate a simple case=(1

this case, the mean-field coupling yields the feedback force+ \/5)/2, wheref3(0)=0. Thus,k, is 3 andXy is periodic.

The influence of the feedback force is described as In this case, the characteristic equati@®) can be solved
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-
1-2p .1 \

FIG. 4. The stability condition. If all solutiong; of Eq. (26) lie
within the large(unit) circle, the stationary state is stable fpr
<1 (p=1). Thus, allu; lie on the left of the dotted line, there
exists threshold valup. .

analytically in the limit ofd—oc. From Egs.(15) and (19),
the linear coefficien{L,} is given as

5+.5
Lany1=Li=— 10 '
5-5
L3n+2:L2:_Ty (30)
Lan+3=L3=1.

Let us assume that satisfies conditiorju|>1. Then we
rewrite the characteristic equati@®6) in the limit d—o as
follows:

oo

Lip ™t Lop 2+ Lau™®

1=K, Liu =K (32)
i=1 1—Iu,73
From this,u is given as
KL;—1*(KL;—1)2—4K—4
w= . (32

2

When (45-21,5)/2<K<(5+345)/2, the part in the
square root in Eq(32) is negative and thus the soluti¢d2)
is complex conjugate pair. Then, we obtdin|= VK+1.
Thus,|x|>1 holds for 0<K < (5+34/5)/2. In this case, the
thresholdp,. is given by

KL1_3

PR, —3-K 33
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FIG. 5. Phase diagram of the collective motion far (1
+4/5)/2. The numerical results are obtained by calculation of Eq.
(12) with 218 grids. Circles and crosses represent the cases of
(h?)¥2> 10712 and(h?)12< 1072, respectively. The solid line rep-
resents the theoretical predicti¢d3).

For such special values af where{X,} falls on a peri-
odic orbit, we can solve the characteristic equation by the
above method. In this case, the characteristic equation has no
solution . that satisfies Rg{)>1 for adequately weak cou-
pling. Thus there exists the threshold. For the general values
of a, it is difficult to solve the characteristic equation. The
stability condition is evaluated only approximately with a
large but finite value of the cutoffl. The calculation for
several values o indicates that the threshold valpe ap-
proaches to 1 foK—0, as is seen in Fig. 5 foa=(1

+4/5)/2.

IV. SUMMARY AND REMARKS

This study has explored the globally coupled tent maps
with stochastic updating. We introduced the updating pate
and examined how the collective behavior changes -
ies. In the case adi<1, the collective motion has a sequence
of bifurcations, which is similar to the period doubling cas-
cade. In the case ai>1, the amplitude of the collective
motion decreases gsdecreases. For the both cases, we ob-
served the threshold,, below which the collective motion
vanishes. We estimated successfully the threspglty the
linear stability analysis of the stationary state.

For weak coupling, the thresholg. is likely to remain
near 1. Thus, a tiny asynchronousnism may extinguish the
collective motion. Therefore, when GCM is used as model of
real systems, we keep in mind that even if the updating rule
is almost synchronous, the effect of asynchronous updating

Figure 5 shows the correspondence between the above esthould not be ignored.

mation forp. and the numerical results. It indicates the good
agreement, except for the lower right corner. The estimation

implies p. tends to 1 in the limit oK—0, and we think that
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