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Abstract

Control programs for autonomous robots have to handle sensor inputs for condition determinations.
Hence, such programs tend to become complicated. We have developed a robot controller board which
can be programmed with virtual CPU instructions. The virtual CPU encapsulates details of I/O and
irregular instruction sets, to make robot programming easier. However, virtual CPU instructions are still
based on conditional jumps and thus was difficult to program for novice programmers. To overcome the
problem, we have implemented a robot control language with structured syntax on top of Dolittle [1, 2, 4]
environment. In this paper, we first explain firmware of our robot control board “MYUROBO” [5], and
previous Dolittle-based programming envirionment for the board. Then we discuss needs for structured
control flows and explain our new (structured) language constructs, along with its implementation.

1 Introduction

Control programs for autonomous robots have
typical structure of branching according to mutiple
senser inputs (including changing of internal sta-
tus values of the robot according to its behavior)
and taking corresponding actions (Fig. 1). How-
ever, many robot programming environment uses
conditional jump instructions to control program
flow, and the structure explained above is difficult
to construct with such primitive instructions. The
situation actually holds for MYUROBO [5] robot
controller board we have developed.

An answer to the problem is to prepare higher-
level language with structured control flow, which
is translated to the robot instructions by the com-
piler. We have first done that with MYU BASIC
processor, then with Dolittle [1, 2, 4] language.

Previously, simple translator written in Dolit-
tle were used to generate MYUROBO instructions
and send them to the controller board, but the
translater had not supported structured control
flow. To overcome the problem, we have revised
the previous implementation and developed a new
structured robot control language on Dolittle. The

strong points of our new language is that the lan-
guage largely uses Dolittle syntax and dolittle en-
vironment, so users do not have to learn new pro-
gramming environment or new syntax (although
some differences exist between the robot language
and original Dolittle).

In this paper, firstly the firmware part of
MYUROBO robot controller board that we have
developed is described. Secondly, the way of utilize
the MYUROBO from some high-level languages
is shown. Thirdly, the programming environment
based on structured Basic in order to make sure
the benefit of structured programming language
for robot programming is introduced. Lastly, the
design and implementation of structured robot-
control language on Dolittle syntax is explained.

2 The firmware of MYUROBO

The MYUROBO controller board is composed
of a microcontroller, 4 input ports, and 6 output
ports. The output ports have three pairs of con-
nectors; each pair controls one DC motor for for-
wared and reverse rotation. In the microcontroller,
the flash memory and the EEPROM are embed-
ded. Flash memory includes MYUROBO firmware
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Fig. 1 Typical architecture of robot-
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which implements virtual CPU interpreter and
program loader. Acutal robot programs are writ-
ten as virtual CPU instructions (bytecodes); they
are loaded into the EEPROM and executed by the
interpreter. Fig. 2 shows the architecture of the
microcontroller in MYUROBO and the role of each
component.
2.1 Bytecode interpreter of MYUROBO

The bytecode interpreter of MYUROBO is not
only a sequencer of recorded instructions. It offers
a virtual CPU which has functionalities of memory
transfer and calculating operations. The concep-
tual diagram of the implemented virtual CPU is
shown in Fig. 3. The virtual CPU is modelled af-
ter a register machine. The summary of registers
in this CPU is shown in Table. 1. The size of each
register is 8-bit. The numerical and logical opera-
tions which are executed on the A register changes
status flags (C for carry and Z for zero). The sta-
tus flags affect the behavior of conditional branch
instructions.

Table. 1 Registers of virtual CPU

Name Function
A Accumulator
IX Index register
T1H, T1L Timer value (16 bit)
PA Input port
PC Output port
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Fig. 3 The conceptual diagram of vir-
tual CPU realized by the MYUROBO
firmware

2.2 The benefit of virtual CPU
Instead of downloading actual machine code, we

have used virtual CPU and its programs (byte-
codes), due to the following reasons:

• Register, memory and I/O architecture of mi-
crocontroller are complex; we wanted to hide
such details.

• By using abstract instruction, we can freely
move to different models of microcontrollers
or add new instructions in a backward com-
patible manner.

From the above reasons, by designing virtual
CPU properly, it can offer an abstract simple archi-
tecture and an instruction set to the programmer.
This makes the programmer write programs which
is suitable to the robot control easily.

