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Applications of Random-Pulse Machine

- Concept to Neural Network Design

Emil M. Petriu, Senior Member, IEEE, Kenzo Watanabe, Fellow, IEEE, and Tet H. Yeap

Abstract—Neural networks can reach their true potential only
when they are implemented in hardware as massively paral-
lel processors. This paper presents the random-pulse machine
concept and shows how it can be used for the modular design
of neural networks. Random-pulse machines deal with analog
variables represented by the mean rate of random-pulse streams

. and use simple digital technology to perform arithmetic and logic
operations. This concept presents a good tradeoff between the
electronic circuit complexity and the computational accuracy.
The resulting neural network architecture has a high packing
density and is well suited for very large-scale integration (VLSI).
Simulation results illustrate the performance of the basic elements
of a random-pulse neuron.

I. INTRODUCTION

OOKING for a model to prove that algebraic opera-

tions with analog variables can be performed by logical
gates, von Neuman advanced in 1956 the idea of repre-
senting analog variables by the mean rate of random-pulse
streams [1]. Pursuing this idea, a number of similar stochastic
data-processing concepts were reported in the 1960’s: “noise
computer” by Poppelbaum and Afuso [2), “random-pulse
machine” by Ribeiro [3], and “stochastic computing” by
Gaines [4].

Random-pulse machines deal with analog variables while

using digital technology to perform arithmetic and logic oper-

- ations on binary pulses which are the information carriers. As
variables are represented by the statistical average of random
pulse streams, the resulting data-processing system has a better
tolerance to noise than the classical deterministic systems. The
digital technology used to implement these systems offers
a number of advantages over the analog technology: modu-
lar and flexible design, higher internal noise immunity, and
simpler I/O interfaces.

On parallel tracks, in the late 1950’s and 60’s dither
techniques were studied to reduce the effects of the quanti-
zation noise [5]-[9]. The effects of dither quantization have
been further discussed during the 1970’s and 80’s from a
signal-processing perspective [10]-[15]. More recently, dither
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Fig. 1. Analog/random-pulse converter.

quantization has also caught the attention of the instrumenta-
tion and measurement community [16]-[19].

Since first mentioned in 1987, pulse-stream VLSI neural
networks are regularly reported in literature. However, like
most new technologies, these networks are bottom-up im-
plementations using ad hoc data-processing solutions. With
few exceptions [22], these reports ignore earlier random-pulse
technology developments [20], [21].

This paper presents a number of basic random-pulse data-
processing techniques and shows how these can be used for a
more structured design of neural network architectures.

II. RANDOM-PULSE DATA REPRESENTATION

Random-pulse data appear as sequences of random binary
pulses which carry analog information represented by the sta-
tistical mean value of the pulse sequence. Such a representation
can be viewed as the probability modulation of a random-pulse
carrier by a deterministic analog variable.

The “analog/random-pulse” converter shown in Fig. 1 il-
lustrates the principle of this modulation. A deterministic
analog input V, supposed to have a relatively low variation
rate, is superimposed on an analog random signal R which is
uniformly distributed between +FS and —F'S. The resulting
analog random signal VR is uniformly distributed around
a deterministic bias V' as shown in the VR versus VRP
quantization diagram. This signal is then 1-bit quantified to
produce a random sequence of pulses V RQ which will have
the binary value +1 if VR > 0 or —1 if VR < 0. These
pulses are finally sampled by a clock signal CLK to produce
the clocked random-pulse sequence V RP.

A probabilistic estimation of the deterministic component
of the random-pulse sequence can be calculated from the VR
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Fig. 2. Moving average random-pulse/digital converter.

versus V RP quantization diagram given in Fig. 1
E[VRP]=(+1) - p[VR > 0]+ (-1) - p[VR < 0]
=p(VRP) — p(VRP')

_(FS+V) (FS-V)
T (2-FS) (2-FS)
=5 M

which shows that the statistical mean value of the VRP
sequence represents a measure of the deterministic analog
input V.

From (1) the deterministic analog value V' associated with
the VRP sequence is

V = [p(VRP) — p(VRP')] - FS @)

where the apostrophe sign (') denotes a logical inversion of
the respective binary signal.

A “digital/random-pulse” conversion [3], [4], can be ob-
tained by comparing the digital input with a digital noise.
Such a converter can be used as an input interface between a
digital computer and a stochastic computer. It is also used to
restore randomness after some algebraic operations, such as
integration for instance, are performed on random-pulse data.

