駿河湾における研究船淡青丸のKT-77-7およびKT-78 -19次航海で採取されたピストンコア試料について

Shizuoka University REpository

SURE 静岡大学学術リポジトリ

メタデータ	言語: jpn
	出版者:
	公開日: 2008-01-25
	キーワード (Ja):
	キーワード (En):
	作成者: 大塚, 謙一
	メールアドレス:
	所属:
URL	https://doi.org/10.14945/00000211

駿河湾における研究船淡青丸の KT-77-7 および KT-78-19 次航海で採取された ピストンコア試料について

大塚謙一"

Results of Piston-Core Sampling in Suruga Bay, Central Japan during the Research Cruises KT-77-7 and KT-78-19 of R/V Tansei-Maru

Ken-ichi OTSUKA*

Nineteen piston-cores were successfully recovered from the bottom of the Suruga Trough in Suruga Bay, central Japan, during the research cruises KT-77-7 and KT-78-19 of R/V Tansei-Maru of Ocean Research Institute, University of Tokyo (Fig. 1, Tables 1, 2). This report aims to record the data of these piston-core samples, presenting a preliminary result of a facies analysis of them. This result shows that three distinct sedimentary facies are recognized at the northern end of the Suruga Trough, off the mouth of the Fuji River : (1) gravel facies, (2) well-sorted coarse sand facies, and (3) facies of alternation of coarse clastics and silt. These facies seem to be closely related to the change of slope inclination.

1. はじめに

佐藤(1962)により駿河湾湾口部の深海底にも砂礫 層が存在していることが報告され、その原因として 重力流堆積作用が示唆されて以来、この様な湾底の 粗粒堆積物は駿河湾域における大きな地質学的、堆 積学的問題となっている。この粗粒堆積物の分布と その堆積学的性質を明らかにすることを目的とし て、東京大学海洋研究所の研究船淡青丸のKT-77-7 次および KT-78-19 次航海において、駿河湾中央部 を南北に走る駿河トラフの軸部でピストンコアによ る集中的な柱状採泥を行った.これらのコアについ ては現在研究中であるが,今回はこれらの航海の試 料採取地点,コアの記載などを記述し,特に試料が 集中し,堆積相がほぼ明らかになった富士川扇状地 沖の斜面地域について考察する.

東京大学海洋研究所 奈須紀幸教授・加賀美英雄 助教授,静岡大学理学部 岡田博有教授には航海の 実施にあたり,また研究を進めるにあたり御教示頂 いた.ここに記して感謝の意を表する.東京大学海

1980年1月22日受理

* 静岡大学理学部地球科学教室 Institute of Geosciences, School of Science, Shizuoka University, Shizuoka 422.

Sample No.	Date	Time	Depth	Lat.	Long.	Core Length	Description
KT-77-7-1	7 Jun.1977	13:20	2810m	34°25.6'N	138°34.4'E		Wood Fragments
KT - 77 - 7 - 3	8 Jun.1977	09:06	1810m	34°42.8'N	138°34.7'E	Trace	Gravel
KT - 77 - 7 - 4	9 Jun.1977	08:57	1445m	34°58.9'N	138°39.8'E	186cm	Alternation
KT-77-7-5	9 Jun.1977	16:02	740m	35°03.9'N	138° 38.2'E	61cm	Gravel

Table 1.Piston core sampling data during the research cruise KT-77-7.表 1KT-77-7 次航海におけるピストンコア採泥データ

 Table 2.
 Piston core sampling data during the research cruise KT-78-19.

 Samples No. 21 to No. 24 were taken by cooperative work with the Kyoto University Group.

表 2 KT-78-19 次航海におけるピストンコア採泥データ.ただし Sample No. 21
 以降は京都大学グループとの共同航海で採取されたもの

Sample No.		Date	Time	Depth	Lat.	Long.	Core Length	Description
KT-78-19-1	2	Dec.1978	09:47	1590m	34°53.9'N	138°38.8'E	89cm	Alternation
KT-78-19-2	2	Dec.1978	11:47	1480m	34°58.4'N	138°39.2'E	270cm	Alternation with Gravelly Sand
KT-78-19-3	2	Dec.1978	13:24	1380m	35°00.6'N	138°38.5'E	255cm	Alternation with Granule Layer
KT - 78 - 19 - 4	2	Dec.1978	14:50	1290m	35°01.4'N	138°38.4'E	47cm	Gravelly Sand
KT-78-19-5	3	Dec.1978	08:52	1280m	35°01.5'N	138°37.8'E	203cm	Gravelly sand and silt
KT-78-19-6	3	Dec.1978	10:23	1350m	35°01.2'N	138°38.7'E	199cm	Coarse Sand Layer and Alternation
KT - 78 - 19 - 7	3	Dec.1978	11:45	1310m	35°01.3'N	138°38.9'E	223cm	Coarse Sand Layer and Alternation
KT - 78 - 19 - 8	3	Dec.1978	13:17	1310m	35°01.1'N	138°39.6'E	147cm	Coarse Sand Layer and Alternation
KT-78-19-9	3	Dec.1978	14:32	1065m	35°02.6'N	138°39.4'E	73cm	Gravel
KT-78-19-10	3	Dec.1978	15:38	1045m	35°02.8'N	138°38.5'E	20cm	Gravel
KT-78-19-11	4	Dec.1978	08:44	1050m	35°02.8'N	138°37.8'E	22cm	Gravel
KT-78-19-12	4	Dec.1978	10:07	695m	35°04.4'N	138°38.5'E	55cm	Gravel
KT-78-19-21	6	Dec.1978	12:54	2380m	34°36.2'N	138°35.0'E	233cm	Gravelly coarse Sand Layer
KT-78-19-22	6	Dec.1978	15:25	2600m	34°32.2'N	138°34.4'E		Fail
KT-78-19-23	7	Dec.1978	09:24	2780m	34°26.9'N	138°35.7'E	258cm	Alternation
KT-78-19-24	7	Dec.1978	.13:37	2840m	34°23.6'N	138°33.5'E	276cm	Alternation

