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0. Introduction

In [W], Waldhausen considered a certain class of 3-manifolds called Haken manifolds,

and classified it by their fundamental groups. Similarly, Takeuchi [Tal] classified a

certain class of very good 3-orbifolds, and in this paper we classify much larger class

of 3-orbifolds by their orbifold fundamental groups.

The class considered here consists of compact and orientable 3-orbifolds which

satisfy the following:

(W1) abad,

(W?2) irreducible,

(W3) all boundary components are incompressible,

(W4) sufficiently large,

(WS) all turnovers with non-positive Euler numbers are boundary parallel.

Let us describe the improvements of this results comparing with that of [Tal]:

(i)  Orbifolds here are abad (i.e. there are no bad 2-suborbifolds), although they are
required to be very good in [Tal].

(il) We can deform orbi-maps in the Main Theorem through orbi-homotopies,
although the deformations in [Tal] are merely through C-equivalent.

(i)  Orbifolds here are allowed to have d-parallel, non-spherical turnovers, although
they have no non-spherical turnovers in [Tal].

Since the goodness of the elements of W is immediately derived from [D] and [Ta2,

Theorem A], we deal with good (not necessarily very good) orbifolds in this paper.

The improvement (i) was performed by the preparation in Section 1 and by
examining details of the arguments in [Tal].
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For improvement (ii), we show an extension theorem of an orbi-map in Section 2.
It is proved that an orbi-map from the double DB of a ballic 3-orbifold B to a 3-
orbifold N can be extended to an orbi-map from the cone on DB to N.

For improvement (iii), we prepare the deformation theorem of orbi-maps on
turnovers in Section 3. If an orbi-map between turnovers with infinite orbifold
fundamental groups induces an isomorphism between their orbifold fundamental
groups, then the orbi-map is orbi-homotopic to an orbi-isomorphism (Theorem 3.1).
It is derived from Euclidean or Hyperbolic geometry.

By Theorem 3.1 we make two-dimensional analogies of the Main Theorem
(Theorem 3.2 and Corollary 3.3).

Now we summarize the contents of the paper. Section 1 is devoted to the
preparation of the basic tools to deal with 3-orbifolds in the combinatorial category.
First we review the loop theorem, Dehn’s lemma, and the sphere theorem for orbifolds
from [TY1]. Using these theorems, we prove Propositions 1.4—1.8, which give us ‘cut
and paste methods’ in the study of 3-orbifolds.

In Section 2, we consider some problems on extensions of orbi-maps defined on
the boundary of orbifolds. It is well known that if m3(X) = 0, a continuous map
from S3 to a space X is extendable to a continuous map from the cone on S to X,
and that C-equivalent maps to X are homotopic to each other. In the paper, we prove
the orbifold versions of these facts in Theorem 2.2 and Proposition 2.3. Furthermore,
Proposition 2.5 enables us to deform orbi-maps which appear in the last step of a
hierarchy, to orbi-coverings fixing the boundaries. This is one of the core parts in the
proof of the Main Theorem.

The topic in Section 3 is the deformations of orbi-maps between two-dimensional
orbifolds. In [Tal, Theorem 7.2], the non-turnover case is considered by decomposing
the orbifolds to discal orbifolds along their essential curves. We study the turnover
case in Theorem 3.1. Since there are no essential curves on turnovers, we cannot use
the above method. Here we use the hyperbolic structures of the universal coverings
of turnovers and modify the structure maps through an equivariant homotopy. These
two theorems (Theorem 3.1 and [Tal, Theorem 7.2]) yield the result of Theorem 3.2,
which enables us to deform orbi-maps on boundaries to orbi-coverings at the first step
of the proof of the Main Theorem.

The main results in Section 4 are theorems on I-bundles, which are Theorems 4.1
and 4.3. Roughly speaking, Theorem 4.1 states that if 3-orbifolds M, N and orbi-map
f : M — N satisfy some conditions, then M should be an I-bundle over a closed 2-
orbifold. Theorem 4.3 states that a certain orbi-map f from a product I-bundle over a
closed 2-orbifold F to an appropriate 3-orbifold N retracts into a boundary component
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of N. The key point of the proof of Theorem 4.1 is to show that the fundamental group
of a boundary component of M has a finite index in 71 (M). Then the proof can be
reduced to the case of [Tal, 6.3]. The proof of Theorem 4.3 is performed by cutting
open F into discal 2-orbifolds and skeleton-wise retracting the orbi-map on (each
piece) x I into dN. The result in this section gives the ‘breaking case’ of the Main
Theorem (i.e. Theorem 5.1(2)).

In Section 5, we prove Main Theorem which is as follows.

THEOREM 5.1. (Main Theorem) Let M, N € W, and suppose f : (M,0M) —
(N, ON) is an orbi-map such that f, : 1{(M) — w1 (N) is monic. Then there exists
an orbi-homotopy f; : (M,dM) — (N, dN) such that fo = f and either

(1) f1: M — N is an orbi-covering, or
(2) M is a product I-bundle over a closed 2-orbifold and fi(M) C dN.

If, for a component B of 0M, (f|B) : B — C is already an orbi-covering, we may
assume (f|B); = f|B forallt.

Here is an outline of the proof. By Theorem 3.2, we may assume that f|dM is an
orbi-covering. Take an orbi-covering g : N’ — N associated with f,7(M) and a lift
f’ of f by q. There are two cases that f'|dM is an orbi-embedding or not.

When f’|dM is not an orbi-embedding, we apply the results in Section 4 to obtain
conclusion (2).

When f’|dM is an orbi-embedding, cut N open along an incompressible 2-
suborbifold G. By the induction lemma, Lemma 5.2, we can modify (rel. 9) f to
/1 so that each component of fl_l(G) is an incompressible 2-suborbifold and, for
each component of P (respectively Q) of cl(M — fl"l(G)) (respectively cl(N — G)),
(f1lP) : P — Q possesses the same property as that of f : M — N. That is, the lift
(f1|P)’|0 P is an orbi-embedding.

Repeating the use of the induction lemma to the final stage of the hierarchy of N,
we have a collection of orbi-maps into ballic orbifolds or (a non-spherical turnover)
x 1.

With the results in Section 2, we deform the orbi-maps (rel. 9) to orbi-coverings.
Since all modifications are performed when fixed on boundaries, we can piece together
these orbi-coverings to obtain the conclusion (1).

A part of the results in the paper are used in [TY2].
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1. Preliminaries

Throughout this paper, all orbifolds are connected and locally orientable unless
otherwise stated. For basic facts on orbifolds, see [Th, BS, D, Tal]. Furthermore,
see also [Tal, TY1] for an orbi-map which plays an important role in this paper.

Roughly speaking, an orbi-map is a continuous map between orbifolds respecting
their orbifold structures. In addition, there is a non-singular point mapped to a non-
singular point by an orbi-map, which induces a homomorphism of their orbifold
fundamental groups. When N is a suborbifold of M, the inclusion map i : N —
M is naturally equipped with an orbi-map structure and induces a homomorphism
ix 1 T1(N) — m;(M). An orbifold covering also has a canonical orbi-map structure,
so we use the terminology ‘orbi-covering’ in this sense. The elemental properties of
the ordinal covering category are parallelly translated into those of the orbi-covering
category (the existence of a covering associated with a subgroup, the equivalence of
a regular covering and a normal subgroup, the lifting property of an orbi-map, and
SO on).

Theorems 1.1, 1.2, and 1.3 are derived from equivariant theorems [JR1,JR2,
MY2,MY3,TY1].

THEOREM 1.1. (The loop theorem [TY1, Theorem 6.4]) Let M be a good 3-orbifold
with boundaries. Let F be a connected 2-suborbifold in 0M. If Ker(w(F) —
1 (M)) # 1, then there exists a discal 2-suborbifold D properly embedded in M
such that 9D C F and 3D does not bound any discal 2-suborbifold in F.

THEOREM 1.2. (Dehn’s lemma [TY1, Theorem 6.5]) Let M be a good 3-orbifold
with boundaries. Let y be a simple closed curve in dM — Y M such that the order of
[v1is nin 7y (M). Then there exists a discal suborbifold D?(n) properly embedded in
M with dD*(n) = y.

THEOREM 1.3. (The sphere theorem [TY1, Theorem 6.7]) Let M be a good 3-
orbifold. Let p : M — M be the universal cover of M. If (M) # 0, then there
exists a spherical suborbifold S in M such that [S) # 0in 7'[2(1\7[), where S is any
component of p~! (5).

The next corollary is derived directly from Theorem 1.3.

COROLLARY 1.4. Let M be a good 3-orbifold. If M is irreducible, then for any
manifold covering M of M, my(M) = 0.
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In the remaining part of this section, we describe several propositions derived
from Theorems 1.1-1.3.

PROPOSITION 1.5. Let M be a good 3-orbifold, F be a connected and incompressible
2-suborbifold which is 2-sided and properly embedded in M, and N be the orbifold
derived from M by cutting open along F. Then, M is irreducible if and only if each
component of N is irreducible.

Proof. Suppose M is not irreducible. There is an incompressible spherical suborbifold

S in M. By the innermost argument, we may assume that S N F = ¢. Itis a
contradiction. The converse is derived from the fact that a ballic 3-orbifold does not
contain any incompressible 2-suborbifolds. |

PROPOSITION 1.6. Let M be a good and compact 3-orbifold, F be a connected and
incompressible 2-suborbifold which is 2-sided and properly embedded in M, and N
be the orbifold derived from M by cutting open along F. Then, for any component N’
of N, Ker(m(N') — 1 (M)) = 1.

