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Abstract—The enantioselective allylation of aldehydes using a variety of β-amido functionalized allyltributylstannanes proceeded 
smoothly with good to high yields and enantioselectivities in the presence of 10 mol% of a chiral catalytic complex prepared from In(OTf)3 
and 2,6-bis[(S)-4-isopropyloxazolin-2-yl]pyridine {(S)-i-Pr-pybox}, providing the corresponding chiral γ-hydroxy amides. 
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Asymmetric allylation of aldehydes using various allyl-
metal reagents such as allylsilanes and allylstannanes is one 
of the most useful methods for chiral carbon-carbon bond 
formation.1 Although a large number of methods have been 
developed, there are, to the best of our knowledge, few 
examples of reactions using allylstannanes with a β-amido 
function.2 Pioneering studies developed by Tanaka et al.2a,b 
described Lewis acid mediated stoichiometrically 
diastereoselective allylation between aldehydes (RCHO) 
and optically active β-amido functionalized allyltributyl-
stannanes 1, furnishing the corresponding chiral γ-hydroxy 
amides 2. Those can be easily converted to α-methylene-γ-
butyrolactones 3 possessing a wide range of potent 
biological activities (Scheme 1).3   

Scheme 1. Diastereoselective allylation of aldehydes with β-amido 
allyltributylstannanes 1 and the synthesis of α-methylene-γ-butyrolactones 
3. 

Recently, chiral Lewis acid complexes composed of metal 
triflates M(OTf)3 and 2,6-bis(oxazolin-2-yl)pyridine 
(pybox) were shown to be effective catalysts for the 
enantioselective allylation of carbonyl groups to afford     
the corresponding homoallylic alcohols in excellent 
enantiomeric excesses.4 Herein we report the first example 
of catalytic enantioselective allylation between β-amido 
functionalized allyltributylstannanes 4 and aldehydes 5 
mediated by MX3 and 2,6-bis[(S)-4-isopropyloxazolin-2-
yl]pyridine {(S)-i-Pr-pybox} complexes. 

 

Scheme 2. Enantioselective allylation of aldehydes 5 with β-amido 
allyltributylstannanes 4 catalyzed by MX3/(S)-i-Pr-pybox complexes. 

We attempted to determine the optimum reaction conditions 
for the enantioselective allylation of benzaldehyde 5a using 
2-methylene-N-phenyl-2-[(tributylstannyl)methyl]propan-
amide 4a.5 Among the various MX3/(S)-i-Pr-pybox 
complexes examined, the reactions did not proceed under 
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any conditions when InCl3, La(OTf)3, Sm(OTf)3 and 
Yb(OTf)3 were used even in the presence of stoichiometric 
amounts of metal salts. Treatment of this reaction with 
Sc(OTf)3, however, gave the desired γ-hydroxy amide 6a 
but in low yield and enantiomeric excess (ee). In contrast to 
these findings, use of In(OTf)3 had a significant effect on 
the rate and stereoselectivity, and an expected enhancement 
was observed in the use of only 30 mol% of this reagent, 
leading to 6a in high yield with moderate enantioselectivity 
as shown in Table 1 (81%, 37% ee; entry 1). We next 
examined the catalytic amounts in order to study the 
reactivity of the In(OTf)3/(S)-i-Pr-pybox complex (entries 
1-3). Improved yield and ee were finally obtained in 
reaction employing 10 mol% of catalyst (96%, 63% ee, 

entry 3), although the use of 5 mol% of catalyst as well as 
the case of the addition of TMSCl (1.2 eq.)4a reversely 
decreased the enantiomeric excesses, respectively (entries 4 
and 5). With these results in hand, further experiments have 
been performed on the catalytic allylation using several N-
substituted β-amido allyltributylstannanes 4b-f under the 
same reaction conditions. In the cases that N-aromatic 
reagents 4d-f were employed, the beneficial stereoselective 
effect was found, providing the corresponding γ-hydroxy 
amides 6d-f in satisfactory ees as well as good yields, 
respectively (entries 7-9). In particular, we were delighted 
to find that the reaction using N-(4-tert-butylphenyl) 
allyltributylstannane 4f gave 6f with the highest 
enantioselectivity (entry 9). 

 
Table 1. Enantioselective allylation of 5a with allyltributylstannanes 4a-f catalyzed by In(OTf)3/(S)-i-Pr-pybox complex.a,b 
 

 
 

entry R1 
In(OTf)3 

(mol%) 

TMSCl 

(equiv.) 
time (h) yield (%)c ee (%)d confign. 