Generally, abstraction of the hardware is offered
by libraries, but there is an advantage to detach
functions from the language by offering abstracted
instructions of the virtual CPU as bytecodes. In
the case of using libraries, the programmer has to
keep their APIs in mind, but in the case of using
a virtual CPU, the programmer can write robot



Table. 2 Summary of MYUROBO in-
structions (excerption)

Instruction Function

startrobot start of MYUROBO program
endrobot end of MYUROBO program

n forward rotate both wheels forward
(in n× 0.1 seconds)

n back rotate both wheels backward
n turnright turn the robot to the right
n turnleft turn the robot to the left
n stop stop the robot

n m tone play a sound of m-width pulse

i label label with i
i jump jump to label i
i j jumpifhigh jump to label i if the status

of sensor j is high
i j jumpiflow jump to label i if the status

of sensor j is low

i blockstart start of the block i
blockend end of the block
i executeblock execute block i
i n repeatblock repeat block i in n times
exitblock exit from a current block

n A set n to A register
n ADD add n to A
n SUB substitute n from A
INCA increment A
n CMP compare A with n
n AND bitwise AND
n OR bitwise OR

JZ jump if zero
JNZ jump if not zero
JC jump if carry is set
JNC jump if carry is not set

control codes naturally by using a compiler or a
converter from a well designed high-level language
to the bytecodes.
2.3 Instructions defined in the bytecode

The implemented bytecode has mainly two cat-
egory of instructions; one is optimized instructions
for robot control such as motor control or branch
by the status of sensor input, and the other is in-
structions the same as which in other general pur-
pose CPUs such as transferring data between reg-
isters or numerical and logical operations.

Table. 2 is a summary of typical MYUROBO in-
structions.

The allocation of bytecodes and naming of

mnemonics corresponding to them are carefully de-
fined as upper compatible to our previous “biax-
ial robot controller board” [3]. All bytecodes al-
located in previous board are included in the new
bytecode system.

3 Programming environment for

MYUROBO controller board

Every bytecode have corresponding mnemonic.
Then the most primitive method to program
the MYUROBO board is manually translating
mnemonics (operation names) to corresponding
numbers (op-codes), representing them as series
of numerical data and prepare a software that
reads numerical data and sends them to the board.
However, this procedure is tedious and error-prone
task. Therefore, there is a need to develop a inte-
grated programming environments that can trans-
late MYUROBO instructions to bytecodes auto-
matically and send them to the board.
3.1 Programming environment with Dolittle

Dolittle is an educational, object-oriented pro-
gramming language. we were using Dolittle for
elementary, junior-high and high school program-
ming education. Then it is natural for us to use
Dolittle system also for robot programming.

In order to alleviate problem which have men-
tioned above, we have developed simple robot lan-
guage (mnemonic) translator on top of Dolittle.
The main idea is to define method for each of the
mnemonic, and the method outputs corresponding
op-code to the serial port, optionally with accom-
panying operand data.

The actual sample code is shown in Fig. 4. In
our Dolittle envitonment, “serialport” object is
predefined, which handles serial port of the PC.
The “serialport” object has “open”, “close”, and
“write” methods. They correspond to “open the
specified port”, “close the port”, and “send a data
to the port” functionality. We defined additional
methods which names are the same as mnemon-
ics. In these methods, we wrote codes to send cor-
respondent bytecodes and accompanying operand
data to the serial port. Then, the programmer can
write a robot control code as three steps like (1)
opening the serial port, (2) doing some mnemon-
ics method invocations, (3) closing the port. In
Fig. 4, mnemonics are written in separate method



robo=serialport!create.
robo:transfer=[!

startrobot
20 forward
10 stop
20 back
10 stop

endrobot
].
robo!”com1” opensesame.
robo!transfer.
robo!closesesame.

Fig. 4 Example program of
MYUROBO code in Dolittle

named “transfer”. By using this technique, the
programmer can concentrate on writing mnemon-
ics because the other part of the program (before
“startrobot” and after “endrobot”) is completely
the same in every program.
3.2 Structured control and MYU BASIC

Dolittle environment explained in the previous
section was quite usable for simple program tar-
geted to two-motor robots. However, when the
programmer starts to handle multiple sensors in
the code, it becomes complicated and the read-
ability of it degrades. The problem resembles to
that causes in general assembly code; “spaghetti
program”.

