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Global existence of a gradient flow for a quasiconvex functlonal
satisfying some coerciveness condition

Koji Kikuchi

Department of Applied Mathematics, Faculty of Engineering, Shizuoka University
Hamamatsu 432-8561, Japan

1 Introduction

Let Q@ C R" be a bounded domain with Lipschitz continuous boundary and let F' =
F(z,u,p) be a function defined on {2 x RY x R™N. We define a functional for u:  — RV
(1.1) J(w) = /Q F(z,u, Du)dz,

where Du denotes the Jacobian matrix of u. Our purpose is to show global existence of a weak
solution to the equation of gradient flow for J which is possibly not convex but quasiconvex.
If J is convex, the existence follows from the monotonicity of grad J. However it seems that
there are a few works on evolution equations related to quasiconvex functionals. Similarly
to other nonlinear problems the difficulty lies in showing the convergence of nonlinear terms.
In this article, assuming some coersiveness condition, we overcome this difficulty.

The equation of gradient flow for J is given by u; + grad J(u) = 0, that is,

(1.2) 8u Z 3 —{Fp, (z,u, Du(2))} + Fui(z,u, Du(z)) =0, 7€,

where Du = (Dyu') = (—8—11—(%—32

with respect to only z variables). The initial and the boundary conditions are imposed as

follows:
(1.3) u(0,z) = uo(z), z€Q,

(1.4) u(t,z) = w(z), €N

) (throughout this paper D are used for differentiations

We suppose that 1 and w belong to W2(Q, RY) and that yuy = yw (7 is the trace operator
to 092).
We say that a function u € L%((0, c0); WH2(Q)) NUpse W((0, T) x Q) is a weak solution
o (1.2)—(1.4) if u satisfies s- hrn u(t,z) = ug(z) in LA(N), yu(t) = yw for L'-a.e. t, and for
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any ¢ € C§°((0,00) x Q)

N oo ) . n ,
(1.5) > [T it 2t 2) + 3 B (e, Du) Dep'(1,2)
i=1 a=1
+Fyi(z,u, Du)p'(t, z) }dzdt = 0.
If u is a weak solution to (1.2), then J(u(t)) is absolutely continuous and it holds that
dJ(u(t))/dt = —(us,ue) 2y < 0 for L'-a.e. t. This means u defines a gradient flow for J.
Our purpose is to construct a weak solution to (1.2)—(1.4) in the above sense.

Naturally several assumptions should be added on the function F'. First we require the
regularity as follows:

(A1) F € C*(Q x RY x R™).

The quasiconvexity is well-known as a necessary and sufficient condition for the sequential
weak lower semicontinuity of .J ([8, 9]):

(A2) F is quasiconvex with respect to p, that is,

1
£~(D)

/D F(zo, o0, po + Dep(z))dz > F(z0, 30, Po)

for each bounded domain D C R", for each (zo,y0, po) € {2 X RY x R™Y and for each
© € Wy (D; RN).

Growth conditions are required as follows:

(A3) There exist positive constants u, A, and a constant v with 1 < y < 2* (the Sobolev
exponents for 2) such that

Mpl® < F(z,u,p) < p(1+ Jul” + [pf*)
|Ful, [Foul < p(1+ [ul™! + |p])
|Fpl, [Fapl < p(1+ [+ |p])
|Fuo) < (1 + I'U'I’YJ)
|Fupl < (1 + [u]/?71)
\ |Fpp| < p.

Note that these estimates are somewhat controlled ones. For example, a function of the
form F(z,u,p) Zam z,u papﬁ is not admitted. Functions having the form F(z,u,p) =
g(z,p) + h(x u) are possibly admitted. Anyway conditions up to this one are standard ones.
In this article we should further require the following coersiveness condition:

[N



(A4) There exists a positive constant m such that
Z / Fyi 5 (2,9, DY) Do’ Dap’dz > m/ |Dp(z)|*dz
a,f=114,5=1 :
for any ¢, p € Wy (2, RY).