Proof. Otherwise there is an orbi-map f : B? — M which is transverse to
F — T F and satisfies f~'(f(B®) N F) C IntB? and [f]dB?] # 1 in m (N').
Then, by the innermost argument, we can find the subdisc E? of B? which satisfies
f(EYN(F — X$F)= fE), f(IntE) C M — F,and [f|0E] # 1 inm(F). Itisa
contradiction. o

Let M be a good 3-orbifold and F a connected suborbifold which is 2-sided and
properly embedded in M. 1t is clear that if Ker(w;(F) — m1(M)) = 1, then F is
incompressible in M. By Theorem 1.1 and Proposition 1.6, the converse stands.

PROPOSITION 1.7. Let M be a good 3-orbifold, F be a connected 2-suborbifold
which is 2-sided and properly embedded in M. If F is incompressible, then
Ker(m(F) —» m(M)) = 1.

We end up this section with describing the relation between orbi-coverings and
incompressibility.

PROPOSITION 1.8. Let M be a good 3-orbifold, and F a connected 2-suborbifold
which is 2-sided and properly embedded in M. Let p' : M’ — M be a covering and
F' be a component of p'~'(F). Then, F is incompressible in M, if and only if F' is
incompressible in M'.

Proof. Suppose F’ is incompressible in M’. When F = (a discal, spherical orbifold),
the conclusion is clear. We consider the case that F # (a discal, spherical orbifold).
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Suppose F is compressible. Then, there is a compressing discal suborbifold D in M.
Let D’ be a component of p’~!(D) such that 3D’ is innermost one of p’~1(d D) in
F'. Since D’ is a discal orbifold and F’ is incompressible in M’, there is a discal
suborbifold E’ in F’ such that dE’ = dD’. Then, p’(E’) is a discal orbifold in F
bounded by 8D by the innermost property of dD’. It is a contradiction.

Suppose F is incompressible in M. When F # (a discal, or a spherical orbifold),
the conclusion is clear by the following commutative diagram:

T(F) —— m(M')

(p'IF')*l ll’i

mi(F) — 1(M)

When F = (a discal orbifold). In this case F’ is a discal orbifold. Suppose F” is
compressible in M’. There is a ballic suborbifold B of cyclical type in M’ such that
F' C 3B and 3B —Int F’ € dM’. Let F” be the component of p’~!(F) such that
dF” is innermost one of p’~!(3F) in 3B — Int F’. Let D” be the discal suborbifold
in 3B — Int F/ bounded by 8F” and B’ be the ballic suborbifold in B bounded by
D" U F”. Then, p'(D") is a discal suborbifold in M bounded by 3 F and p'(B’) is
a suborbifold in M bounded by p '(D") and F. The remaining is to show that p’(B’)
is a ballic orbifold. Let 5 : M — M’ be the universal covermg and B a component of

p~Y(B"). Since B’ is a ballic orbifold, B is a ball. Put p = p’o p. pIB B — p(B)is

the universal covering and Aut(B, plB) is a finite group acting on B. Hence by [KS, -
(5.6.2)] and [MY1], p(B)(— p'(B")) = (a ballic orbifold). It is a contradiction.

When F = (a spherical orbifold), it is similar to the above. O

Remark 1.9. Theorems 1.1-1.3, Corollary 1.4, and Proposition 1.5 and ‘only if” part
of Proposition 1.8 hold without the local orientability of M.

2. Extensions of orbi-maps

We define the double of M, denoted by DM, as follows. Letidypy : 0M — 0M be the
identity orbi-map. DM is the orbifold obtained by identifying two copies of M with
idyps. Note that if B be a ballic 3-orbifold and S = DB, then B x I is orbi-isomorphic
to the cone on S.

Let M be a 3-orbifold and X an orbifold. We say that two orbi-maps f, g : M —
X are C-equivalent if there are orbi-maps f = fo, fi,..., fu from M to X with
either f; is orbi-homotopic to f;_| or f; agrees with f;_; on M — B for some ballic
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3-orbifold B C M with B N dM a discal orbifold or |B| N |0M| = ¢. Then, the
following lemma is clear.

LEMMA 2.1. Let M and N be good 3-orbifolds and B be a ballic 3-orbifold in M.
Let f,g : M — N be orbi-maps which are C-equivalent with respect to B. Let S
be the double of a ballic 3-orbifold. If any orbi-map from S to N is extendable to an
orbi-map from the cone on S to N, then f and g are orbi-homotopic rel. M — Int B.

THEOREM 2.2. Let S be the double of a ballic 3-orbifold and V be the cone on S.
Let M be a good 3-orbifold such that the underlying space of the universal cover of
Int M is homeomorphic to R3. Then, any orbi-map f : S — M is extendable to an
orbi-map from 'V to M.

Proof Let p : S — Sandgq : M — M be the universal coverings. Let
f : 8 — M be the structure map. Let e and ¢’ be 3-balls in | S| such that |S| = e U ¢,
eNe' = de = de/,and =S C de. Let € (respectively &’) be the closure of a connected
component of p~!(e) — p~1(ZS) (respectively p~!(e’) — p~1(S)). We can describe
|S| = UerAut(S',p)(aAé Uoaé').

Let p : V — V be the universal covering. Let ¢ be the cone point of V and
&= p~"(c). We candescribe |V| = U, pus. p) @ * 04E U T % 048).

By the definition of ¢ x S, a point in |V| (respectively |V]) is described by
(1=0)é+1tx,5€e|S,0<t<1 (respectively (1 —t)c+tx,x € |S],0 <t < 1)and
p((l =t)c+tx) = (1 —=1t)c+tp(x).

Since Int|M| = R3, we may assume that (f,m1(S))a is a finite subgroup
of diff, (R3). By [BKS, Corollary 1.1b], the fixed point set of (f*m(S))A is
homeomorphlc to either R® or R'. Let &, ¥ be the vertices of p~!(ZS) and 2y, &,
3 be the edges of p‘l(ES) ine. Let E]z, E23, E3; be the faces of 8¢ which satisfy
3E12 = El U Ez, 3E23 = 22 U 53, 3E31 = 23 U Zl

Let o; be the normal loop around ¢; = p(Z,) in S and L; be the fixed point
set of fy(o;)4 in M. It follows that L; is homeomorphic to either RY or R! and
Fix((ferr1(8))a) C L1 N Ly N L.

Take any pointd~ in Fix((fx71(S))4). Define gz(¢) = d. Define gz, : ¢xit — M
(respectively gz.;) by a path (possibly a point in case Fix((fimr1(S))a) = RY)
from d to f(ii) (respectively f(@)) in Fix((fom1(S))a). Since f&) c L, the
map (flé,-) U gz U ga+p 1s one from 6; U@ * i) UG %1 to L;. Note that
AE* ;) =L UE*ia)U@Ex0) = S Since (L) = 1, (F1€) U gz U Zzsi
is extendable to a map from ¢ % ¢; to L;. Define gmi - &% £ — |M| by the
extension. Note that 9 (¢ * Ejj) = E,‘A,- U@E*€)U (E*Ej) (= $2). Since T2 (|M|) =0
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(fll_:?,-_,-) Uge*(_;i ugé*zj 1 0(C* E"ij) — |M]| is extendable to a map from ¢ * E,-j to | M.
Define gg*éij : ¢ x Ejj — |M| by the extension. Note that 9(C * &) = € U;j ¢ * Ejj
(= $3). Since m3(|1M|) = 0, (f|&) U;; 8:ui, 1 0(Ex2) > |M| is extendable to a map
from ¢ x e to |M|.

We define g : V — M, at first on & % ¢ by the extension, next on & % p~!(e)
equivariantly, on & % & by cone extension, on ¢ * p~!(¢’) equivariantly again, and
finally piecing together gz, ,-1(,) and gz, ,-1(,- Then, g = (g, &) is the desired orbi-
map. O

The following, Propositions 2.3 and 2.4, are derived directly from Lemma 2.1 and
Theorem 2.2.

PROPOSITION 2.3. Let M and N be good 3-orbifolds. Let f,g : M — N be orbi-
maps which are C-equivalent w.r.t. a ballic 3-orbifold B in M. If the universal cover
of Int N is homeomorphic to R3, then f and g are orbi-homotopic rel. M — Int B.

PROPOSITION 2.4. Let P and Q be ballic 3-orbifolds. Suppose f : (P,dP) —
(Q, 8Q) is an orbi-map such that (f|0P) : 3P — 3 Q is an orbi-isomorphism. Then,
there is an orbi-isomorphism g : P — Q such that g and f are orbi-homotopic rel. 9.

PROPOSITION 2.5. Let F and G be closed orientable 2-orbifolds which are orbi-
isomorphic and have infinite orbifold fundamental groups. Suppose f : (F x 1, 0(F x
I)) - (Gx1,93(Gx1I)) is anorbi-map suchthat f|1o(F xI) : 3(F xI) — (G xI)is
an orbi-isomorphism and f, is a monomorphism. Then, there is an orbi-isomorphism
g: F x I — G x I suchthat g and f are orbi-homotopic rel. 9.

Proof. When F = G 5 a turnover.

