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Collective motions in globally coupled tent maps with stochastic updating
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We study a generalization of globally coupled maps, where the elements are updated with probabilityp.
Whenp is below a thresholdpc , the collective motion vanishes and the system is the stationary state in the
large size limit. We present the linear stability analysis.
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I. INTRODUCTION

The globally coupled maps~GCM! are introduced as a
simple model capturing the essential features of nonlin
dynamical systems with many degrees of freedom@1#. One
of the most interesting phenomena seen in such system
the emergence of the collective motion@2–4#. The collective
motion is characterized by a time dependence of the ma
scopic variable in the large size limit@5–16#. In this paper,
we consider a variation of GCM to include asynchrono
updating.

The general form of GCM is written in the following way

xt11~ i !5 f „xt~ i !…1
K

N (
i 851

N

g„xt~ i 8!…, ~1!

where t represents discrete time steps,i specifies each ele
ment,K gives the coupling strength, andN is the system size
All elements are updated synchronously in the determini
way through the mean field

ht[
1

N (
i 51

N

g„xt~ i !…. ~2!

Since the collective motions have been studied analytic
in globally coupled tent maps@5–13#, we specifically con-
sider tent maps as follows:

f ~x![aS 1

2
2uxu D ,

~3!
g~x![ f ~x!2 f̄ .

Here f̄ is a constant determined from the average off (x)
over the natural invariant measure of the mapx° f (x), i.e.,

f̄ 5E f ~x!r* ~x!dx, ~4!

wherer* (x) represents the natural invariant density. By t
above choice ofg(x), ht50 is a stationary solution for the
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large size limit (N→`) of Eq. ~1!, and the corresponding
stationary distribution is proportional tor* (x). Equation~3!
looks a little different from well-known form of GCM sys
tem

xt11~ i !5~12e! f „xt~ i !…1
e

N (
i

f „xt~ i !…, ~5!

which is obtained as a mean-field approximation for t
coupled map lattice with diffusion coupling. In the case
the tent map system, however, the diffusion form~5! is
scaled into Eq.~1! @12#.

The collective motions in GCM~1! with Eq. ~3! are clas-
sified into two types according to the gradienta of the tent
map. First, in the case ofa,1, the synchronized chaos i
stable. In this case, the mapx° f (x) has the stable fixed
point

x* 5
a

2a12
. ~6!

Thus,r* (x)5d(x2x* ), i.e., g(x)5 f (x)2 f (x* ). Since the
gradient off (x) is smaller than 1, the difference between a
pair of elements diminishes. Thus all the elements beh
identically after some initial transient. Here we concentr
on the long-term behavior and assume the system is o
cluster state. Then temporal evolution forxt and ht is ob-
tained as follows:

xt115F1

2
1

aK

212a
2~11K !uxtuG ,

ht115a@x* 2ux* 1~11K !htu#. ~7!

WhenK is so large thata(11K).1, the fixed pointht50 is
unstable. Then, the motion of the mean field is on
dimensional chaos, which obeys Eq.~7!.

Second, in the case ofa.1, all elements are fully desyn
chronized and behave as if they are mutually independ
Nevertheless, the fluctuation of the mean field dose not v
ish in the large size limit@2#. Thus, the system has a non
trivial collective motion@5#.

From a realistic viewpoint, however, the synchronous u
dating is not always plausible as models of real syste
©2002 The American Physical Society01-1
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@17–22#. In some cases, for example, neural networks,
independent choice of the times at which the state of a gi
element is updated should provide a better approximat
Abramson and Zanette have numerically found that, for g
bally coupled logistic map with completely stochastic upd
ing, the fluctuation of the mean field can vanish in the la
size limit @19#. In this paper, we study the stochastic updat
model as follows:

xt11~ i !5H f „xt~ i !…1Kht with probability p,

xt~ i ! with probability ~12p!.
~8!

Here the definition of the mean field~2! is not changed. At
each time step, update the elements with probabilityp satis-
fying 0,p<1. When the updating ratep is equal to 1, the
model~8! becomes the synchronous updating model~1!. On
the other hand, whenp decreases to 0, the model~8! ap-
proaches the completely asynchronous updating model@25#.
Thus, the value of (12p) represents the strength of th
asynchronousnism. The purpose of this paper is to inve
gate how the collective behavior changes when the upda
probabilityp varies, mainly by the linear stability analysis o
the stationary state in the large size limit.