Remark. If a quadratic function, F(p) = ZaLJ papﬁ, satisfies the strong Legendre-
Hadamard condition

> a&antéen’ 2 vIgP?® (v >0, € R, e RY),
then we easily find (A4) holds with m = v. Thus, if F has the form
F(.’E,U,p) = FO(p) + G(a:,u,p),

where [y is a quadratic function which satisfies the strong Legendre-Hadamard condition
and where G satisfies |Gpp| < cv with ¢ < 1, then F' satisfies (A4) with m = (1 — ¢)v.
Fzxample. Let n = N = 2. The function
F(p) = (p1)* + (p2)* + (0] + (93)° + 2(1 + &) (p1P} — pip?)
Fey/L+ (pD + (BD)* + (614 + (13)* + LL(plpE — phpd)?
satisfies (A1)-(A4) if ¢ is sufficiently small. Indeed, (A1) is clear, it is easy to find that F

is polyconvex, what implies (A2) (compare to [2, Section 4.1]), by Schwarz’s inequality we
have :

1
[P + 2(1 + £) (i} — ppd) + (1 + Ipl* + lllp%pé — papil)

F(p) >
; o
> (pi+p 2)2+(p%—p§)2+58lp1p2 p2p1|+ e(1+ |p?)
1
> —z(1
> 21+ 1pl%),

which shows the first inequality of (A3), other inequalities in (A3) are clear, and as has
mentioned above (A4) holds. However, letting p(!) = ( (1) é ), p® = ( 8 i ), we have
F(pM) = F(p®) = 2 + /3¢ and thus

p) + p@ 3v5+2
#_):2+ V5

~(PEW) + F(p®) < F(

Hence F' is not convex.

Our main theorem is



Theorem 1.1 There exists a weak solution to (1.2)—(1.4).

We construct approximate solutions to (1.2)-(1.4) by the method of discretization in
time and minimizing variational functionals. In recent several years this approximating way
is widely applied to constructing weak solutions to nonlinear partial differential equations
([L, 3, 5, 6] and references cited therein). Thanks to this method and our assumptions, in
particular Condition (A4), we are able to obtain the uniform estimate of second derivatives
with respect to the space variables. In Section 2 we prove Theorem 1.1 accepting this
estimate and in Section 3 we prove it.

2 Constructing a gradient flow

Let h be a positive number. A sequence {u;} in W'2(Q, RY) is constructed as follows:
we let ug be as in (1.3) and for [ > 1 we define u; as a minimizer of the functional

v — 2
Fi(v) = %[z ‘—-%ll-dx—k J{v) (J is as in (1.1))

in the class w + Wa2(€, RY) (that is, among functions in W42(Q, RY) with yv = yw).
The existence of a minimizer of F; is assured by the quasiconvexity of F and (A3) (see,
for example, [2, Chapter 4, Theorem 2.9]). Note also that (A3) assures JF; is Gateaux
differentiable. Approximate solutions u"(¢,z) and @"(¢,z) ((¢,z) € (0,00) x Q) are defined
as, for (I — 1)h <t < h,

t—({—1h lh—t
(—h_)—ul(x)_l_ -

ul(t,z) = w_1(x)

and
7 (t,z) = w(z).

Then the following facts hold.

Lemma 2.1 We have
1) {|lu? |22 0,00y <) } 15 uniformly bounded with respect to h
2) {1 " | (0.00)wr2()) } is uniformly bounded with respect to h
3) {||u" | oo (0,000 w1 2() } 85 uniformly bounded with respect to h
4) for any T > 0, {||v" lwr2qoryxay} is uniformly bounded with respect to h.
Then there exist a function u such that, passing to a subsequence if necessary,
5) T converges to u as h — 0 weakly star in L=((0,00); W2())
6) for any T > 0, u" converges to u as h — 0 weakly in WH*((0,T) x Q))
7) u converges to u as h — 0 strongly in L2((0,T) x Q)
8) T converges to u as h — 0 strongly in L*((0,T) x Q)
9) s- hmu( ) = ug tn L2(Q).



Sketch of the proof. The proof of this lemma can be found in formar works (for example
[1] or [10]). But, taking account of its importance, we present its brief sketch.

Since u; is a minimizer of 7, we have Fi(w) < Fi(w-1) = J(w_1). Then by iteration we
have

! o 12
Z/ e = o[ dz + J(w) < J(ug).
k=17 h

Thereby, noting that, for (I — 1)k < t < Ik, v}(t,z) = (w(z) — w_1(z))/h, we have the
energy inequality o

/ L WP Pdzdt + J(@) < J(ug).

0

This directly implies 1) ~ 4) and hence 5) and 6). Combining with Sobolev’s imbedding
theorem, we have 7). By the definition of u" and @" we can obtain |ju" — || 2(0,myx) — O
as h — 0. Hence 8) follows from 7). By definition, w"(0,z) = uo(z) for each k, and thus 9)
is obtained. Q.E.D.

