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Complex networks are characterized by several topological properties: degree distribution, clustering coef-
ficient, average shortest path length, etc. Using a simple model to generate scale-free networks embedded on
geographical space, we analyze the relationship between topological properties of the network and attributes
�fitness and location� of the vertices in the network. We find there are two crossovers for varying the scaling
exponent of the fitness distribution.
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Many natural, social, and technological systems can be
described in terms of complex networks, in which vertices
represent interacting units, and edges stand for interactions
among them �1–4�. The complex networks, which are far
from absolutely regular or completely random, are character-
ized by several properties: degree distribution, clustering co-
efficient C, average shortest path length L, etc. Many real
networks exhibit a scale-free degree distribution P�k��k−�,
typically with the scaling exponent 2���3 �1–6�. Most
real networks have a large clustering coefficient, which is
defined as the probability that a pair of vertices with a com-
mon neighbor are also connected to each other �7�. The local
clustering coefficient usually decreases with the degree �8�.
In addition, a small-world effect is seen in many networks
�7�. For many network models, the average shortest path
length grows logarithmically L� ln N or more slowly
�3,4,9�.

In order to understand the structure of the complex net-
works, many models have been proposed. Barabási and Al-
bert �BA� proposed growing networks with preferential at-
tachment to represent the scale-free degree distribution �5�.
For the BA model, the scaling exponent � is always 3 and its
clustering coefficient is relatively small for the large size.
Then, several modified models have been presented to repro-
duce the realistic aspects of the networks �3,8,10,11�. There
are different class models that do not need growth to produce
scale-free networks. In these models, each vertex has a in-
trinsic fitness measuring its importance or rank �12–16�. In
several models, the location in geographical space is also
taken into consideration �17–27�. In such models, the topo-
logical properties of the network are essentially determined
by the characteristics of the vertices. The purpose of this
Rapid Communication is to make clear the relationship be-
tween the topology of the network and the attributes of the
vertices for a simple model in the latter class. We find when
the scaling exponent � of the fitness distribution varies, there
are two crossovers at �=2 and �=3.

Our model is defined as follows. We consider N vertices.
We assume that each vertex has a fitness ai �i=1,2 , . . . ,N�.
For simplicity, the fitness values are assigned deterministi-
cally as

ai = �i/N�1/�1−�� �i = 1,2, . . . ,N� �1�

for ��1. The case of ��2 is known as Zipf’s law. When N
is adequately large, the distribution of the fitness is given
approximately as

��a� = �� − 1�a−� + ��a − 1�/2N + ��a − N1/��−1��/2N �2�

in the finite support

1 � a � N1/��−1�. �3�

��x� denotes the Dirac delta function. Thus, the distribution
of the fitness follows the power law ��a�� a−� with slight
adjustments at both sides. In addition, the vertices are dis-
tributed randomly in a d-dimensional space with uniform
distribution. We assume that the fitness and the location are
mutually independent. The condition to link vertices i and j
is

„2l�i, j�…d/aiaj � 	 , �4�

where l�i , j� denotes the distance between these vertices and
	 is a threshold. For simplicity, the distance is defined by the
L-max norm, and the boundary condition is periodic. Here,
the threshold value 	 is chosen so that the total number of
connections equals mN. Thus, the average degree is given by
�k�=2m. The network resulting from our method has a scale-
free degree distribution as shown in Fig. 1�a�.

Because the vertices follow the uniform distribution in the
unit d-dimensional cube, the probability function of the dis-
tance between a pair of vertices is given as

p�l � x� = 	�2x�d �l � 1/2�
1 �l 
 1/2� .

�5�

Thus, the probability to link a pair of vertices with fitness a
and a� is given as

r�a,a�� = min�	aa�,1� . �6�

The average degree for a vertex with fitness a is calculated as

k̄�a� = N
 r�a,a����a��da�. �7�

Inserting �2� and �6� into �7�, we obtain the approximate
form for large N,*Electronic address: morita@sys.eng.shizuoka.ac.jp
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k̄�a� � �
2�� − 1�N − �N1/��−1�

2�� − 2�
	a �a � 	−1N−1/��−1��

�� − 1�	a − �	a��−1

� − 2
N �a 
 	−1N−1/��−1�� .

�8�

We can estimate the threshold value 	 from the fact that the
average degree is described as

2m =
 k̄�a���a�da . �9�

Inserting �2� and �8� into �9�, we get for large N,

2m � N�2�� − 1�2	 − �3�2 − 5� + 2�	N2−�/��−1�

+ ��2 − ��	�−1 − 4�� − 2�	�−1 ln N

− 2��2 − 3� + 2�	�−1 ln 	�/2�� − 2�2. �10�

The asymptotical solution 	 for large N is described as

	 ��
2m

N
�� − 2

� − 1
2

�� � 2�

�2m�2 − ��
N ln N

1/��−1�

�1 � � � 2� .