Let ¢ be the genus of |G| and s be the number of singular points of G. Let
ai, ...,a; be mutually disjoint simple closed curves on |G| — £G with which G
is cut open into a 2-orbifold G; whose underlying space is the planer surface with
2t boundaries, a;41,-..,a3—1 be mutually disjoint simple arcs on |G;| — XG;
properly embedded in |G| with which G; is cut open into a 2-orbifold G3;_; whose
underlying space is a 2-disc, and a3, . . . , a3t 45— be mutually disjoint simple arcs on
|G3t—1] — T3~ properly embedded in |G3,—1| with which G3;_; is cut open into a
2-orbifold G3;45—1 which consists of discal 2-orbifolds Dy, ..., D;.

By [Tal, 5.5] and Proposition 2.3, we may assume that fYay x I) is an
incompressible 2-suborbifold in F x I. Note that, by the proof of [Tal, 5.5],
the modification is invariant on 8(F x I) when no component of f “lay x I) is
a compressible discal 2-orbifold. Since f|d(F x I) is an orbi-isomorphism, no
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component of f~!(a; x I) is such a one. Hence the modification is invariant on
a(F x I).

Let A| be a component of f~Uay x I). Since (f1A1)s : 1 (A1) = mi(a; x I)
must be monic, 71 (A) is either infinite cyclic or a trivial group. By the orientability
of Ay, it is orbi-isomorphic to a 2-sphere, a 2-disc, or an annulus. Furthermore, from
the irreducibility of A1, it must not be a 2-sphere or a 2-disc. Hence A is an annulus.
Since 3f ~'(a; x I) € 3(F x I) and f is an orbi-isomorphism from 3(F x I) to
3(G x I), 3f ~1(ay x I) consists of two simple closed curves on different components
of 3(F x I) each other. Thus, f~!(a; x I) = A and does not separate M.

Since f|dA] is a homeomorphism from A to 3(a; x I), we may assume that
flAy : A| = a; x I is a homeomorphism under modifying an orbi-homotopy rel.
JdA).

Let G; x I (respectively M;) be an orbifold derived from cutting G x I
(respectively F x I) open along a; x I (respectively Aj). We had an orbi-map
f1: My — G| x I such that f1|dM; : dM; — 98(G1 x I) is an orbi-isomorphism,
f1loM = f|aMy, and (f1)« is monic.

By iterating the above procedure, we can get an orbi-map f; : M; — G; x I such
that (f;|0M;) : dM; — 3(G; x I) is an orbi-isomorphism, f;|0M; = fi_1|dM;,
and (fi)s is monic, where G; x I (respectively M;) is an orbifold derived from
cutting G;_| x I (respectively M;_;) open along a; x I (respectively fYai x 1)),
1<i<3t+s—1,where fo = f, My = M, and Gy = G.

Let Q be a component of G3,—1 x I which is orbi-isomorphic to (a discal 2-
orbifold) x I. Let P be the component of M3;4s_1 such that f3;;_1(P) C Q.

Since f|dP : 9P — 0Q is an orbi-isomorphism, d P is a spherical 2-orbifold of
a cyclical type. Since F x [ is irreducible, P is the cone on dP. Hence P is orbi-
isomorphic to Q. Then, we can get an orbi-isomorphism gp : P — Q by extending
floP : 3P — 3Q. By Theorem 2.2, f|3 P and g are orbi-homotopic (rel. 3 P).

Proceeding similarly on other components and piecing together the results, we get
the desired orbi-isomorphism and orbi-covering.

When F = G = a turnover.

Put =(F x 0) = {vy, v2, v3}. Let aja, a3, a3y be simple arcs on F x 0 such that
da;j = viNvjUyg and Intag; NInta; = ¢ (i # j). Leteg and e be 2-discs on | F x 0]
bounded by aj2 Uasz Uas;. Puta] = (F x 1) N (a; x I).

Since fi is a monomorphism, and (f|3(F x I)) is an orbi-isomorphism,
fi xI) = f(v) x I. Put E;; = a;; x I. Let D;; be the 2-disc bounded by
faij) U (f(v) x DU flaj) U (f)) x D).

Since f|o(F x I) is an orbi-isomorphism, we may assume that Int D;;’s are
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mutually disjoint, D;; N (G x I) = f(a;;) U f(a;j), and Djj N Dj; = f(v;) x I.

Let Bp and B be the 3-ball in (G x I| separated by D3 U D3 U D3y, where
B N f(ei) = f(ei).

We construct an orbi-isomorphism g : F x I — G x I as follows; Define
glui x I) :vi x I — f(v;) x I by extending f|(v; x 81). Define g|E;; : E;; — D;;
by extending g|0E;;. Define g|(e; x I) : ¢; x I — B; by extending g|d(e; x I).
Furthermore, we construct an equivariant homotopy between the structure maps of
f and g by the same way (i.e. skeleton-wise and equivariantly) as in the proof of
Theorem 2.2 to get the desired orbi-homotopy. |

3. Orbi-maps between 2-orbifolds

A 2-orbifold T is called a turnover if |T| = (the 2-sphere) and £T = (three points).

THEOREM 3.1. Let X and Y be turnovers with infinite wvy’s. If f : X — Y is an orbi-
map such that f, : w1 (X) — w(Y) is an isomorphism, then f is orbi-homotopic to
an orbi-isomorphism.

Proof. At first, we show that X is orbi-isomorphic to Y. Put XX = {x, x3, x3},
Y = {y1,y2,y3}. Let m; (respectively n;) be the index of x; (respectively y;).
Letp: X — Xandg : Y — Y be the universal coverings, and f:X->v
(respectively f : |X| — |Y]) be the structure map (respectively underlying map).
Put ©X = p~!(XX) and £Y = ¢~ !(TY). Since f, is monic, f(£X) C XY,
and hence f(£X) C £Y. We call the rotation of the angle 2 /m; (respectively
27 /n;) around X; € p“l (x;) (respectively y; € q_l(y,-)) the unit rotation around X;
(respectively y;). Note that these unit rotations are elements of Aut(X, p) (respectively
Aut(Y, ¢)) C Isom(E?) or Isom(H?).

Fact1. (f|£X): £X — TV is epic.

Take any z € LY. Let p4 be the unit rotation around z. Since f; is epic, there is
an element o4 € Aut(X, p) such that f,(0)4 = pa. Since the oder of p4 is finite and
[« 1s monic, the order of o4 is finite. Hence Fix(o4) # ¢. Take x € Fix(o4). Since

paf(x) = fu(@)af(x) = f(oax) = f(x), f(x) € Fix(pa). Since Fix(pa) = {2},
fx) =z
Fact 2. fliX 1S monic.

Take any y, y € £X. Suppose f(y) = f(y) = z. Let p4 be the unit rotation
around z. By the proof of Fact 1, there is x € %X and the unit rotation around x, o4,
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such that f.(c)4 = p4 and f (x) = z. Let 14 be the unit rotation around y. Since
fx(T)a = pi‘ and f, is monic, it holds that 02 = 14. Hence, a/’% = 174 = id unless
x = y. Then, it derived that x = y from the fact 74 is the unit rotation, and it holds
that x = y’ by the parallel argument.

Fact 3. If, for x, y € £X, g f(x) = ¢ f(¥), then p(x) = p(y).

Suppose f(y) = paf(x), pa € Aut(Y, q). Since f; is epic, there is an element
op € Aut()~(,~p) such that pg = fi(0)a. Hence, f(y) = fu(0)af(x) = f(oax).
Since opx € XX, by Fact2,y = oax.

By Fact 1 and the fact that #XX = #X7, (fI£X) : ©X — XY is one to one.
Suppose f(xi) =y,i =1,2,3.

Fact4. mj =n;,i =1,2,3.

Since f; is monic, m; divides n;. Put n; = gim; (gi = 1). Note x(X) =
3 (/m) — Tand x(Y) = Yo, (1/n) — 1 = ¥3_ (1/gim;) — 1, where x is
the Euler number of orbifolds. Since the Euler numbers of 2-orbifolds with same
fundamental groups are equal, g; = 1,i = 1,2, 3.

Thus far, it has shown that X is orbi-isomorphic to Y. Next, we construct an
orbi-isomorphism which is orbi-homotopic to f.

Note that, since X and Y are orbi-isomorphic, X and ¥ are homeomorphic and
have the same tesselations.

Let e, ¢’ be the fundamental triangles of the tesselation of X whose intersection is
one edge. We construct a map g : X — Y as follows. Let vy, va, v3 be the vertices of
e. Putg(v;) = f(vi), i =1,2,3. Let £;; be the geodesic segment between v; and v;.
Note these coincide with the line of the tesselation (i.e. the edges of €). Define

gl ij —> ¥ by g@tv+(1-10v;) =13+ (1 —0gw;),

where ta + (1 — t)b means the point divides the geodesic segment between a and b
by the ratio (1 —¢) : ¢, and (i, j) = (1, 2), (2, 3), (3, 1). Define

gle e — Y by g(svy +tvy + uv3) = sg(v1) +tg(v2) + ug(v3).

Define also g|e’ similarly. Furthermore, define glose and gloae’ equivariantly. By
piecing together (g|oae)’s and (g|oae’)’s, we can get an equivariant map from X
toY.

Similarly, we construct an equivariant map F : X x [0, 1] — Y, using the fact
that 771 (Y) = 0.

The remainder of the proof is to show that g is a homeomorphism.
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Claim 1. g is a local homeomorphism.