Lemma 2.1 9) means that u satisfies (1.3) in a weak sense. Lemma 2.1 5) implies that
u satisfies (1.4) in a weak sense since @* — w € L®((0, co); W,2(Q)) for each h. Thus the
problem is whether u satisfies (1.5). Since w; is a minimizer of F;(v), dF;(u; + £p)/de|c=o = 0
for any ¢ € Wy?(€2), and hence we have

N n ‘
(2.1) Z/ﬂ{(uf‘)’(m)go’(x) + 3" Fyi (2,7, D) Do (z) + Fui(z,@", D7)’ (z) }dz = 0
i=1 a=1

for any p € Wy?(Q) and any t € U2, ((€ — 1)h, ¢h).
Our key lemma is as in the following. The proof of this lemma is carried out in the next
section and in this section we prove our main theorem, Theorem 1.1, accepting this lemma.

Lemma 2.2 For any ) CC Q and for any T > 0,
{Il Da D" || 20 myxsvy; 0, 8 = 1,2, ,n}
s uniformly bounded with respect to h.

Lemma 2.2 is just a result for the second derivatives with respect to only z variables, and
hence we cannot apply Rellich’s compactness theorem directly. However in the following
proof the strong convergence of @" (Lemma 2.1 8)) works instead of the regularity of "
with respect to t (compare to the proof of Rellich’s theorem, for example, Lemma 1.1 of [12,
Section 1.1]).

Proof of Theorem 1.1. It is sufficient to show that {Du"} converges strongly to Du in
L3((0,T) x &) for any ¥ CC Q and for any T > 0.



Let p,* be the standard mollifier with respect to z variables and let Q" be a domain
with ' cc Q" cc Q. Suppose o is so small that dist(0Q",0€)) > o. Then easily we have
D(ps *T")(t,z) = (p, * DT")(t,z) for each z € ' and each t with w"(¢,-) € W?(Q).

- Claim 1. D(p, *T") converge to D(p, xu) as h — 0 strongly in L*((0,T) x &)
Proof. By the Hausdorfl-Young inequality we have
| D(ps * ﬂh) — D(po * ) || L2(0,1)x0) ,
T
= o[ [ 1] (Deo)e =)@ (t,y) - ult,y)dydrdr)*"
T

< —1/ Dp,)(z — d//"ht — u(t,y)|*dydt)*?
< o |Dpo) (@ =y)ldz() - [ [E(Ey) u(t, y) | dydt)

= o7 [ (Dp)@)ldz |7 ~ 2oy

which shows Claim 1 by Lemma 2.1 8).

Claim 2. p, x Du" converges to DT as o — 0 strongly in L2((0,T) x ) and uniformly
with respect to h.

Proof Let v" denote D@". Now
| po % V" — 0" || 20,1y )= (AT . o * V" (t,2) —v™(t, z) [Pdzdt)?
= ([ 1] pele = 60 = P )y Pt
< 0(/0T/, /a(z) 0o (z —y) Al |DV" (¢, 2 + B(y — z))[2dfdydzdt) /2.

Here we make a change of variables (z,y) — (z,w) by

{z:az—i—@(y—x)

w=2z-—1y.

The Jacobian coincides with (—1)" and (z,w) € 2" x B,(0). Hence we have

T .
“ Po * Uh - Uh HLz((O,T’)XQ')S.O-(‘/0 / )pa(w)dw o |D'Uh(t, Z)|2d2dt)1/2 <o ” D’Uh ”L2((O,T) xS

(0
the left hand side of which is uniformly bounded with respect to A by Lemma 2.2.

End of the proof of Theorem 1.1. Now we put T" = p, * 7" and u, = p, * u. We write

| D" — Du || p2(o,myxe)
S ” Dﬂh - Dﬂg “Lz((O,T)XQ’) + ” Dﬂg —_ DUU ||L2((0,T)><Q’) -+ Il D’U,U —_ Du“Lz((O,T)xQ’) .
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As ¢ — 0, the first term converges to zero uniformly with respect to h by Claim 2, and
clearly the third term also converges to zero. Hence these are estimated from above by any
given positive number ¢ if o is sufficiently small. When such a small ¢ is fixed, the second
term converges to zero as h — 0 by Claim 1. Then we have

limsup || DT" — Dull2(0,mxa) < 2€.
h—0

Since ¢ is arbitrary, we have the conclusion. : Q.E.D.

3 Uniform estimate for second derivatives

Readers should note that up to this step we do not require Condition (A4). It is required
for the proof of Lemma 2.2.