Fig. 1. Piston core sampling positions in the research cruises KT-77-7and KT-78-19. Double circle: Samples of KT-77-7, Solid circle: Samples of KT-78-19.

図1 KT-77-7 および KT-78-19 次航海におけるピストンコア採泥地点.二重丸は KT-77-7 次,黒丸は KT-78-19 次航海で採取されたものを示す.ただし採泥地点21~24は京 都大学グループとの共同航海によるもの

Fig. 2. Topography of the northern end of the Suruga Trough, showing sampling positions. Symbols are same as in Fig. 1.
図 2 駿河湾北部の地形とピストンコア採泥地点,記号は図1と同じ

Fig. 3. Columnar sections of piston core samples. I (Upper slope area): st., silt; sty., silty; f.s., fine sand; m.s., medium sand; c.s., coarse sand; gr., granule; pb., pebble; p., patch. Alt., alternation; v., very; arrow shows grading.
図 3 ピストンコアサンプルの柱状図 I (斜面上部)

洋研究所共同利用研究船「淡青丸」の KT-77-7 次航 海(上之清尚船長,主任研究者: 堀越増興教授・岡田 博有教授)および KT-78-19 次航海(五十嵐宏船長, 主任研究者:岡田博有教授・志岐常正助教授)では船 上作業で乗組員,乗船研究者に大変お世話になった. とくに KT-78-19 次航海後半を担当された京都大学 志岐常正助教授には採泥データ(図1,表2)の引用 をお許しいただき厚くお礼申しあげる.

2. KT-77-7 次航海

KT-77-7 次航海は東京大学海洋研究所の生物生態 部門を中心とした生態学研究グループとの共同航海 として,1977年6月6日(東京湾出港)より6月13日 (東京湾入港)まで「駿河湾における生態学的,古生物 学的研究ならびに海洋地質学的研究」を研究題目と して行われた.静岡大学グループは6月6日より6 月9日(清水港入港)の期間のみ乗船し,ピストンコ ア採泥は駿河トラフ軸域において行った.この結果 4地点から試料を得た(表1,図1).

KT-77-7-1 および3は駿河トラフ軸部の堆積物を 採取することを目的としてコアリングを行った.KT-77-7-1 では木片のみ採取された.また KT-77-7-3で は礫がわずかに採取されるにとどまった.KT-77-74、および5は駿河湾湾奥の富士川扇状地前面の斜面 での試料採取を目的として行われ、それぞれ約190 cm(図5),60cm(図3)の試料を得た.とくに KT-77-7-5は礫質で、中礫大の礫についてもピストンコア リングが有効であることが確認された.

3. KT-78-19 次航海

KT-78-19 次航海は 1978 年 12 月1日 (東京湾出 港)より12月8日 (東京港入港)までの期間「駿河湾お よび遠州灘沖の堆積学的研究」という研究題目のも とに行われた.ただし本航海は前後半の2期に分け て実施され,12月1日より12月4日(清水港入港)ま では静岡大学グループの駿河湾北部の調査航海であ り,12月5日より8日までは京都大学グループと静 岡大学グループからは筆者のみが参加した共同航海 となった.

前半の航海では粗粒堆積物が急速に運びこまれる 現世扇状地前面の急斜面での堆積現象を明らかにすべ く KT-77-7 次航海に続き, 駿河湾北部の富士川河口 と駿河トラフとの間の地域にピストンコアによる採 泥を集中して行った(後述).また後半の航海では駿 河湾口沖合の駿河トラフ地域の3地点より厚い粗粒 堆積物を含む柱状試料を得た(表2,図1).

4. 駿河トラフ最北部, 富士川扇状地前面 の堆積相

以上に述べた2回の航海で採取された柱状試料の うち,堆積相分布がほぼ明らかとなった駿河トラフ 最北部,富士川扇状地沖の地域の柱状試料について 考察する.