1 Phenyl (4a) 30 -- 16 81 (6a) 37 Se 

2 Phenyl (4a) 20 -- 4 72 (6a) 51 Se 

3 Phenyl (4a) 10 -- 16 96 (6a) 63  Se 

4 Phenyl (4a) 10 1.2 21 85 (6a) 32  Se 

5 Phenyl (4a) 5 -- 4 41 (6a) 53 Se 

6 C2H5 (4b) 10 -- 24 78 (6b) 31 Sf 

7 c-C6H11 (4c) 10 -- 72 78 (6c) 39 Sf 

8 biphenyl-3-yl (4d) 10 -- 16 74 (6d) 63 Sf 

9 (3,5-di-tert-butyl)phenyl (4e) 10 -- 16 81 (6e) 70 Sf 

10 (4-tert-butyl)phenyl (4f) 10 -- 24 78 (6f) 77 Sf 
aAll reactions employed 4 (1.0 eq.) and 5a (1.2 eq.) in the presence of activated MS 4Å (120 mg) in CH2Cl2 (0.2 M). bSee experimental  

procedure in Ref 6. cIsolated yield. dDetermined by chiral HPLC analysis using a Daicel Chiralpak IB column. eSee Ref 7. fPredicted absolute  

configuration on the basis of reaction mechanism and the sign of the specific rotations of 6. 

 

Encouraged by this success, we extended the scope of this 
methodology employing different aldehydes 5a-h and the 
results from our survey are summarized in Table 2. The 
characteristic features of these reactions are as follows: (i) 
use of aliphatic aldehydes decreased the stereoselectivity as 
well as the reactivity (entries 1 and 2); (ii) little effect of the 
substituents on the aromatic aldehyde was observed (entries 
3-5); (iii) the reaction with the large alkyl-substituent 
connected to the aromatic ring gave the highest 
enantioselectivity (79% ee, entry 8).  

Although the obvious reason for these results is not clarified 
at present and the mechanistic research of the related 
reactions has not been appeared to date,4 it should be 
considered that the steric hindrance between the alkyl-
substituent on aromatic aldehydes employed and the 

isopropyl group of In(OTf)3/(S)-i-Pr-pybox complex plays 
an important role in this selectivity. Thus, we postulate that 
the observed high degree of stereoselectivity in these 
reactions may be attributed to the stronger chelating ability 
of indium ion which coordinates with the amide moiety of 
the organotin reagent and the oxygen atom of the aldehyde 
to organize cyclic transition states A and B (Figure 1). 
Model A would be preferred over B in which the steric 
interaction between the stannyl group and the aryl group 
(R2) of the aldehyde is minimized to occupy the remotest 
positions each other. In addition, the allyltributylstannane 
approaches the carbonyl si-face because the re-face is 
shielded by the isopropyl substituent on the oxazoline ring 
of the pybox ligand,9 leading to the (S)-adduct 
predominantly. 
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Table 2. Enantioselective allylation of aldehydes 5a-h with 4f. 
 

 
entry R2CHO time (h) yield (%)a ee (%)b confign. 

1 Isovaleraldehyde (5b) 20 45 (6g) 48 Rc 

2 Pivaldehyde (5c) 20 45 (6h) 58 Rd 

3 4-Nitrobenzaldehyde (5d) 20 91 (6i) 58 Sd 

4 4-Anisaldehyde (5e) 20 92 (6j) 59 Sd 

5 3-Chloroaldehyde (5f) 20 90 (6k) 61 Sd 

6 1-Naphthaldehyde (5g) 14 89 (6l) 74 Sd 

7 Benzaldehyde (5a) 16 78 (6f) 77 Se 

8 4-Isopropylbenzaldehyde (5h) 20 94 (6m) 79 Sd 
aIsolated yield. bDetermined by chiral HPLC analysis using a Daicel Chiralpak IA, IB or IC column. cSee Ref 8.  
dPredicted absolute configuration on the basis of reaction mechanism and the sign of the specific rotations of 6. eSee Ref 7. 

 

 

Figure 1. Plausible transition structure model 

Furthermore, allylated products thus obtained were easily 
converted to potentially useful α-methylene-γ-
butyrolactones, respectively.3 

In summary, we have demonstrated the first example of 
catalytic enantioselective allylation of various aldehydes 
using β-amido functionalized allyltributylstannanes with  
10 mol% of In(OTf)3/(S)-i-Pr-pybox complex, and found 
that    the reactions between N-aryl allyltributylstannanes 
and aromatic aldehydes were effective to give high 
enantioselectivity.  

This method possesses desirable advantages of being not 
only catalytic and enantioselective in the allylation, but 
able to give optically active α-methylene-γ-butyrolactones 
directly without employing chiral allylstannanes prepared 
through tedious elaboration.2a,b Further work on a more 
detailed mechanism and effort to expand the scope of 
synthetic applications are currently in progress and will be 
discussed elsewhere. 
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