�11�

Thus, the asymptotical behavior changes at �=2. For ��2,
the asymptotic form of Eq. �8� is given as

k̄�a� � 2m�� − 2�/�� − 1�a �� � 2� . �12�

Accordingly, k̄�a� is proportional to a. On the other hand, for
1���2, Eq. �8� is approximately

k̄�a� � �2m�/�ln N�a�−1 �1 � � � 2� �13�

for a�	−1N−1/��−1�. Thus, k̄�a� follows a power law decay
with exponent �−1.

Let us now calculate the degree distribution. The degree
distribution is calculated as

P�k� =
 P�k�a���a�da . �14�

The conditional probability P�k �a� that the vertex with fit-
ness a has degree k is given by the binominal form:

P�k�a� = �N

k
� k̄�a�

N
k�1 −

k̄�a�
N

N−k

. �15�

For ��2, if the inside of the integral of �14� has the maxi-
mum in the range �3�, the integral is approximated by using
the gamma function. Accordingly, in the region,

2m
� − 2

� − 1
+ � � k � 2m

� − 2

� − 1
N1/��−1� + � , �16�

the degree distribution �14� is described as

FIG. 1. �a� The degree distribution P�k� obtained numerically
for m=3, d=2, N=10 000, and �=1.5 �circles�, �=2.5 �squares�,
and �=3.5 �triangles�. These data are averaged over 100 realiza-
tions, and the bin is taken logarithmically to reduce noise. The solid
curves stand for the theoretical predictions �18� and �20�. �b� The
exponent values calculated using the maximum likelihood method
are shown as a function of � for m=3, d=2, N=10 000. �c� The
ANND for the same parameters as in �a�. The solid curves corre-
spond to theoretical results �22�–�24�. �d� The assortativity r �degree
correlation� obtained numerically is shown as a function of � for the
same parameters as in �b�.

FIG. 2. The clustering coefficient as a function of k for m=3,
N=10 000, and �=1.5 �a�, �=2.5 �b�, and �=3.5 �c�, where circles,
squares, and triangles correspond to the numerical results for d=1,
d=2, and d=3, respectively. In �a�, these three plots coincide ex-
actly. The solid curves correspond to the predictions from the nu-
merical integrate of �25�. In �d�, the average clustering coefficient as
a function of � for m=3, N=10 000 and d=1 �circles�, d=2
�squares�, and d=3 �triangles�.
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P�k� �
�2m��−1

N�−1

�� − 2��−1

�� − 1��−2

N!

k!

��k − � + 1�
��N − � + 2�

. �17�

For k�1, we get the scale-free degree distribution:

P�k� � �2m��−1 �� − 2��−1

�� − 1��−2k−� �� � 2� . �18�

In this case, the scaling exponent equals that of the fitness
distribution. For ��2, if the inside of this integral of Eq.
�14� has the maximum in the range �	−1N−1/��−1� ,N1/��−1��,
the degree distribution is calculated in the same way as in the
case of ��2. Accordingly, in the region,

�5 − 2��/�2 − �� � k � 2mN/ln N + 2, �19�

the degree distribution is described as

P�k� � �2m/ln N�k−2 �1 � � � 2� . �20�

As a result, in this case, the degree distribution is indepen-
dent of �, and the exponent is always 2. These analyses are
consistent with the numerical results �see Figs. 1�a� and
1�b��. Note the degree distribution is independent of the di-
mension d in both cases.

In addition to the degree distribution, we study the
degree-degree correlation P�k� �k�, which measures the prob-
ability of a vertex with degree k to be linked to a vertex with

degree k�. In order to characterize this correlation, it is useful
to work with the average nearest-neighbor degree �ANND�,
which is defined as k̄nn�k���k�k�P�k� �k� �28�. Before esti-

mating k̄nn�k�, we estimate the ANND of a vertex with fitness
a, which is calculated as

k̄nn�a� =

 r�a,a��k̄�a����a��da�


 r�a,a����a��da�

+ 1. �21�

The last term adding one is due to the fact that the nearest-
neighbor vertex has at least one connection. Eliminating a

with using �12�, we obtain an approximation for k̄nn�k�. For
��3, we obtain the asymptotical form for large N,

k̄nn�k� � 2m�� − 2�2/�� − 1��� − 3� + 1 �� � 3� . �22�

Thus, the ANND k̄nn�k� is independent of k. This result indi-
cates there is no correlation between degrees of linked pairs.
However the numerical result shows there is a small positive
correlation �see Fig. 1�c��. This correlation may be due to the
fluctuation of the vertex density in the d-dimensional space.
For 2���3, the asymptotical form of ANND is