この地域では富士川扇状地が直接駿河トラフへと 落ちこんでおり、その傾斜は最上部で10°以上、水深 1300m付近の傾斜の変換点まで約5°~10°となって おり、変換点付近から次第に傾斜を減じる(図2). また扇状地直前の浅海部では相模湾の酒匂川沖、富 山湾の黒部川沖と同様のデルタフロント・ガリーに 良く似た小さな谷が多数発達している。ピストンコ ア試料の層相解析の結果、本地域の堆積相は大きく 上部、中部、深部の3つに分けられる。

a. 駿河トラフ上部の堆積相(図3): 図2,および 図3の柱状図に示されるように,傾斜角度が数度を 越える富士川扇状地前面斜面の上部には主に砂礫層 が分布しているものと考えられる.

採取された試料が短く,必ずしも層相の全貌を明 らかにできたとは思えないが,試料で見る限り径の 平均2~3 cm,最大径5~6 cmぐらいの亜円礫ない し亜角礫の間を(中粒~)粗粒砂または細礫より成る マトリックスがぎっしりとうめている.ただ KT-78-19-11 では数mmから2 cmほどの礫がマトリックスを 欠いてバラバラの状態で採取された.礫径の変化は 必ずしも明瞭ではないが,KT-77-7-5 では礫層の最 上位に最大礫が位置する等,逆グレーディングを思 わせるものもある.これらの礫層はいずれもシルト 質の薄い層を表層にかぶっていると思われる.

b.水深1300m 付近の傾斜変換点の堆積相(図4と 5の一部):駿河トラフの1300m 付近はトラフの軸 方向の傾斜の変換点となっているだけではなく,図 2でも見られる様に丸みを帯びた,トラフ軸の方向 に突き出た地形的盛り上がりが発達している点で注 目される。この地形がどんな堆積物で形成されてい るかを明らかにするためにその地点付近から集中的 に試料を採取した(KT-78-19-4, KT-78-19-6, KT-78-19-7).盛り上がり地形とその周辺では図4に示 されるごくまれに礫を含むが,非常に淘汰の良い中 ~粗粒の砂層が特徴的に採取される.盛り上がり地 形はなしていないが、それとほぼ同じ深さの地点よ り採取した KT-78-19-5 および KT-78-19-8 はこれ らと異なった堆積相を示している.すなわち KT-78-19-5 では先に述べた上部の試料のような厚い砂 礫層であり、また KT-78-19-8 は次に述べる深部の ものに似たシルト層および流動変形を示すシルトの パッチを含む砂層よりなる堆積相を呈する.これは 図2からもわかるように、地形的にみて KT-78-19-5 がやや浅く、傾斜のきつい所にあり、KT-78-19-8 がやや深く傾斜のゆるやかな地点であることを反映 しているものと考えられる.つまり傾斜の変化に対 応する堆積相、即ち堆積運動様式の変化が存在する 事を示すものと考えられる.

c. 深部の堆積相(図5):1350m 以深の3地点の 試料(KT-77-7-4,78-19-2,78-19-3) はシルト層を夾 在したり,流動変形したシルトのパッチを多く含む ことにより特徴づけられる.また,植物片をかなり 特徴的に含むことも注目される.ただし,これらの シルト層の間にも細礫の層や砂礫層をはさむ.シル トの流動変形が1350m 深度付近より著しく多くな ることはその堆積運動様式と関係して注目される.

5. まとめ

KT-77-7 次および KT-78-19 次航海における柱状 試料採取の結果,様々な堆積相の変化を示しながら 駿河トラフの軸部に広く粗粒堆積物が分布すること が明らかとなった.すなわち,駿河トラフ北部の富 士川扇状地沖には,a)浅部の急傾斜部分に発達する 礫相;b)傾斜変換点(水深 1300m 付近)に顕著にみ られる非常に淘汰の良い中~粗粒の砂層;c)深部の 緩傾斜地域の,変形したシルトのパッチを多く含む, シルト層・砂礫層の互層相;という特徴的な3つの 堆積相があることがわかった.これらの堆積相およ び堆積運動様式の変化と海底面傾斜の変化との間に 密接な関係があるものと思われる.

文 献

佐藤任弘(1962), 駿河湾口のコア資料について. 地質雑, 68, 609-617.

Fig. 4. Columnar sections of piston core samples. II (Water depth about 1300m). Symbols are same as in Fig. 3. ピストンコアサンプルの柱状図II (水深1300m付近). 記号は図3と同じ

図4

K T-78-19-2

SI. 10:57

ž

VIL STAV

vfs.f.s.

st.p

0

50

Е С

с ._

Depth

ant st.

300

Fig. 5. Columnar sections of piston core samples III (Lower slope area). Symbols are same as in Fig. 3. ピストンコアサンプルの柱状図III (斜面下部). 記号は図 3 と同じ 図 5