Step 1. g is a local homeomorphism around x € Int(p~!(e)) or Int(p~!(¢")).

Recall that f (vi) = g(v;). Let o4 (respectively 74) be the unit rotation around v
(respectively va). Since fu(0)af(v3) # f(v3), f(v1), f(v3), and f.(0)a S (v3) are
the vertices of an isosceles triangle. Similarly, so are f(v2), f(v3), and fi(t)a f(v3).
Then, it derived that there is no geodesic including f (v1), f (v2), and f (v3) by the
triangle inequality.

Step 2. g is a local homeomorphism around p‘l (12 U €23 U £31).
By the proof of Step 1, it holds that f(v3) and f*(a)Af(vg) are included in
different domains of Y separated by the geodesic line extending g(£12).

Step 3. g is a local homeomorphism around p~!(v;).

We only have to show that f,(g)4 = a/'{‘, Iri| = 1, where o7} is the unit rotation
around g(vy).

Let 7, (respectively p/,) be the unit rotation around g(v2) (respectively g(v3)).
Let o; be the angle of ¢;; and £;x. Suppose fi(T)4 = rxz and fi(p)a = pX". Then,
aj = w|ri|/m;, |ri| = 1.

When X is a Euclidean orbifold, by the fact that Z?:l w|ri|/m; = m, it holds
that ||| = 1.

When X is a hyperbolic orbifold, let A be the fundamental triangle of the
tesselation of Y such that a vertex of A is g(vy). Put v’l = g(vy). Let vlf be the
vertex of A such that vlf is conjugate to g(v;), i = 2, 3.

Let A’ be the geodesic triangle derived from g(e) by preserving the length
of edges g(£12) and g(£13) and changing the angle m|ri|/m; to m/my. Let &
(respectively £3) be the remaining angle of A’ corresponding to v/, (respectively v5).

It stands that either

wlril/m; <&, i=2,3 (theequality stands iff |r|| = 1), 3.1.1)
or
Area(g(e)) > Area(A'). (3.1.2)

Since there is no point u such that u is conjugate to v, and d(vj, u) < d(v},v)),
it holds that d(v},vy) < d(g(v1),&(v2)). Similarly, d(v, v3) < d(g(v1), 8(v3)).
Therefore, Area(A’) > Area(A). Then, suppose (3.1.1), it holds that 7 — 7w /m; —
g2 —e3 > (1 — Y 0_,(1/m;)). Hence

&+ &3 <m/my+m/m;. 3.1.3)
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If |r1| > 1, then, by (3.1.1), w|r;|/m; < &;,i = 2,3. Then
wlral/ma+ w|r3|/m3 < &2 + 3.

Hence, by (3.1.3), w|r2|/ma + m|r3|/m3 < 7 /m2 + m/m3. This contradicts the fact
that |r;] > 1,i = 2, 3. Therefore |r|| = 1.
Suppose (3.1.2), it holds that Area(g(e)) > Area(A). Then, m|ri|/m; +

wlra|/may + wir3|/m3 < w/m| + x/my + w/m3. Hence, |r;| = 1.
Claim 2. g is surjective.

Take any point y € Y. Let Ay be the fundamental triangle of the tesselation of
Y including y. We shall show that (X) D A,. Leta, b, ¢ be the vertices of A,. We
may assume that the geodesic segment from a to b is the longest edge of A,.

Let x| be the point of £ X such that g(x;) = a. Let D and D’ be fundamental
triangles of the tesselation of X such that x; € D N D’ and D N D’ is a segment. Let
x7 and x3 be the other vertices of D. Note that the interior of the disc with the center
a and the radius d(a, ¢) does not include the vertices of the tesselation of Y other than
a. Hence,

d(g(x1),g(x2)) = d(a,c) and d(g(x1),g(x3)) = d(a,c). (3.1.4)

Let {4 be the unitrotation around x and  the order of it. Note that g(U?_, ¢ 1’:4 (DU
D)) = U§‘=1f*(§)f4(g(D) U g(D")) and fi(¢)a € Isom(Y). By (3.1.4), the edges of
g(D) and g(D’) including a is longer than d(a, ¢). By Claim 1, g(U!_, ¢, (D U D))
is homeomorphic to a 2-disc. Hence, g(U_;{y(D U D’)) D By, where B] = {z €
Y|d(a, z) <d(a,c)}. Thus

B C 3(X). (3.1.5)
Similarly, it holds that
B, C §(X), (3.1.6)

where By = {z € Y|d(b, z) < d(b, ¢)}. Furthermore, it is clear that Ay C Bi U Bs.
Hence, A, C 32X

Thus, g is a local homeomorphism and surjective.

Furthermore, since X is a complete metric space, the path lifting property stands.
Hence § : X — VY is a covering. Since g, must be an isomorphism, g is a
homeomorphism. Define g(x) = qg(¥), x € p~1(x). Then, g = (g, §) is the desired
orbi-map. ' 0O
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Remark. On the other hand, when X and Y are orientable spherical orbifolds, there
are infinitely many orbi-maps from X to ¥ which are not orbi- homotopic to any orbi-
1somorphlsms We can construct such orbi-maps by using cyclic branched covering
from X to ¥ branched over a pair of pre-image of ZY.

THEOREM 3.2. Let F and G be compact and orientable 2-orbifold such that
#m1(F) = oo. Suppose f : (F,dF) — (G,dG) is an orbi-map such that f, :
w1 (F) — 71(G) is monic. Then there is an orbi-homotopy f; : (F,3F) — (G, 8G),
t € |I], with fo = f and either

(1) fi: F — G isan orbi-covering, or

(2)  F isan annulus and f(F) C 3G.

If for some component J of 3F, (f|J) : J — f(J)isan orbi-covering, it stands that
(filJ) = (fIJ) for all 1.

Proof. Letp : G — G bea covering associated with f,7r;(F) and f : F — G a lift
of f by p. We only have to show that the statement stands for f.

When G # (a turnover). By [Tal, 7.2].

When G = (a turnover). Then F is also a turnover. Otherwise, construct an orbi-
map g : G — F which induces an isomorphism g, : 7(G) — 7 |(F) (see [Tal,
4.4]). By [Tal, 7.2], F and G are orbi-isomorphic. It is a contradiction. Hence, we
can apply Theorem 3.1 to show that f is orbi-homotopic to an orbi-isomorphism. O

COROLLARY 3.3. (The classification of closed 2-orbifolds) Let X and Y be closed
and orientable 2-orbifolds with infinite 7\ ’s. If there is an isomorphism ¢ : w1(X) —
71(Y), then there is an orbi-isomorphism f : X — Y such that f« =o.

Proof. By [Tal, 4.4], we can construct an orbi-map g : X — Y with 8+ = @. Then
Theorem 3.2 shows that g is orbi-homotopic to an orbi-isomorphism. a

4. I-bundles

THEOREM 4.1. Let M be a good, compact, orientable, and irreducible 3-orbifold
with boundaries. Let N be a good and orientable 3-orbifold with boundaries. Let
f:(M,3M) — (N, dN) be an orbi-map such that f, is monic. If there exist a path
o : (1,0) - (IM| — £M,|d0M|) and incompressible components By, By of oM
(possibly By = By), C of dN which satisfy the following:

M) a0 # a(l);

(i) f(@(0) = f(a(l)) € |dN| -
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(i) [fod&]=1inm(N),
where & is a lift of « to the universal cover of M and = f, s

(iv) B; (respectively C) includes o (i) (respectively f(«(0))) and (f|B;) : Bi - C
is a covering, i =0, 1.

Then M is an I-bundle over a closed 2-orbifold.

Proof. Put x; = a(i),i =0,1and y = f(x0). Let no : m1(Bo, x0) — 71 (M, xo) be
the homomorphism induced by the inclusion orbi-map and p : (M, %) — (M, xq)
the covering associated with nom(Bo, xo). Let & be the lift of o by p with &(0) = Xo.
Put ¥; = &(1). Let B; be the component of p~!(B;) which includes %;, i = 0, 1.
By Lemma 4.2, we can conclude that Bl is compact. (Note that f}o is already
compact, since p|l§o is an orbi-isomorphism.) Let n; : 71(By, x1) = 7w (M, x1),
T 71(Bi, %) — m(M,%), i = 0,1, be the homomorphisms induced by the
inclusion orbi-maps. Note that 7jp is epic. Let ¥, : m(M,x1) — w1 (M, xp)
(respectively Wy : my (M, %) — m1(M, %o)) be the change of base point map induced
by « (respectively @).

Claim 1. There is no orbi-homotopy which retracts « into [0 M| — £ M (rel. xg, x1).

Otherwise, there is a path | in |By| — f~1(ZC) such that o ~ o (rel. xq, x1).
Let &; be alift of a; to the universal cover of M. Note that f o is a loop in C based
at y. Since the loop f o «; lifts to the path ; under the covering (f|1Bo) : By — C,
[footl] # 1in 7{(C, y). This means [fo&l] # 1in m1(C, y). On the other hand,

= flla™" @y
= full]
= inmT(N,y).

By Theorem 1.1, this contradicts the fact that C is incompressible in N.
Claim 2. By # Bj.