Robot programs with mutliple sensors must have
series of conditional dispatch and corresponding
actions, and its complex structure is difficult to
describe naturally in primitive conditional jumps.
To overcome the problem, programming language
with structured control flow was necessary.

As an asnwer to the problem, we first devel-
oped “MYU BASIC” [6] by modeling after the
structured Basic language. MYU BASIC is imple-
mented by Visual Basic and it is a complete system
that can edit source file, compile it, and send byte-
codes into the controller board. Table. 3 shows the
structured syntax adopted by MYU BASIC.

Another noteworthy feature of MYU BASIC is
a declaration of variable. In the MYU BASIC pro-
gram, single byte sized integer variable can be de-
clared. By using this, the programmer can access
memory area of the controller board without han-

Table. 3 structured syntax of MYU BASIC

Function Syntax
Condition If ... Then ... [Else ...] EndIf

IfHi(n) Then ... EndIf
Iteration Do ... Loop

For ... Next
Procedure Proc ... EndProc
Function Function ... EndFunction

dling index register directly. Thanks to this fea-
ture, the user can easily program the robot be-
havior which responds to a status variable. For
example, the robot can recognize how many times
it turns at corners.
3.3 Design of structured robot-control language on

Dolittle syntax
From the experience of MYU BASIC, we have

learned there is a good effect in the readability of
the code by using the structured syntax. Then, we
return to Dolittle. Because the syntax of Dolit-
tle is simple and easy to understand, we think it
is worth challenging to develop structured robot-
control language on Dolittle syntax.

At first, we examine the same syntax with orig-
inal Dolittle as robot-control language, but we
abandon this idea because we notice that there
is a semantic difference between the concepts of
object-oriented programming in Dolittle and the
autonomy of the robot. In the program of Dolit-
tle, multiple objects communicate each other with
message passing. On the other hand, in the robot-
control program, a robot object describes entire
robot. If the robot object communicate to other
objects in Dolittle, it means that the robot has to
communicate with Dolittle system while its execu-
tion. This contradicts the autonomy of the robot.

Consequently, we have determined “MYU” ob-
ject which inherits original “serialport” object and
designed to implement all structured commands as
methods of this object. The designed structured
syntax is shown in Table. 4.

The syntax of the conditional branch and the
iteration resemble to original Dolittle except for
the position of “!” sign and the absence of a period
at the end of the line. In addition, the condition
part is limited to testing the status of the sensor



Table. 4 Structured robot-control lan-
guage on Dolittle

Function Syntax
Condition [!n ifhigh] then [...] execute

[!n iflow] then [...] else [...] execute
Iteration [!n ifhigh] whilerepeat [...] execute

[...] n repeat
Terminating break
Iteration

robo=MYU!”com1” create.
robo:collision avoidance=[!

[!1 iflow] whilerepeat
[!10 back 10 turnright] execute

].
robo:program=[!

startrobot
[!

forward
[!2 ifhigh] then [!collision avoidance] execute

] repeat
endrobot

].
robo!program.

Fig. 5 Example program of structured
robot-control language on Dolittle

input. For this purpose, only “ifhigh” and “iflow”
methods can be used in the condition part.

Furthermore, in order to enable composing com-
pound conditions, we introduced “and” and “or”
methods.

The example program using this structured lan-
guage is shown in Fig. 5. This program includes a
definition of a subroutine by method definition, a
method invocation, two conditional branches, and
iteration.

4 Implementation of converter to

MYUROBO instructions with Dolittle

In this section, the implementation detail of
above structured language on Dolittle system is
described.

iflow …
Y

N rejectp

Fig. 6 Simple conditional branch

4.1 Simple conditional branch
As described above, the condition part of a con-

ditional sentence is limited to “ifhigh” and “iflow”
methods. These methods test the status of the
sensor input by specifying a number of input ports
as an argument of the method.

For example, in order to execute the statements
when the status of sensor 1 is high, write like this:
[!1 ifhigh] then [...] execute

This also means that “when the status of sensor
1 is low, skip the statements and goes to the next
line of the statements”. Therefore, in converting
to MYUROBO instructions, “ifhigh” method of
structured language should convert to “jumpiflow”
of MYUROBO instruction and “iflow” method
should convert to “jumpifhigh”.