Different “random-pulse/digital” converters were developed
to recover the deterministic component V by averaging a finite
number of V RP pulses. The “moving-average” converter [23]
shown in Fig. 2 gives a continuously updated digital average
of the last N = 2™ pulses of the random-pulse data stream P;.
It employs the stable averaging algorithm

_P+P_1+P o+ +P_Nn+1

D; i
P,—P,_yN
=D._ i) 3
i—1 + N ( )
Pulses are digitally integrated by an (n + 1)-bit up-down
counter which is incremented if P, = +1 and P,_ny = —1,
and conversely decremented if P; = —1 and P;_ny = +1, with

nothing happening if P; and P;_ are equal. The N-bit shift
register is used to store FIFO style all the pulses occurring
in the previous N clock intervals. When more V RP samples
are considered, the estimation accuracy is increased but the
bandwidth of V is restricted [24].

The described analog/random-pulse
pulse/digital conversions are illustrated

and random-
in Fig.3. An
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Fig. 3. Simulation results illustrating the analog/random-pulse and ran-
dom-pulse/digital conversions.
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Fig. 4. Logic circuits for random-pulse arithmetic.

analog signal z changing from —0.3 - F'S to 045 - FS is
converted to a sequence of random-pulses X which is then
reconverted as a moving average over N = 16 random-pulses
to produce the analog estimation zest.

III. RANDOM-PULSE ARITHMETIC

Simple logical operations with individual pulses allow car-
rying out arithmetic operations with the analog variables
represented by their respective random-pulse sequences. Fig. 4
shows logic circuits for the random-pulse implementation of
“sign change,” “multiplication,” and “addition.”

The arithmetic “sign change” is carried out by an IN-
VERTER circuit. If z is the random-pulse input, then the
output random-pulse sequence is y = z’. The analog meaning
of the output sequence y is

Y =-X. “

The arithmetic “multiplication” is carried out by a COINCI-
DENCE circuit. If ; and x5 are the two random-pulse inputs,
their logic combination will produce an output random-pulse
sequence y = 1 - T2 + &} - z5. The analog meaning of the
output sequence y is

X3

Y:X:lﬁ

(5)
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Fig. 5. Simulation results illustrating the random-pulse addition of two
signals.

The arithmetic “addition” of m random-pulse data
Z1, T2, *-+, Tm can be carried out as shown in Fig. 4 by
a time multiplexing controlled by random signals S; (for
i=1, 2, ---, m). This random scanning acts as a “stochastic
isolator” [4] which removes unwanted correlations between
sequences with similar patterns. The random scanning signals
S; are uniformly distributed having the same probability
p(Si) = 1/m. Because of this scanning the multiplexed
samples are statistically independent. The analog meaning
of the output sequence y is

y =Xt ot Xm (©)
m

The random-pulse addition is illustrated in Fig. 5. Two step
signals, z1 which takes values from 0.2 - F'S to —0.45 - FS,
and z2 which takes values from —0.45 - F'S t0 0.2 - F'S, have
their random-pulse representations X 1 and X 2. The arithmetic
addition of these two streams of random-pulses produces the
random-pulse train X12 which is reconverted by a moving
average over N = 16 running samples and a rescaling factor
m = 2 to yield the analog estimation z12est.

IV. RANDOM-PULSE NEURAL NETWORK ARCHITECTURE

A typical neuron consists of more synapses and a neuron-
body, as shown in Fig. 6. Each synapse multiplies an incoming
- neural signal X;, where ¢ = 1,2, ---, m, by a synaptic-
stored variable weight value w;;. The connection weights
are adjusted during the learning phase. Connection weights
which are positive-valued are “excitatory” connections, and
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Fig. 6. Typical neuron structure.

those with negative values are “inhibitory” connections. The
neuron-body integrates the signals from all the post-synaptic
channels (also called dendrites). The result of this integration
is then submitted to an “activation” function “F” to produce
the neuron’s output signal Y;.

Random-pulse representation is used throughout the neural
network, for synaptic weight storage as well as for arithmetic
operations. In Fig. 7 is shown the implementation of a synapse
around the 1-bit random-pulse multiplication module shown in
Fig. 4. The synaptic weights are dynamically stored in a 2™-
bit shift register. Loading weight values from the DATIN input
into each register selected by the synapse address SYNADD is
done serially when a low logic signal is applied to the control
input MODE.