Suppose By = Bj. Let y be any path in |Bo| — p~ ' (ZBy) from X; to Xo. Since
no : 71(Bo, %0) — m1(M, %) is epic, there is a loop 7’ in |Bo| — p~ (2 By) based
on Xo such that [}'] = [@ - 7] € mi(M,%o). Put B = 7 - 9'~'. B is a path in
|Bo| — p~1(ZBy) from % to %o which satisfies [& - 8] = 1 in (M, X). Hence
pul@ - Bl = 1inm (M, xo). On the other hand, p.[@ - ] = [(p o &) - (p o B)]. This
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means po& = and (p o )~ (C |Bo| — X M) are orbi-homotopic (rel. xg, x;). This
contradicts Claim 1.

By the incompressibility of By and the surjectivity of 7o, 7o : m1(Bo, Xo)
— m(M Xp) is an isomorphism. Since Bo is a closed 2-orbifold, there is a torsion
free normal subgroup G with finite index in 71 (M, %p).

Let p/ : (M, xo) — (M Xp) be the covermg associated with G. Since
p M — M is a finite regular orbi-covering and B; is compact, each component
ofp’ (B;) is compact, i = 0, 1.

Let B be a component of P ~Y(By), xO a lift of Xo in By, &' the lift of & with
o’(0) = x;, and B| the component of p'~!(B}) which includes o/ (1). Put x| = o/(1).

By Proposmon 1.7, B’ is incompressible, i = 0, 1. o satisfies conditions (i)~(iii),
where we replace a to . ((f o p o p)|B]) : B/ — C is a covering,i = 0, 1.

Let ny @ m (By, xp) — 71 (M’, xy) be the homomorphism induced by the
inclusion orbi-map. Let p’ : (M’ Xy — (M, xO) be the covering associated with
nom1(By, x,) and & the lift of &’ with &' (0) = Xy Put ¥| = & (1). Let B; be the
component of p'~!(B/) which includes %;, i = 0, 1.

By Lemma 4.2, we can conclude that (5 IBO) : B(’) — By is an orbi-isomorphism
and Bj is compact.

Slnce B() # Bl B/ #* B/ Then HZ(B/ U B/ Zo) =7) ®Zy. Leti’ B/ - M
be the inclusion orbi-map. (z’)* m(B’,xO) — m(M’ xo) is an 1som0rphlsm Since
M is irreducible, by Corollary 1.4, w2(M’) = 0. Hence i’ B/ — M isa homotopy
equivalence. Therefore, Hy(M'; Zy) = 7, and H3(M'; Zy) = O. Hence, by the exact
sequence

0 — H3(M', By U B{; Zy) — Ha(ByU B); Zg) — Hy(M'; Zo) — - --

we derive that
H3(M', By U B}; Zy) # 0.

Thus, M’ is compact. Then M is compact. Hence, p : (M, X0) = (M, xq) is a finite
covering. Therefore, |1 (M, xo); nom1(Bo, xo)| < co. By [Tal, 6.3], M is an I-bundle
over a closed 2-orbifold. O

The lemma used in the proof of Theorem 4.1 follows.

LEMMA 4.2. Let M and N be good 3-orbifolds with boundaries. Let f

(M,dM) — (N,dN) be an orbi-map such that f, is monic. Suppose that there
exist a path a : (I,9I) — (|M| — M,|dM|), compact and incompressible
components Bo, By of dM (possibly By = B)), and incompressible component C
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of 0N which satisfy Theorem 4.1(i)—(iv). Put x; = a(i) and y = f(xo),i =0,1
Let ng : m1(Bo, xo) — m1(M, xo) be the homomorphism induced by the inclusion
orbi-map and p : (M, %9) — (M, xq) be the covering associated with o7 (Bo, Xo).
Let & be the lift of a by p with @(0) = Xo. Put X1 = a(1). Let B; be the component of
p"l(B,') whichincludes x;,i = 0, 1. Then, (p|1§0) : f?o — By is an orbi-isomorphism
(namely By is compact) and B\ is compact.

Proof. Let iy : By — M be the inclusion orbi-map (that is, an orbi-embedding).
Since zo*m(Bo,xo) = nom1(Bo, x0) = p*m(M X0), io : Bo — M can be lifted to
M by p. Since By is one of such lift, (p|Bo) By — By is an orbi-isomorphism.
Let n; : mi(B1,x1) —> mi(M,x1),ni : m(B,,x,) - m(M,x,),z = 0,1, be
the homomorphisms induced by the inclusion orbi-maps. Let Wy : m1(M, x;) —
(M, xo) and Wy : n1(1\71, x1) — m(M, Xo) be the change of base point maps. We
have the following commutative diagram:

~ i ~ v - i _
71 (Bo, %) —2s (M, o) «—— m(M, %)) «—2— m1(Bi, %1)

(P|B())*l P*l ”*l (mél)*l

71(Bo, x0) -T-> w1 (M, x0) «—— mi(M, x1) A 71 (B, x1)
0 3 1

Let ¥ be a loop in |B;| — X B; (respectively y in |1§,-| — ¥ B;). We shall use the
symbol (y) (respectively (7)) to mean the element of m;(B;) (respectively 71(By))
represented by y (respectively 7) and [y] (respectively []) to mean the element of
1 (M) (respectively 71(M)) represented by y (respectively 7).

Claim 1. pVgimi(B1, 1) = Wanimi(B1, x1) N 0o (Bo, Xo).
By the commutative diagram, it is clear that
psWailimi(By, £1) C Wanimi (B, x1) N o1 (Bo, Xo)-
Take any element g of Wunimi(B1,x1) N nomwi(Bo, Xo). Since g €
Wynim(By, x1), thereis aloop y in lBll—EBl based at x; suchthatg = [a-y -« -1
Leta-y - v a lbetheliftofa-y -a"!to (M, %) andybe the lift ofy to (M, %1).

Since g is also an element of nom;(Bo, X0) = p*m(M, %0), (@ 7y -a Y isaloopin
|M| — £ M based at %o. Hence, 7 is aloop based at ¥ and (& -y o~ ') =@ -y -a~ L.
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Therefore
g=lo-y-a']
=[po(ay-a ]l
=[po@-7-a"l
= p«¥al¥]
= p+ Va1 (y)
€ p« Vs (By, %1).

It is easy to show that the following diagram commutes:

w1 (B, x1)

Yani (f1B1)«

I B
71(M, x0) ——> 71 (N, y) <—— 11 (C, y)
\X (F1Bo).
71(Bo, xo)
where i : C — N is the inclusion orbi-map.
Since B; is compact, f|B; : B; — C is a finite sheeted covering, i = 0, 1. Thus,
I71(C, »); (f1Bi)mi(Bi, x)| <00, i=0,1
By using the commutativity of the diagram above, we calculate the index to prove
the following claim.
Claim 2. |Wonim1(By, x1); Wammi(By, x1) Nnom1(Bo, xo0)| < oo.

It is derived that (p|B)) : Bj — Bj is a finite sheeted covering by using Claim 1
and Claim 2:

71 (B, x1); (p|B)s1(B1, 1)
= |Womm1(B1, x1); Wani (p|B1)sm1(B1, %1)]
= |Wanim1(B1, x1); psWainmi(By, 1)
= |Wanim1(B1, x1); Wamim1(Bi, x1) N nom1(Bo, xo)l
< 00. O



Waldhausen’s classification theorem for 3-orbifolds 389

THEOREM 4.3. (Retraction theorem) Let M be an orientable 3-orbifold which is
orbi-isomorphic to an I-bundle over a closed 2-orbifold F. Let N be a good and
orientable 3-orbifold such that the underlying space of the universal covering orbifold
of Int N is homeomorphic to R3. Let f : (M,dM) — (N, C) be an orbi-map, where
C is an incompressible component of dN. Suppose

there is a point x € |F| — X F such that
Fl@~1(x)) is orbi-homotopic to a path in C rel. {x} x 31, 4.3.1)
where ¢ - M — F is the fibration.

Then there is an orbi-homotopy f; - M — N such that fo = f, fi(M) C C, and
filoM = floM.

Proof. Let s, ..., s, be simple closed curves on |F| — £ F such thats; Ns; = x
for any i, j, and such that discal orbifolds Dy, ..., D, are derived by cutting F open
along sy, ..., sx. We construct the desired orbi-map H : M x J — N, J = [0, 1],
stepwise as follows:

Step 1: H|{p~!(x) x J},

Step 2: HI{p™'(s:) x J},

Step 3: H|{¢~!(D;) x J}.

Step 1. Note ¢~ !(x) = x x I. Hence we define H|{¢~!(x) x J} by the orbi-homotopy
given in the hypothesis.

Step 2. H|{p 7 (si) x 0} := fl{o™'(si) x 0}). H|{p~'(x) x J} is defined in Step
1. Hi(s; x 0 xt) := fl(s; x 0). H|(s; x 1 xt) := f|(s;i x 1). Furthermore, we
can extend it to ¢! (s;) x 1 by the incompressibility of C and Theorem 1.1. Define
H|(¢~!(si) x 1) by the extension. Thus, we have defined H|3(p~(si) x J). Since
H|3(¢~'(s;) x J) is an orbi-map from the 2-sphere to N, it is extendable to an orbi-
map from the cone on the 2-sphere to N by using [Tal, 4.1]. Define H|(p~ ') x J)
by the extension.

Step 3. H|(¢~'(dD;) x J) is defined in Step 2. H|(D; x 0 x t) := f|(D; x 0).
H|(D; x 1 x 1) := fI(Di x 1). Hl(¢™"(D;) x 0) := flo~"(Dy).