As for jump target, the converter decides the
label value and stores in the internal variable “re-
jectp”. The “then” method have a role to evaluate
the block of condition part like “[!1 ifhigh]”.
Then “execute” method evaluates the argument
block and outputs “label” instruction with its
value is “rejectp” at the last part of processing.
Fig. 6 shows the diagram of this conversion proce-
dure.
4.2 Conditional branch including else clause

The example of conditional branch including else
clause is as follows:
[!1 ifhigh] then [...] else

[...] execute
In this case, after processing “then” method,

“else” method evaluates argument block first, de-
cides new label value and stores in the internal
variable of “(new) rejectp” and outputs “jump”
instruction to there. Then, the converter outputs
“label” instruction which value is “(old) rejectp”
and disables this old value. As a result of this
process, the “execute” method outputs “label” in-
struction with new value of “rejectp”. Fig. 7 shows
the diagram of this conversion procedure.
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Fig. 7 Conditional branch including else clause
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Fig. 9 Compound conditional sentence using “or”

4.3 Compound conditional sentence
The compound conditional sentence uses “and”

and “or” methods.
The conversion procedure of “and” method is

the same as “then” method. The diagram of Fig. 8
shows the correctness of this.

On the contrary, “or” method needs more com-
plex conversion process.

In converting “or” method, the condition part
does not invert the logic. Then “ifhigh” method in
the condition part of “or” method is converted to
“jumpifhigh” instruction. In addition, the name of
internal variable is “acceptp” instead of “rejectp”.
With this difference, the “execute” method should
have an additional process to output “label” in-
struction with its value of “acceptp” at first. Fig. 9
shows the diagram of this conversion procedure.
4.4 Iteration

The “whilereapet” method realizes an iteration
using a condition. In order to prepare startup
point of the loop, the converter first decides the
value of internal variable “loopp” and outputs “la-
bel” instruction with the value. Then by process-
ing the condition part with the same manner of
“then” method, it enables to jump to the “rejectp”
point when the loop condition becomes false. In or-
der to form the loop, the “execute” method should
have an additional conversion process to output
“jump” instruction to the point of “loopp” be-

iflow …
Y

N rejectp
loopp

Fig. 10 Iteration using a condition

tween the evaluation of the argument block and
outputting “label” instruction of “rejectp” point.
Fig. 10 shows the diagram of this conversion pro-
cedure.

The “repeat” method realizes an iteration us-
ing a count. In converting this method, the
“block” functionality of MYUROBO instructions
are used. As the “block” of MYUROBO can iter-
ate with the “repeatblock” instruction, the con-
verter defines the value of the internal variable
“blocknum” and outputs “repeatblock” instruc-
tion with the value. However, because the nesting
of MYUROBO “block” might cause a problem of
ambiguity, the evaluation of the argument of “re-
peat” method (body of the iteration) is delayed by
storing the evaluation code into the “blockname”
array as a string and actually evaluated in the
execution of “endrobot” method by sequentially
processing the member of the “blockname” array.
Then all of the blocks are sequentially aligned at
the end of resulting instructions.

The termination of the iteration is processed as
in the case of “whilerepeat”, outputting “jump”
instruction to the point of “rejectp” and in the case
of “repeat”, outputting “exitblock” instruction.
4.5 Subroutine by the method

Because the content of a defined method is ac-
tually a block of Dolittle, invoking the method
in robot-control program causes an expansion of
the content of the method. This mechanism is
the same as macro expansion in general purpose
programming languages. The method definition is
effective to raise the visibility of the code, but be-
cause of this mechanism, numbers of method invo-
cations enlarges the size of converted MYUROBO
codes.

Then, we prepare “blockize” method to realize
the original meaning of the subroutine by using the
“block” functionality of MYUROBO. The usage of
“blockize” is writing code as following instead of
writing method invocation:



Fig. 11 Visual elements of MYU object

!"method name" blockize
The “blockize” method outputs “executeblock”

instruction here and store “method name” into
the “blockname” array. With this mechanism,
the content of the defined method is expanded as
the “block” of MYUROBO in processing the “en-
drobot” method.
4.6 Visualization of MYU object

The conventional “serialport” object does not
have any visual element which every other Dolit-
tle objects have. Then we added visual element
to “MYU” object in order to the user can fig-
ure out the status of the object. In the process
of conversion, the “MYU” object stores converted
MYUROBO code into an array and when the
user presses the “TRANSFER” button, it starts
sending bytecodes to serial port. Additionally,
by invoking “robocode” method, the converted
MYUROBO code appears in the visual element
and the user can ensure the correctness of the con-
verted code. Fig. 11 shows the visual element of
“MYU” object. From the left, the first is an ap-
pearance at the moment of the converted code is
shown, the second is an appearance of under trans-
ferring bytecodes, and the last is an appearance at
the moment of the transferring have finished.