The synaptic weight multiplication is illustrated in Fig. 8.
An analog signal z1 = —0.4 - FS is converted to produce
the random-pulse stream X1 to be multiplied by a synaptic
weight w1l which changes from an excitatory value 0.75
to an inhibitory —0.5. The 16-bit random-pulse stream W1
representing this weight is then cyclically multiplied with
X1 to produce the random-pulse stream DT1. The analog
estimation DT1lest is the moving average over N = 16
samples of this dendrite random-pulse stream.

Fig. 9 shows the random-pulse implementation of the neu-
ron body. The m-input addition module collects the post-
synaptic data streams which are then integrated by a moving-
average random-pulse/digital converter. The internal neuron
body clock CLK* has a pulse rate at least m times higher
than the general clock CLK. There are only five activation
function “F” types which are usually used: linear, step, ramp,
sigmoid, and Gaussian [25].

During the learning phase, some algorithms like back prop-
agation require a smooth nonlinear activation function which
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Fig. 8. Simulation results illustrating the random-pulse synaptic weight
multiplication.

is differentiable everywhere [21]. In general, any desired
activation function can be implemented as a look-up table.
Since the neuron output will be used as a synaptic input to
other neurons, a final digital/random-pulse converter stage is
used to restore the randomness of the signal Y;. An interesting
implementation was recently reported in [22] for linear and
sigmoid activation functions. The counter of the random-
pulse/digital converter is preloaded at each conversion cycle
with a given threshold value. At any time when the counter
content reaches this threshold, an overflow into the most
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Fig. 9. Random-pulse implementation of the neuron body.
TABLE 1
ACCURACY OF THE RANDOM-PULSE MULTIPLICATION (SIMULATION RESULTS)
Bit Stream Mean Absolute Absolute Mean Square Square
Length Error Error Standard Error Error
Deviation Standard
Deviation
8 0.4266 0.2268 0.2329 0.2123
16 0.3559 0.1984 0.1656 0.1469
32 0.3341 0.1878 0.1466 0.1348
64 0.3078 0.1981 0.1336 0.1388

significant bit is generated and used further as the neuron’s
random-pulse output.

The neural network architecture described can be interfaced
directly with the environment or other computers via either
analog/random-pulse or digital/random-pulse input interfaces
and random-pulse/digital output interfaces.

The proposed architecture has been simulated at the logic
level. The purpose of the simulation is to determine the
arithmetic accuracy that could be achieved by the proposed
architecture and to find a suitable size of the shift registers
which store connection weights. Two measures are used to
evaluate the architecture performance: means and standard
deviations of the absolute and square errors.

First, the accuracy on the multiplication of two analog val-
ues between —1 and 1 is measured. One hundred pairs of 16-bit
random-pulse data are multiplied using the COINCIDENCE
logic. The simulation results given in Table I show that both
the mean square and absolute errors stabilize to approximately
0.3 and 0.1, respectively, for bit stream length greater than 16.
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: TABLE II
ACCURACY OF THE RANDOM-PULSE PRODUCT ADDITION (SIMULATION RESULTS)
p umber of | Mean Absolute Absolute Mean Square Square
Products Per Error Error Standard Error Error
Sum Deviation Standard
Deviation
2 0.2244 0.1805 0.0414 0.0
4 0.3033 0.2180 0.0040 0.0
8 0.5154 0.3973 0.0387 0.0001

Next the accuracy of the addition of products is measured
for 100 sums of 2, 4 and 8 products of 16-bit pseudo-
random data representing analog values between —1 and 1.
The resulting statistics for these sums of products are presented
in Table II. It can be seen that when the number of products
which are summed (Fig. 4) increases from 2-8, relatively
small changes are observed in the mean square error.

V. CONCLUSIONS

The random-pulse machine concept has been used as a
common analytical framework when dealing with quantization
problems occurring in different areas such as instrumenta-
tion, signal processing, and control. This paper shows how
this concept can be extended to the design of random-pulse
neural networks. A neural network architecture based on 1-bit
random-pulse data processing has been presented. The design
represents a tradeoff between neuron circuit complexity and
computational accuracy, aimed at obtaining a high packing
density in an integrated circuit that is well suited for imple-
mentation using VLSI technology. The architecture is modular
and has neurons constructed using simple digital circuits.
Simulation results show that reasonably good computational
accuracy can be achieved using relatively short, 16-bit long,
random-pulse streams. More logic-level and electronic device-
level simulations are needed before attempting the VLSI
implementation of such a random-pulse neural network.
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