Furthermore, we can extend it to ¢ ~!(D;) x 1 by the fact that C is not a spherical
2-orbifold and [Tal, 4.3]. Define H|(¢~'(D;) x 1) by the extension. Thus, we have
defined H|9(p~1(D;) x J).

Since H|3(p~(D;) x J) is an orbi-map from the double of a ballic 3-orbifold to
N, by Theorem 2.2, it is extendable to an orbi-map from the cone on it to N. Define
H|(¢~1(D;) x J) by the extension. O



390 Y. Takeuchi and M. Yokoyama

COROLLARY 4.4. In Theorem 4.3, suppose there is a point x € |F| — X F such that
fx}xal) C |C|—XC and suppose i, : w1 (C) — w1 (N) is an isomorphism instead
of (4.3.1). Then, the conclusion still stands.

Proof. By the surjectivity of iy, it is derived that f|(x x I) retracts into C rel. {x}xalI.
That is, the condition (4.3.1) holds. O

LEMMA 4.5. Let M and N be good and compact 3-orbifolds with boundaries. Let
B and C be components of )M and 3N, respectively. Let f : (M, B) — (N, C) be
an orbi-map such that f, is monic and (f|B) : B — C is a covering. Then B is
incompressible if and only if C is incompressible.

Proof. Leti : B — M and j : C — N be the inclusion orbi-maps. Suppose C
is incompressible in N. Then j, o (f|B), is monic. Hence, i, is monic. Thus, by
Theorem 1.1, B is incompressible in M.

Suppose B is incompressible in M. If C is compressible in N, there is a
compressing discal orbifold D for C. Let S be a component of (f1B)~1(3D). Since
9D does not bound a discal orbifold in C, (f|B)«[S] = [dD]* is not finite order
in ;(C). Then [S] is not finite order in 7;(B). Hence, S does not bound any
discal orbifold in B. That is, [S] is not finite order in 7;(B). Let D = D?(n).
Then, fi([S])" = (fialSD" = Gu(FIB)ISD" = (ju[dDI)" = (j,[aD)*" =
(=[dD1E =T in 7y (N).

Since fi is monic, (ix[S)" = 1 in m(M). That is, [S] is finite order in
71(M). These mean i, : 7;(B) — m;(M) is not monic. By Theorem 1.1, it is a
contradiction. ]

COROLLARY 4.6. In Theorem 4.3, suppose f, : t{(M) — (N) is an isomorphism
instead of (4.3.1). If f|dM is not an orbi-embedding and, for each component of B of
OM, f|B : B — C is an orbi-covering, then the conclusion still stands. Furthermore,
M is orbi-isomorphic to the product I-bundle over a closed 2-orbifold By and By is
orbi-isomorphic to C.

Proof. Since f|B : B — C is an orbi-covering, it is easy to find apointx € |[F|—XF
that satisfies f({x} x 1) C |C| — XC and the fact that C is incompressible in N is
derived from Lemma 4.5. Let By, B; be the components of dM (possibly By = Bj).
Letno : Bo > M andi : C — N be the inclusion orbi-maps. Since i, and f+ are



Waldhausen’s classification theorem for 3-orbifolds 391

monic,

[t 1 (M); (no)«m1(Bo)| = | ferr1(M); f(n0)«7m1(Bo)l
= |71 (N); ix(f1Bo)«71(Bo)|
= T (N); ix711(C)] - |ix71(C); ix(f1Bo)+11(Bo)|
= |m1(N); i1 (O)] - [1(C); (f1Bo)«m1(Bo)l-

When By # Bj. Since |m1(M); (n0)«71(Bo)| = 1, |m«(N); ix71(C)| = 1.

When By = Bj. Since f|loM : dM — C is not an orbi-embedding,
|1 (C); (f1Bo)«m1(Bo)| = 2. On the other hand, |7 (M); nom1(Bo)| < 2. Hence
|1 (N); iy (C)] = 1. Thus, in any case, |7 (N); ixm(C)| = 1. Thatis, iy :
m1(C) — m(N) is an isomorphism. When F is orientable. Then M = By x [
and 7 (Bg) = 71 (M) = m1(N) = m1(C). Hence, by Corollaries 3.3 and 4.4, we have
the conclusion.

When F is non-orientable. Then, 7 (F) = (M) = 71(N) = m1(C). Since C
is orientable and #m| (C) = 00, this is a contradiction. O

5. Main Theorem

Let M be a compact 3-orbifold. A sequence
M=MyDM;D---DM,

of 3-orbifolds is called a hierarchy for M provided that M;; is obtained from M; by
cutting open along a properly embedded, 2-sided incompressible 2-suborbifold F; and
each component of M, is either a ballic 3-orbifold or (a turnover with non-positive
Euler number)x I. If M has a hierarchy, then we can show that the underlying space
of the universal covering orbifold of Int(M) is homeomorphic to R3, almost similarly
to [W, 8.1] or [H, 13.4].

A 3-orbifold is abad if it includes no bad suborbifold. A 2-suborbifold F in a
3-orbifold M is said to be boundary-parallel if one of the components of cl(M — F)
is orbi-isomorphic to F x I. A 3-orbifold M is sufficiently large if there is a 2-
sided, properly embedded, and incompressible 2-suborbifold F which is not boundary
parallel.

Let W be the class of all compact and orientable 3-orbifolds which are
(W1) abad,

(W?2) irreducible,
(W3) all boundary components are incompressible,
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(W4) sufficiently large,

(W5) every turnover in M with non-positive Euler number is boundary-parallel.

By [D], an orbifold M € W has a hierarchy. Furthermore, by the following theorem,
it should be a good orbifold.

THEOREM. [Ta2, Theorem A] Let M be an abad, compact, and orientable 3 -orbifold.
Let F be a compact and incompressible 2-suborbifold which is 2-sided and properly
embedded in M. If each closed-up component of M — F is good, then M is good.

Now, we are at the place to state the main theorems.

THEOREM 5.1. (Main Theorem) Let M, N € W, and suppose f . (M,0M) —
(N, dN) is an orbi-map such that f, : 7;(M) — w1 (N) is monic. Then there exists
an orbi-homotopy f; : (M,dM) — (N, dN) such that fy = f and either

(1) fi: M — N is an orbi-covering, or

(2) M is a product I-bundle over a closed 2-orbifold and fi(M) C dN.

If, for a component B of 9M, (f|B) : B — C is already an orbi-covering, we may
assume (f|B); = f|B forall t.

Proof. By the hypothesis, for each component B of M, there is a component C of
dN such that f(B) C C and (f|B)« : m1(B) — m(C) is monic. By Theorem 3.2,
after changing f by an orbi-homotopy, we may assume that (f|B) : B — C is an
orbi-covering. If this is already the case for some B, there is no need now nor in any
future step to change f|B.

We construct a commutative diagram

where ¢ : N’ — N is an orbi-covering associated with Sem1(M) and f’ is the lift of
f by q. Note that f] : 71 (M) — 7;(N’) is an isomorphism. Let C’ be the component
of g~!(C) such that f'(B) C C’. 1t is derived that f'IB : B — C’is an orbi-covering
from the fact that both f|B and ¢|C’ are orbi-coverings and f’|B is a lift of f|B by q.

Case 1. |0M| # ¢ and f'|dM is not an orbi-embedding.

By the hypothesis that f’|d M is not an orbi-embedding and f is epic, we can
takeapathe : (1,91) — (M| — M, |dM]) satisfying
»  «(0) # a(l),
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(i) f'(@©0) = f'(@(1) € [dN'| = =N,

(iti) [f o&]=11inm(N'),

where f’ and f” are the underlying map and the structure map of f”, respectively, and
& is the lift of « to the universal covering of M.

Let B; be the component of dM including (i), i = 0, 1, and C’ be the component
of 3N’ including f/((0))(= f'(a(1))).

Since B; and C are incompressible and f|B; — C’’s are coverings, i = 0, 1,
by Theorem 4.1, M is an I-bundle over a closed 2-orbifold. Furthermore, by
Corollary 4.6, M = By x I (B is orbi-isomorphic to C’) and there is an orbi-homotopy
fi + M — N suchthat fo = f, fi(M) C C' and f;|]0M = f|0M. Then the
conclusion (2) holds.

Case 2. |dM| = ¢ or f/|0M is an orbi-embedding.

Let
N=Ny D N DO ... D N,
Go G Gn-1

be a hierarchy for N. Since |dM| = ¢ or f'|dM is an orbi-embedding, we can apply

Lemma 5.2. Then there is an orbi-map f; : (M, dM) — (N, dN) such that

(1)  f1 and f are C-equivalent rel. 3;

(2) each component of fl—1 (Go) is an orientable and incompressible 2-suborbifold
properly embedded in M;

(3) for each component Q of N; and P of f]_l(Q), (f1lP) : P — Q satisfies
that (f1|P) is monic and either |d P| = ¢ or (f1|P)’|d P is an orbi-embedding,
where (f1|P)’ is the lift of f1|P by the covering g1 : Q" — Q associated with
(f1IP)sm1(P).