5 Discussion

Because every statements of the structured
robot-control language on Dolittle syntax are im-
plemented as methods of “MYU” object, they are
interpreted and executed by Dolittle system. From
this reason, the language is a part of Dolittle sys-
tem and the user does not need to learn any other
operations than original Dolittle system. However,
there are some unnatural limitations caused by this
implementation.

5.1 Unnatural description of receivers
Because each statement of the structured lan-

guage is a method of Dolittle, it need to specify
receiver. In Dolittle syntax, each statement have
to start with receiver name and “!” sign. But
if the receiver of the message is the same object,
the receiver name can be eliminated. In addi-
tion, Dolittle have “cascade” notation and if the
receiver of continuous messages are the same, even
“!” sign can be eliminated. In consequence, the
robot-control program on Dolitte syntax can write
with single cascading messages as shown in Fig. 4.
The robot-control program in Fig. 4 does not in-
clude any receiver name or “!” sign except for the
beginning of the block (line 2). Indeed, there must
specify receiver at the beginning of the block. An-
other example of robot-control program in Fig. 5
shows this fact. Because each statement of struc-
tured robot-control language has the form of block
and method name, there are numbers of “[!” no-
tation in the program. Since understanding the
exact meaning why this “!” sign is required in
robot-control program is difficult to novice Dolittle
programmers, they are tend to forget to write it.
Even worse, statements in which the evaluation of
argument block are delayed such as “execute” does
not cause Dolittle syntax error even if the “!” signs
are missing. In such a case, whole of the block is
ignored in converting to MYUROBO instructions.
For example, the statement as following:
[!1 ifhigh] then [forward] else

[back] execute
does not raise syntax alert from Dolittle system
but in the converted code, “forward” and “back”
are not included. This seems to be an error which
is difficult to notice for the user.
5.2 Difficulty in checking errors of a word order

Because each statement of the structured lan-
guage is independent Dolittle method, even if the
user makes a mistake of the word order or combin-
ing unrelated statements, the Dolittle system does
not notice any errors to the user. For example, the
following sentence:
[!1 ifhigh] whilerepeat [...] repeat

is not an error in original Dolittle syntax. In this
case, user’s mistake can be detected by checking
the value of “loopp” in the process of converting
“repeat” statement because “repeat” statement
does not need “loopp” variable. These kinds of



checking are included in current implementation
of structured language, but there may be unnoted
illegal combination.
5.3 Confusable with original Dolittle syntax

Because each word of the statement of struc-
tured language is the same as original Dolit-
tle, users who are familiar with original Dolittle
tend to confuse syntax. Inserting “!” sign like
“[…]!then” and attaching periods at each line are
typical confusion.
5.4 Unable to handle variables and expressions

The current implementation of structured lan-
guage cannot handle variables. The only way
to handle registers and the memory area of
MYUROBO from Dolittle is writing MYUROBO
instructions directly. Because any variables de-
fined using Dolittle syntax are statically deter-
mined at the time of converting, those variables
and expressions are converted as fixed number. We
have no idea to handle expressions in the current
implementation of structured language.

6 Conclusion

Because the firmware of our target robot con-
troller board “MYUROBO” realizes a virtual CPU
which runs its bytecode interpreter, the user can
program with any kind of high-level language by
developing the compiler or converter from the lan-
guage to the bytecode.

We found there is a difficulty in productivity
of programming by using the mnemonic which
directly corresponds to the bytecode. Therefore
we designed and implemented structured robot-
control language on Dolittle syntax. Current im-
plementation utilizes block of Dolittle and realizes
control structures by inserting “label” and “jump”
instructions of MYUROBO mnemonic before and
after the block.

However, there are problems such as unnatural
syntax or difficulty in handling variables and ex-
pressions in the implementation using Dolittle sys-
tem. Therefore enhancing Dolittle system or de-
veloping independent compiler would be needed to
overcome these problems. We are going to design
new structured robot-control language based on a
fully object-oriented model.
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