There is another extension of GCM to include sequen
updating@22#. In this case, the state of the elements is u
dated according to a given sequence that is fixed during
evolution. Jianget al.showed numerically that the sequent
updating induces a variety of collective behaviors such
spatial bifurcation cascades and traveling wave. In cont
to the stochastic updating, this type of asynchronousn
does not reduce the collective motion. In this paper, we c
centrate on the stochastic updating model. One reason is
we are interested in the situation with almost synchron
updating, where a portion of elements are not updated
accident. Another reason is that the stochastic upda
model can be treated analytically with using the distribut
function.

FIG. 1. Bifurcation diagram for evolution of the mean field as
function of the updating ratep in the case ofa50.9, K50.7, N
5105. For given values ofp, the value of the mean field is plotte
for 64 successive steps after 104 steps as transient.
04620
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II. NUMERICAL RESULTS

In this section, we present the numerical results for
model~8!. First, we examine the case ofa,1. Whenp51,
the synchronized chaos is observed. On the other hand, w
p,1, some elements are updated and the others are fixe
each time step. Hence, even when a pair of elements hav
same value at a moment, they can have different values a
next time. As a result, the synchronized chaos is brok
Whenp is near 1, the synchronized state is blurred sligh
As p decreases, a sequence of bifurcations is seen~in Fig. 1!.
It resembles the period doubling cascade. However, there
finite jump at this bifurcation in contrast of the usual peri
doubling bifurcation. This discontinuity is due to the fact th
the mapf (x) is piecewise linear. Whenp is smaller than a
threshold valuepc , all elements fall into the fixed point~6!
and the mean fieldht becomes 0. Thus, the collective motio
vanishes below the thresholdpc .

Second, we examine the case ofa.1, where the non-
trivial collective motion is seen forp51. Figures 2~a!, 2~b!,
and 2~c! show the motions of the mean field for some valu
of p, with a51.625,K50.4, andN5105. The amplitude of

FIG. 2. Examples of the return maps of the mean field
shown (a51.625,K50.4!. While ~a!, ~b!, and~c! are obtained by
the direct numerical calculation of Eq.~8! with the size of N
5105, ~d!, ~e!, and~f! are obtained by the numerical calculation
Eq. ~11! with 218 grids. ~a! and~d! are forp51, ~b! and~e! are for
p50.95, ~c! and ~f! are for p50.9. We plot 2000 points after 104

steps as transient.
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motion of the mean field decreases asp decreases.
It should be noted that the dynamics of each elemen

not deterministic due to the updating rule. Thus, the me
field value is blurred if the system size is finite. Even forp
51, the finite size effect works on the motion of the me
field as an internal noise@5#. For that reason, it is useful t
consider the large size limit. In the large size limit, the e
semble of the elements is characterized by its distribution
the synchronous updating case, the evolution of the distr
tion function r t(x) obeys the nonlinear Frobenius-Perr
equation

r t11~x!5F@r t~x!;ht#[
r t~y1!1r t~y2!

a
, ~9!

whereF represents the Frobenius-Perron operator, andy1

and y2 are the two preimage ofx, i.e., x5 f (y6)1Kht .
Here the mean field is determined in the integral form,

ht5E g~x!r t~x!dx. ~10!

In the stochastic updating case (p,1), the evolution of
r t(x) is described as

r t11~x!5p F@r t~x!;ht#1~12p!r t~x!. ~11!

Despite the stochastic updating, the distribution funct
evolves in the deterministic way.

In order to calculate Eq.~11! numerically, we approximate
the distribution functionr t(x) by dividing the relevant inter-
val of x into m small intervals. The evolution of the distribu
tion is described by them3m transfer matrix that depend
on time through the mean fieldht . Here we construct the
transfer matrix by applying the method by Binder and Ca
pos@23#. Figures 2~d!, 2~e!, and 2~f! show the motion of the
mean field calculated by this method with the parameter
ues corresponding to Figs. 2~a!, 2~b!, and 2~c!, respectively.
The direct calculations of Eq.~8! compare successfully with
the results of Eq.~11!, except for the fluctuation due to th
finite size effect. As is seen from Fig. 2~f!, whenp is smaller
than a threshold valuepc , the collective motion vanishe
like the case ofa,1. In the stationary state, all elements a
still scattered and behave chaotically in contrast to the c
of a,1. The fluctuation of the mean field resides for fin
size systems@Fig. 2~c!#. Note that when the mean field van
ishes, all elements are independent of each other, becaus
coupling term becomes 0. The amplitude of the mean fi
tends to decrease as asynchronousnism grows. This sug
that asynchronous updating weakens the coherence am
elements. On the other hand, the frequency of the collec
motion is proportional to the updating ratep. This can be
explained by the fact that the time scale is given by 1/p.