Proof of Lemma 2.2. The proof is carried out by the use of difference quotient” method
(compare to the proof of Theorem 1.1 of [4, Chapter II]). For the sake of brevity we omit
the dependence of t in each functions in this proof. Let {ej,...,e,} be the standard basis
of R" and let ¢ be a function with compact support in Q. Let k be a sufficiently small
number depending on the support of ¢. We insert p(z — ke,) in (2.1) instead of (z), make
the change of variables y = z — ke, in the second and third terms, and rewrite y as z again.
Then we have

(31) Zé{(u?)z(x)@t(x_kes) + zi:l F},:1 (.’B-{-k‘es,ﬁh(a)-i—/ces), Dﬂ’1($+ kes))DaQOi(JI)
i (z+ ke, T (z+ke,), D" (z+ kes) ) ' (z) }dz = 0.

Subtracting (2.1) from (3.1) and dividing it by k, we have

(32) - [) > [_l (ul)(z) Dsp'(z — Thes)dz + 5% /Q Fyops (- ) Dot (z) dz
i=1 a=1i=1

n N N —h\17 _ h 7 T

bR [ Ry ()R 2 PG b i,
a=1i=1j=1

+ ﬁz_:z: > QFPEP;(“ )Dﬁ((u ) (37-‘- ke]:) ( ) ( ))Dasoz(x)dx
x ; N Y (@) (2 + key) — (@) (z) |
N N =n AV _ (5h\j z .

© 05 [ Pl DR g <o,
i=1j=18=1



where
(- )=(z+ Tkey, 70" (z + kes) + (1 — )@ (z), 7D (z + kes) + (1 — 7) D@ (z)).

Let Br be a ball with radius R. We take n € C§°(B2gr) and 7j € C§°(Bsg) such that
Bir CCQ,0<n,71<1,n=1o0n Bg, and 7j =1 on Byg. Now we insert in (3.2)

at es) — T (x
pla) = LR 2T e

By the use of Condition (A4) we can estimate the fourth term of (3.2) from below. Indeed
change of variables in (A4) implies

n

Z LF, (z + Tkes, Y(z + Tkes), DY (z + Tkes))

ﬂ 14,7=1

Do’ (2 + Thes) D’ (z + Thes)dz > m / |Dp(z + Thes)[Pdz

for any ¥, ¢ € Wy (Q, RY) with dlst(spt 1, 00), dist(spt o, 0Q) > Tk, and hence applying
this inequality in case that

Y(z) = [13"(z — Tkes + keg) + (1 — 7T (z — Tkes)]Ai(z — Tkes)

and _ N |
ple) = LLETheat ko) = @I @2 TReD (e,
we have
] — (77")7 ﬂh % T e.) — ﬂh i T
> [ Bl )](”ke,j) V) (09 p, (T EH ) ) )
a,0,%,]

> m [ DR T gy g,

The first term of (3.2) is estimated by a sunple calculus and we have, for each £ > 0,

N T (x — Tkes + kes) — T (z — Tke,
> [y p T ,j & = TR) 1 — e, )?)da
(z + kes) —a®
< 5_1/Q|u (z )|2cl:z:+C'+c/ |D +kk) (x))n(x)IQd:c.

Absolute values of other terms in (3.2) are bounded from above by

‘ h T s —-—Hh T )
33 c1o) +¢ [ 1pEEE =T ) pasy,




where C'(g) denotes a constant dependmg on ¢ and C denotes a constant depending on g,
v, R, n, and the uniform bound of {||u" ||z, wo);wh2()) } (see Lemma 2.1 2)). For example,
the last term of (3.2) is estimated as follows: by (A3) and Sobolev’s imbedding theorem

(Yt kes) = @)(e), @)+ hes) = @)(2) |z

|53 [P : ) ;

=l =t
< uf (A4 Ir@ethe) + (1 - D) ey B her) G
y “D(’ﬂh(:c + ke]:) - ﬂh(m)n(x))l +sup [Dn“ﬂ"(sc + /fel:) —u"(z) ldz
< MAZR[A(E) + e|maM(z + kes) + (1 — 1)l (z)[F/?- 1” "z keks) - "(ar)n(x)|
(TR T )+ up g TR )
<l (4GP + A sup |y T EF R Z @ .
+epZlt ke;) AN
+€%m 78" (2 + keg) + (1 — )@ (z) [ dz]® -2/22
y [/Bm Iuh(:c+ ke]:) — 3" () (@) da] /7
X [/BQR(ID(#(H]%,:) _ﬂh(‘”)n(a:m + sup | Dy (x+kelz) (x)l) s
< i 4323[(’4(5)26“1 + sup| Dyl &L ke;) —7@) |
el DT ELE) Z T g,

k
FVEIME ([ (D (@ + ke) + (1~ 7) D () ] 2%
B. .