Put M| = f]_l (N1). For each component P; of M, there is a component Q@ of N

such that f{(P;) C Qi. By the above paragraph, we can apply Lemma 5.2 for the

orbi-map fi|Py : (P;,dP1) — (Q1,3Q)) to have an orbi-map g : (P, dP1) —

(Q1,00Q1) such that

(1) gz and (f1|P)) are C-equivalentrel. 9;

(2) each component of g, ! (G)) is an orientable and incompressible 2-suborbifold
properly embedded in Py;

(3) for each component Q of No N Q; and P of gz'l(Q), g2|P : P — Q satisfies
that (g2| P)« is monic and either |3 P| = ¢ or (g2| P)’|d P is an orbi-embedding,
where (g2|P)’ is the lift of g3| P by the covering g2 : Q" — Q associated with
(82| P)xm1(P).
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Let f, : M; — Nj be the collection of the orbi-maps on every component of M
changed as above. Clearly, f> and fi|M; are C-equivalent rel. 9.
Put M = f2—1 (N3). Continuing in this manner, we have a sequence of maps:

N = N D N = Ny D---D N, = Ny-1 D N,

Iﬁ) Tfl L I, Lz T.fn_l I, L L I

M = M > M = M S>> M. = My-y DO M,

-1

where fo = f, M; = ]’i_l(Ni), fi+1 and f;|M; are C-equivalent rel. 3, and for each
component P; of M;, there is a component Q; of N; such that fi(P;) C Q; and the
orbi-map f;|P; : (P;,dP;) — (Q;, 80Q;) satisfies that (filPi)« is monic and either
[0 P;i] = ¢ or (fi|P;)'|dP; is an orbi-embedding, where (f;| P;)’ is the lift of fil P; by
the orbi-covering g; : Q7 — Q; associated with (f;|P;),m1(P),i = 1,2,....n

Each piece of N, is either a ballic orbifold or (a turnover 7 with non-positive
Euler number) x I.

Claim 1. |3 P,| # ¢.

Otherwise, [0M| = ¢ and M = P,. Since (f|P,), is monic, 7 (M) is a finite
group or 711 (M) is isomorphic to a subgroup of 71 (7). Since M is sufﬁcwntly large,
the first case must not occur. In the latter case, take the coveringr : T — T associated
with fom(M).

Let f/ : M — T x I be the lift of f by r xid. Since f, is an isomorphism,
71 (M) is isomorphic to | (T)

When |7(T x I); fim1(M)| < oo, thatis, T is closed. Then, by [Tal, 6.3], M is
orbi-isomorphic to an I-bundle over a closed 2-orbifold. This contradicts [oM]| = ¢.

When |7(T x I); fym(M)| = oo. Then, by [LS, 7.4, p. 137], m(f) =
L xLxZLy, koo k Ly, nj>2.

Let X be an orbifold which is a boundary connected sum of m solid tori and ballic
orbifolds B(n;), j = 1,2,...,r. Then, by [Tal, 4.2], we can construct an orbi-map
k : M — X with k, is an isomorphism. Since 7;(M) is not a finite group, there
is an incompressible disc D in X. By [Tal, 5.5], we may assume that k~!(D) is
an incompressible 2-suborbifold S in M. Since (k|S)4 is monic, S is a sphere. This
contradicts the irreducibility of M.

Hence, |0 P,| # ¢ and (f,|P,)'|3 P, is an orbi-embedding.

Claim 2 . For each (fy|Py) : (Py,3P,) — (Qn, 30Qp,), there is an orbi-covering
&n : Pn — Qp such that g, and (f,|P,) are orbi-homotopic rel. 3.
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Let B, be a component of dP,. Let C, be the component of BQZ such that
fn(B,) C C,. Denote (f,|Py)'|By = h. Since dim B, = dimC,, 4B, = dC, = ¢,
and h : B, — C, is an orbi-embedding, we have h : B, — C, is an orbi-
isomorphism. When @, is a ballic 3-orbifold, by using Proposition 2.4, we can
show the claim. When Q, = T x I,letn: B, - P,and & : C, — QZ be the
inclusion orbi-maps. Furthermore, since Q) = C, x I, & : m1(Cy) — m1(Q;)
is an isomorphism. Since (fy|P,) on = & o h, (fu|Pn), o N« = & o h,. Hence
{(f,,IP,,);}‘I o0&y 0 hy = 1y : M (By) — 71 (Py) is an isomorphism. Then, by [Tal,
6.11, P, = B, x I. Hence, by using Proposition 2.5, we can show the claim.

Let h,, : M, — N, be the collection of the orbi-maps on every component of M,
changed as above. Since h, and f,|M, are C-equivalent rel. 3, we can piece together
h, : M, — N, to have an orbi-covering h, | : M,,_; — Np_ such that h,_; and
fn—11My,_ are C-equivalentrel. 9.

Continuing in this manner, we have an orbi-covering hg : Mo — N such that
ho and fy = f are C-equivalent rel. 3. By Proposition 2.3, ko and f are orbi-
homotopic. |

The lemma used in the proof of Theorem 5.1 follows.

LEMMA 5.2. (The induction lemma) Let M and N be good, compact, orientable and
irreducible 3-orbifolds. Let f : (M,dM) — (N, dN) be an orbi-map such that f
is monic. Let q : N' — N be the covering associated with f,71(M). Suppose either
[0M| = ¢ or f'|OM is an orbi-embedding, where ' is the lift of f by q. Let G be
an orientable and incompressible 2-suborbifold properly embedded in N. Then there
exists an orbi-map f1 : (M, M) — (N, dN) such that

(1)  f1and f are C-equivalent rel. 9;

(2) each component of fl_1 (G) is an orientable and incompressible 2-suborbifold
properly embedded in M;

(3) for each component Q of c(N — G) and for each component P of fl_l(Q),
(filP) : P — Q satisfies that (f1|P)« is monic, and either |0P| = ¢
or (fi|P)'|0P is an orbi-embedding, where (fi|P)’ is the lift of fi|P by the
covering q : Q" — Q associated with (fi|P)«71(P).

Proof. Let p : M—>M and q : N — N be the universal coverings. Let f and f be
the structure map and the underlying map of f, respectively. By observing the proof of
[Tal, 5.5], we see that f is modified C-equivalently without changing f|dM to be that
each component of f~!(G) is either an orientable and incompressible 2-suborbifold
or a compressible discal suborbifold properly embedded in M.
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Claim 1. No components of f~!(G) are compressible discal orbifolds.

Suppose a component D of f~!(G) is a compressible discal orbifold. There is a
discal orbifold D" in M such that DN D' = 3D = 3D’ and D U D’ bounds a ballic
orbifold in M. By innermost arguments, we may assume that D' N f~!(G) = aD.
Hence, f|D’ is an orbi-covering and f(D') is a discal orbifold. Put S = 8D and
S’ = f(S). Let r be the number of the sheets of the covering f|S : S — S’ and
D = D?(n). Since [S]" = 1in m;(M), HIST" = [f (I = [ST" = 1 in 7 (N).
By the incompressiblity of G, it holds that [S']"* = 1 in 7;(G). Thus, G is a discal
orbifold. By the irreducibility of N, it is derived that G U f(D’) bounds a ballic
suborbifold in N. This contradicts the incompressibility of G.

Thus we may assume that each component of f~!(G) is an orientable and
incompressible 2-suborbifold properly embedded in M.

At first, we consider the case f~!(G) = ¢. Then P = M. We can take f as the
desired f7.

(1) and (2) are clear. Since f : 71(M) — 7 (N) is monic, f, : w1 (M) — 71(Q)
is monic. When |dM| = ¢, we are done. Suppose |dM| # ¢. Then, f'|dM is an
orbi-embedding. Let Q' be the component of ¢~!(Q) with f'(M) C Q’. Since
fimi(M) < m1(Q') and flm (M) = m1(N’), it is derived that fimi (M) = 7 (Q).
Hence, fim1(M) = qi fim1(M) = g.m1(Q'). Thatis, g|Q" : Q' — Q is the covering
with g1 (Q") = fimr1(M). This means that g1 and (f1|P)’ of (3) agree with ¢| Q' and
f', respectively. Then, (3) is derived from the fact that /|9 M is an orbi-embedding.

Next, we consider the case f~1(G) # ¢. Let F be a component of f~1(G).

Claim2. f(|F|)N (|G| — =G) # ¢.

When [dG| # ¢. Then [0F| # ¢. Since f|dM is an orbi-covering, f(|dF|) C
[0G]| C |G| — ZG.

When |0G| = ¢. Then [dF| = ¢. Suppose f(F)) = z € ©G. Take a point
Z € 47 (z). We may assume that fUF]) = Z. Since F is not a spherical orbifold,
there is an element [&] € m;(F) such that [@] is infinite order in 7| (F). From the
incompressibility of F, it is derived that [&@] is infinite order in 7r{(M). On the other
hand, since [f 0 &)a(Z) = Z, [f o &4 is finite order in Aut(N, q), that is, fi[a] is
finite order in 7r{(N). Then, from the injectivity of f;, it is derived that [&] is finite
order in 7t (M). It is a contradiction.

Thus, we can define a restriction orbi-map (f|F) : F — G. Since F is
incompressible in M and f, : 71 (M) — m1(N) is monic, (f|F)s : m1(F) — m1(G)
iS monic.
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Claim 3. F is a discal orbifold if and only if G is a discak orbifold.

Suppose G is a discal orbifold. Since (f|F)s is monic, 1 (F) is a finite cyclical
group. Considering the incompressibility of F and the irreducibility of M, we derive
that F is a discal orbifold.