III. LINEAR STABILITY ANALYSIS
OF THE STATIONARY STATES

The result of numerical simulation indicates that there
ists a threshold valuepc for updating rate. It is observed tha
the collective motion vanishes, and the stationary state@with
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distributionr t(x)5r* (x)# is realized forp smaller thanpc .
In this section, we present the linear stability analysis of
stationary state to estimate the value ofpc .

First, we consider the case ofa,1. This case is simpler
because all elements have the identical fixed valuex* (.0)
in the stationary state. Considering a small perturbation fr
x* , we assume that every element has a positive va
Sincer t(x) for x,0 is 0, the evolution ofr t(x) is rewritten
as

r t11~x!5
p

a
r tS a22x12Kht

2a D1~12p!r t~x!. ~12!

From Eqs.~10! and ~12!, we obtain the dynamics of the
mean field obeys

ht115~2ap2apK112p!ht . ~13!

Thus, the stationary state is stable whenu2ap2apK11
2pu,1. Consequently, the threshold valuepc is estimated
as

pc5
2

a~11K !11
. ~14!

In the case of Fig. 1,pc50.790 . . . . Thetheoretical predic-
tion agrees well with the numerical simulation~see also Fig.
3!.

Second, we consider the case ofa.1. The stationary dis-
tribution functionr* (x) is expanded into series of step fun
tions as follows@9,12#:

r* ~x!5 (
k51

Cku~x2Xk!,

FIG. 3. Phase diagram of the collective motion fora50.9. The
numerical results are obtained forN5104. Circles and crosses rep
resent the cases of^h2&1/2.1026 and ^h2&1/2,1026, respectively.
Here the angular bracket denotes the average value of the enc
quantity over 2000 time steps. The solid line represents the theo
ical prediction~14!.
1-3
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Xk[ f k~0!, ~15!

Ck[C1$~ f k21!8@ f ~0!#%21,

whereu(x) is a step function: 1 forx>0 and 0 forx,0.
Thus,Xk and Ck represent the locations and the heights
the steps inr* (x), respectively. We chooseC1 to satisfy the
normalization condition

2 (
k51

CkXk5E dxr* ~x!51. ~16!

If there exists suchkp that satisfiesf kp(0)50 and f k(0)
Þ0 for ;k,kp , the sum overk is taken from 1 tokp .
Otherwise, the sum is taken from 1 tò.

Before treating the case of stochastic updating, let us a
lyze how the stationary state is affected by adding exte
force with infinitesimal amplituded for p51 and K50.
Here we assume that the external force changesxi for every
element by the given amount. Thus, when the forced0 is
applied att50, the distribution function att51 is expressed
as

r1~x;d0!5r* ~x2d0!. ~17!

In the limit of d0→0, the response of the mean field aftert
steps is written as

ht5Ltd0 , ~18!

whereLt is the linear coefficient for the response with del
of t steps@12#. From Eq.~15!, we calculateLt as follows:

Lt52 (
k51

`

CkXk1t . ~19!

When the temporal series of the external force is given
$d t%, the mean fieldht is obtained as

ht5 (
t51

`

Ltd t2t , ~20!

within the linear approximation. Introducing a cutoffd, the
state at the timet can be described approximately b
d-dimensional vector

v t[~d t21 ,d t22 ,d t23 , . . . ,d t2d!. ~21!

In order to obtain the stability condition accurately, we mu
take the limit ofd→`. When the components ofv t is de-
noted asv t

i , we obtain

ht5(
i 51

d

Liv t
i . ~22!

The next step is to consider the case ofp51 andKÞ0. In
this case, the mean-field coupling yields the feedback fo
The influence of the feedback force is described as
04620
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v t11
1 5Kht . ~23!

Taking Eq.~22! into account, the evolution ofv t
i is described

as

v t11
i 5(

j 51

d

Ji j v t
j , ~24!

where the matrixJi j is given by

Ji j 5S KL1 KL2 KL3 ••• KLtc21 KLtc

1 0 0 ••• 0 0

0 1 0 ••• 0 0

A A A � A A

0 0 0 ••• 0 0

0 0 0 ••• 1 0

D .

~25!

The characteristic equation of the matrix~25! is given as

ld5K(
i 51

d

Lil
d2 i , ~26!

which coincides with the results of Refs.@12,24#. The roots
of Eq. ~26! are denoted asm i . In the case of the synchronou
updating (p51), if all m i lie within the unit circle in the
complex plane, the stationary state is stable@24#.