k̄nn�k� � �A� � + 1

2�� − 1�
N�3−��/��−1� − 1� + 1 �k �

� − 1

� − 2
N��−2�/��−1�, 2 � � � 3

A�
N3−�

k3−� − �
N1/��−1�

k
− 1� + 1 �k �

� − 1

� − 2
N��−2�/��−1�, 2 � � � 3 ,

�23�

where A=
2m��−2�2

��−1��3−�� , =
��−1�3−�

��−2�4−� , and �=
��3−��

2��−2�2 . This result indicates that the ANND is constant for small k and decays

approximately k̄nn�k��k−�3−�� for large k. For 1���2, we obtain

k̄nn�k� = �
2mN�2 − ���2� − 1�

� ln N
+ 1 �k � 1/�2 − ��, 1 � � � 2�

4mN
ln k + ln�2 − �� + � − 1/2

�2k − 1�ln N
+ 1 �k � 1/�2 − ��, 1 � � � 2� .

�24�

This result indicates that the ANND decays k̄nn�k�� ln k � k
for large k. Figure 1�c� shows these analyses agree well with
the numerical results. In addition, we calculate numerically
the assortativity r defined by Newman �29� for several values
of �. The assortativity denotes the Pearson correlation coef-
ficient of the degrees at either ends of an edge. Figure 1�d�
shows the network has positive �negative� degree correlation
if ��3 ���3�.

The clustering coefficient is calculated as a function of a
as follows:

C�a� =

 r3�a,a�,a����a����a��da� da�


 r�a,a��r�a,a����a����a��da� da�

, �25�

where r3�a ,a� ,a�� denotes the probability that three vertices
with fitness values a, a�, and a� form a triad. Because it is
difficult to analytically calculate the numerator of �25�, we
resort to numerical integration. We can also calculate C�k� by
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the numerical integration of the product of C�a� and P�a �k�,
which is given by Bayes law P�a �k�= P�k �a���a� / P�k� �see
Fig. 2�. For ��2 the clustering coefficient C�k� decreases
with the dimension d. On the other hand, for ��2, the clus-
tering coefficient C�k� seems to be independent of the dimen-
sion d. This suggests that when ��2, the spatial structure is
irrelevant to the network structure. This fact is confirmed by
the behavior of the average cluster coefficient defined by
Watts and Strogatz �7�, as shown in Fig. 2�d�.

Finally we study the average shortest path length L �Fig.
3�. For ��3, the average shortest path length seems to fol-
low a power law L�N�, where � is somewhat smaller than
1/d. On the other hand, for ��3, the average shortest path
length grows more slowly than ln N. In this case, a pair of
vertices with sufficiently large fitness are always linked, be-
cause max�	aiaj�=	N2/�−1�1 for large N. Consequently,
some vertices that connect each other regardless of their dis-
tance, compose a shortcut network. As a result, the spatial

structure is irrelevant to the average shortest path length, and
thus the network is ultrasmall �9�.

In summary, we have studied a scale-free network embed-
ded on geographical space. While the scaling exponent of the
degree distribution equals � for the scaling exponent � of the
fitness distribution for ��2, it is always 2 for ��2. For �
�2, the spatial effect is irrelevant to some topological prop-
erties �ANND or clustering coefficient� of the network.
While the network is disassortative �negative degree correla-
tion� for ��3, it is weakly assortative �positive degree cor-
relation� for ��3. Moreover, the network is not small for
��3, whereas the spatial effect is irrelevant to the average
shortest path length for ��3. When the fitness distribution
��a� has a rapid decay �e.g., uniform distribution�, the net-
work is similar to the category of ��3, except that the de-
gree distribution has a faster decay. Thus, there are two
crossovers at �=2 and �=3.

Furthermore, the preliminary numerical research suggests
that these results hold even if the distribution of the location
of the vertices is not uniform. Therefore, we expect that the
results presented in this Rapid Communication are robust in
the condition that the nearer pairs tend to be linked. How-
ever, the result that the networks with ��3 ���3� are as-
sortative �disassortative� does not necessarily agree with
some research for real networks �4,30�, which indicates that
most technological and biological networks are disassorta-
tive. The disagreement may be because the real systems have
correlation between the location and fitness of the vertex,
which is not taken into consideration in our model. This
topic remains open for future investigation.

This research was carried out on computers at YITP at
Kyoto University, and under the ISM Cooperative Research
Program Contract No. 2006-ISM CRP-1008.
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FIG. 3. �a� Log-linear plot of the average shortest path length L
vs the number of vertices N for different values of � ��
=4.0,3.5,3.0,2.5,2.0,1.5 from top to bottom� and d=2. �b� The
same data in the log-log plot.
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