Suppose F is a discal orbifold D?(n). There is a component K of 3G such that
(f|dF) : 9F — K is a covering. Let r be the number of the sheets of the covering.
Then, [K]™" = [f(0F)]" = fx[0F]" = 1 in w1 (N). Since G is incompressible in N,
[K]™ = 1inm(G). Hence, G is a discal orbifold.

Claim4. (f|F) : F — G is orbi-homotopic (rel. 3) to an orbi-covering.

When F is a discal orbifold. Then, by Claim 3, G is also a discal orbifold. Let G’
be a lift of G by g such that f'(F) C G’. Then, G’ is a discal orbifold.

Since f’|dM is an orbi-embedding, (f/|dF) : 3F — dG’ is an orbi-embedding.
Furthermore, since 71(F) — m;(M) and f, : m;(M) — m1(N’) is monic, it is
derived that (f'|F)s : m{(F) — m1(G’) is monic. Then, by [Tal, 7.1], f'|F is orbi-
homotopic (rel. 3) to an orbi-isomorphism. Hence, (f|F) = (g|G")o(f'|F): F - G
is orbi-homotopic (rel. 8) to an orbi-covering.

When F is not a discal orbifold. Then, by Claim 3, G is not a discal orbifold
either. By the incompressibility of F and irreducibility of M, F is not a spherical
orbifold. Hence #7|(F) = oco. Then we can apply Theorem 3.2. We only have to
show that the conclusion Theorem 3.2(2) must not occur in this situation. Suppose
Theorem 3.2(2) occurs. That is, F is an annulus and there is an orbi-homotopy
¢; - F — G suchthat ¢ |0F = f|dF and ¢;(F) C 9G.

Let K be the component of G such that ¢ (F) C K. Let y be a point of K. Let
x0,x1 be points of £~!(y) which are included in different components of dF. Let o
be a path in F with (i) = x;,i =0, 1.

Let F (respectively G)bea component of ﬁ‘l (F) (respectively 4~1(G)). Since
F (respectively G) is incompressible in M (respectively N), ( [7|17" )y : F > F
(respectively ((}lé) : G — G) is the universal covering.

Let @ be a lift of & by ﬁlI:". Note that (¢; o&] = [K]" in7 (K, y) for somer € Z.
Since fo& = @pod ~ ¢ o& (rel. &(0), &(1)), [f o &) = [K] in w1 (K, y).

Hence, by extending « in 3 F, we can take a path B in F which satisfies

B(0) # B(1), (5.2.1)
[foBl=1 inm(N) (5.2.2)

where B is a lift of B by p|F.
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Since (5.2.2) means f(B(0)) = f(B(1)), it holds that FBO) = f(BQO)).
Then, (5.2.1) contradicts the fact that f'|d M is an orbi-embedding.

Hence, after changing f through an orbi-homotopy (the C-equivalent
modification preceded), we may assume that for each component Q of cI(N — G)
and for each component P of f~1(Q), (f|aP) : 9P — dQ is an orbi-covering. By
Proposition 1.6, it is derived that (f|P), is monic.

If (f|P)|dP : 3P — 3Q" is an orbi-embedding for each Q and P, we can take
such f as the desired fi, where q; : Q" — Q is the covering associated with f,7r1(P)
and (f|P)’ be the lift of f|P by q;.

Suppose (f|P)'|dP : 3P — 3Q” is not an orbi-embedding for some Q and P.
By observing the proof of [Tal, 5.5], we can see that since M is compact, the number
of the components of f~!(G) is finite. Let n be the number of the components of

()
Claim 5. 13G| = ¢.

Let Q' be the component of ¢! (Q) with f/(P) C Q'. Since (fIP)ym(P) <
¢+m1(Q’), there is an orbi-covering ¢” : Q” — Q' such that q1 = (q|Q") o q".
Hence, it is derived that f'|P = q” o (f|P)'. Then, (f'|dP) : 3P — 3Q’ is not an
orbi-embedding.

Suppose [dG| # ¢. Let G’ be the component of ¢~ (G) with f'(F) c G'.
Since f|F : F — G and ¢q|G’ : G’ — G are orbi-coverings, f'|F : F — G’ is
an orbi-covering. Furthermore, since f'[0M : 9M — 3N’ is an orbi-embedding,
f'19F : 3F — 3G’ is an orbi-embedding. Then f'|F : F — G’ must be an
orbi-embedding. Since this holds for each component of 7~!(G), f'|8 P is an orbi-
embedding. It is a contradiction.

Thus, each component of G is closed and so is each component of f"‘(G).
Considering f'|dM is an orbi-embedding and (f|P)'|d P is not an orbi-embedding,
we derive that there are components F;, F jof f - Gynap (possibly F; = F;) such
that (f|P)'|(F; U F;) is not an orbi-embedding. Let G” be the component of ql_l(G)
such that (f|P)'[(Fy) € G”, k =i, j. Since f|F; : F, —> G and ¢||G" : G" — G
are orbi-coverings, (f|P)'|(Fi) : Fx — G” is an orbi-covering. Furthermore, since
(fIP), : m(P) — m1(Q") is an isomorphism and (fIPY|3P : 0P — 3Q" is not
an orbi-embedding, we can take a path (I,d1) — (|P| — =P, |8 P|) which satisfies
Theorem 4.1(i)—(iv). Then, by Theorem 4.1, it is derived that P is an I-bundle over a
closed 2-orbifold.

We can also apply Corollary 4.6 to conclude that P is the product I-bundle over
F; (hence, F; # F;) and there is an orbi-homotopy (f|P); : P — Q such that
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(fIP)y = (fIPY, (fIP)|(P) C G",and (f|P);|dP = (f|P)'|dP.

Put (f|P); = g1 o (f|P);. Then, (f|P); is an orbi-homotopy from P to Q such
that (f|P)o = fIP, (fIP)1(P) C G,and (f|P);|0P = f|dP. By using (f|P); and
the product structures of the neighborhoods of F; and G, we can construct an orbi-
homotopy f; : M — N such that fo = f, f;|(M —IntU(P)) = fI(M — IntU(P))
(namely f;|oM = f|oM), and fl_l(G) = f4(G) - (F; U Fj).

Note that (the number of the components of fl_l(G)) < n and that, for each
component Q of cI(N — G) and P of F=YQ), (filP)s : m(P) — m1(Q) is monic.
When (f1|P)’|d P is an orbi-embedding for each P and Q, we can take above fi as
the desired one. When (f1|P)’|d P is not an orbi-embedding for some P and Q, we
regard f] as the initial f and iterate above process. Since n is finite, by iterating this
process, we can arrive at a point where (f1|P)’|d P is an orbi-embedding. 0O

Let M and N be 3-orbifolds. Let ¥ : 71 (M, x) = m{(N, y) be ahomomorphism.
We say that W respects the peripheral structure, if the following holds. For each
boundary component F of M, there exists a boundary component G of N, such that
W(i.(m(F, x"))) C A, and A is conjugate to j.(1(G, y")) in 7 (N, y), where i and
Jj are inclusions.

LEMMA 5.3. [Tal, 7.5] Let M and N be good, compact, and orientable 3-orbifolds,
such that each component of 3N is incompressible and that the underlying space of the
universal covering orbifold of Int(N) is homeomorphic to R3. Let W : my(M,x) —
w1(N, y) be a homomorphism which respects the peripheral structure. Then, there
exists an orbi-map f : (M, dM) — (N, dN) which induces V.

We conclude this paper with describing the classification theorems of 3-orbifolds
by their orbifold fundamental groups derived from Theorem 5.1 and Lemma 5.3.

THEOREM 5.4. Let M,N € W. Let ¥V : m;(M) — m(N) be a monomorphism
which respects the peripheral structure, then there exists an orbi-map f : (M, M) —
(N, dN) which induces the monomorphism V. Hence, the conclusion of Theorem 5.1
follows.

COROLLARY 5.5. Let M,N € W. Suppose M and N are closed. If there is a
monomorphism WV : 7w (M) — 7 (N), then there exists an orbi-covering f : M — N
which induces the monomorphism V.

THEOREM 5.6. Let M, N € W. Let V : r; (M) — 7| (N) be an isomorphism which
respects the peripheral structure, then there exists an orbi-isomorphism f : M — N
which induces V.
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Proof. Suppose M is not a product I-bundle over a closed 2-orbifold. Then we apply
Theorem 5.4 to obtain a 1-sheeted covering (i.e. an orbi-isomorphism).

Suppose M is a product I-bundle over a closed 2-orbifold F (M = F x[0, 1]). By
Theorem 5.4, there is an orbi-map f : (M, dM) — (N, dN) such that f, = . By
[Tal, 6.2,6.3], N is also a product I-bundle over a closed 2-orbifold G (N =Gx][0,1]
and f(F x 0) C G x 0), where F and G are orbi-isomorphic. By Theorem 3.2, we
may assume that f|F x 0 : F x 0 — G x 0 is a covering. Since we may assume
that (f|F x 0)x = f4, fIF x Ois an orbi-isomorphism from F x 0 to G x 0. The
orbi-map (f|F x 0) x id: F x [0, 1] = G x [0, 1] is the desired orbi-map. O

COROLLARY 5.7. Let M,N € W. Suppose M and N are closed. If there is an
isomorphism ¥V : w{ (M) = 7| (N), then there is an orbi-isomorphism f : M — N
which induces W.
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