Let us now return to the asynchronous updating casep
,1). Here we define the vectorv t to satisfy Eq.~22!. Thus,
v t

i represents the contribution from the past perturbati
through i times of updating. Taking into account that th
elements are updated with probabilityp and fixed with prob-
ability 12p, we obtain

v t11
i 5(

j 51

d

@pJi j 1~12p!d i j #v t
j . ~27!

The characteristic equation for Eq.~27! is given as

S l211p

p D d

5K(
i 51

d

Li S l211p

p D d2 i

. ~28!

Comparing Eq.~28! with Eq. ~26!, l in Eq. ~26! is replaced
with (l211p)/p in Eq. ~28!, and thus the stability condi
tion for Eq. ~27! becomes

u12p1pm i u,1 ~ for all i !. ~29!

This condition means allm i lie within the circle with center
(121/p,0) and radius 1/p in the complex plane~Fig. 4!. In
the limit p→0, the condition~29! becomes Re(m i),1. Con-
sequently, if allm i satisfy Re(m i),1, the system has the
thresholdpc .

For example, we investigate a simple casea5(1
1A5)/2, wheref 3(0)50. Thus,kp is 3 andXk is periodic.
In this case, the characteristic equation~26! can be solved
1-4
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analytically in the limit ofd→`. From Eqs.~15! and ~19!,
the linear coefficient$Lt% is given as

L3n115L152
51A5

10
,

L3n125L252
52A5

10
, ~30!

L3n135L351.

Let us assume thatm satisfies conditionumu.1. Then we
rewrite the characteristic equation~26! in the limit d→` as
follows:

15K(
i 51

`

Lim
2 i5K

L1m211L2m221L3m23

12m23
. ~31!

From this,m is given as

m5
KL1216A~KL121!224K24

2
. ~32!

When (45221A5)/2,K,(513A5)/2, the part in the
square root in Eq.~32! is negative and thus the solution~32!
is complex conjugate pair. Then, we obtainumu5AK11.
Thus,umu.1 holds for 0,K,(513A5)/2. In this case, the
thresholdpc is given by

pc5
KL123

KL1232K
. ~33!

Figure 5 shows the correspondence between the above
mation forpc and the numerical results. It indicates the go
agreement, except for the lower right corner. The estima
implies pc tends to 1 in the limit ofK→0, and we think that
the gap in the corner appeared because the amplitude o
collective motion for smallK is very small @estimated at
exp(2C/K) for the case withp51 @11,12##.

FIG. 4. The stability condition. If all solutionsm i of Eq. ~26! lie
within the large~unit! circle, the stationary state is stable forp
,1 (p51). Thus, allm i lie on the left of the dotted line, there
exists threshold valuepc .
04620
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For such special values ofa, where$Xk% falls on a peri-
odic orbit, we can solve the characteristic equation by
above method. In this case, the characteristic equation ha
solutionm that satisfies Re(m).1 for adequately weak cou
pling. Thus there exists the threshold. For the general va
of a, it is difficult to solve the characteristic equation. Th
stability condition is evaluated only approximately with
large but finite value of the cutoffd. The calculation for
several values ofa indicates that the threshold valuepc ap-
proaches to 1 forK→0, as is seen in Fig. 5 fora5(1
1A5)/2.

IV. SUMMARY AND REMARKS

This study has explored the globally coupled tent ma
with stochastic updating. We introduced the updating ratp
and examined how the collective behavior changes asp var-
ies. In the case ofa,1, the collective motion has a sequen
of bifurcations, which is similar to the period doubling ca
cade. In the case ofa.1, the amplitude of the collective
motion decreases asp decreases. For the both cases, we
served the thresholdpc , below which the collective motion
vanishes. We estimated successfully the thresholdpc by the
linear stability analysis of the stationary state.

For weak coupling, the thresholdpc is likely to remain
near 1. Thus, a tiny asynchronousnism may extinguish
collective motion. Therefore, when GCM is used as mode
real systems, we keep in mind that even if the updating r
is almost synchronous, the effect of asynchronous upda
should not be ignored.
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FIG. 5. Phase diagram of the collective motion fora5(1
1A5)/2. The numerical results are obtained by calculation of
~11! with 218 grids. Circles and crosses represent the cases
^h2&1/2.10212 and^h2&1/2,10212, respectively. The solid line rep
resents the theoretical prediction~33!.
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