2R

U, ipTEHE) T T, g e

k
o (z €s —a(z
<l 1o Z T )
+oup a2 [ (TEHE) 2T oy,

where A(z) denotes a constant such that 1+ r —er@=2/0=2) < A(¢) for each r > 0 and M
denotes a bound of Sobolev’s imbedding W'?(Byg) C L* (Bzg). Then there exist C(e) and

9



(' such that (3.3) is an upper bound of the right hand side.
Thereby, taking € sufficiently small and fixing it, we have

=h __=7h

[ 1 2T 2y < 01+ [ ub(@)Pa),
Br k Q

where C' is a constant depending on the fixed € and the things specified before. This implies

for any 7' > 0

T h 2 T h 2d
_ < '
A AR |Ds DT" (z)|*dzdt < C(T—I—A A[ut (z)|°dzdt)

[t follows from Lemma 2.1 4) that the right hand side of this inequality is less than a constant
which is independent of h. This completes the proof. Q.E.D.
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Global existence of a weak solution to
Semilinear beam equation

Koji Kikuchi

Department of Applied Mathematics, Faculty of Engineering, Shizucka University
Hamamatsu 432-8561, Japan

1 Introduction

Let © be a bounded domain in R" and let ' = F(z,y,p) be a real valued function

in CH{Q x R x R") and F, and F, denote the vectors whose elements are o and i—F,
Do Y

respectively. Partial derivatives are often denoted by the use of subindices. In [4] the author
has constructed a weak solution to fourth order parabolic equation

%?;(t, z) + A%y — div{F,(z, u(t, z), Vu(t, z))}
+Fy(z,u(t,z), Vu(t,z)) = 0.

The constructing way is the method of discretization in time and minimizing variational
functionals. This approximating method is firstly applied to constructing weak solutions
to linear parabolic equations ([11]). In [7] N. Kikuchi has independently rediscovered this
method, and after [7] there are many works in applying this method to constructing weak
solutions to nonlinear partial differential equations (see references cited in [4]), and it has
turned out that this method is available for not only parabolic equations but also hyperbolic
ones (compare to [2, 5, 12]). Our purpose here is to clarify that this method is still available
for a class of Schrddinger type equations.

2 Semilinear beam equation
In this article we consider the following initial value problem for a fourth order equation:

(2.1) Q—zﬁ(t, z) + Ny — div{F,(z,u(t, z), Vu(t, z))}

ot?
+Fy(z,u(t,z), Vu(t,z)) =0, z €,
(2.2) u(0,2) = uo(z), ,wm(0,z) =w(z) z€Q,

This research was partially supported by Grant-in-Aid for Scientific Research (No. 12640205), Japan
Society for the Promotion of Science



(2.3) u(t,z) = w(z), Vu(t,z)=Vw(z), ze€oN,

where ug and w are functions in W2?(Q) with ug—w € Wy*(Q) and vy € L2(R™). Through-
out this paper V and A gre used for diffegentiationas with respect to only z variables, that
iS: V= t(axlaaxQV";arn) and A = (ﬁ)z—i— (5;)2++ (axn
equation is well-known as beam equation and is one of the Schrédinger type equations, while
there are several works on semilinear beam equation ([8, 10]). This equation is derived as
the Euler-Lagrange equation of the functional

AT[/Q :)l‘lut(t,a:)I?dg; — J(u(t, -))]dt,

Z

)?. Linear case of this

where

(2.4) J(w) = /Q {1 Aul?/2 + F(z,u, Va)}dz.
We assume that there exists a positive constant 1 such that

0 < F(z,y,p) < wo(l+ |y|% + |p|™)
(2.5) |Fpl < po(1 4 [y[® + |p|™)
Byl < po(1 + [y]® + |p]™),

where
0< <2n 0< <n+2 O<@p< n
qo n_47 q1 'I'L—4, q2 n_47
2n : n+2
0<rg< ,0<rm < , 0<rg <
n—2 n—2 n—2
when n > 5,
2n n+2
2>0,¢1>0,0>0,0<rg< ——,0<r<——=,0<m<
n—2 n—2 n—2

when n = 3, 4, and
0>0,q>0,¢>0 1r>0r >0 r>0

whenn =1, 2.
It follows from (2.5) and Sobolev’s imbedding theorem that J is Qateaux differentiable
on W*2(Q). Assumption (2.5) admits, for example, a function F(z,y, p) = a(z,y)|p|* when
n<7.
We say that a function u is a weak solution to (2.1)~(2.3) if u satisfies u € L*>((0, c0)

W),
Lla.e. t, and ’
26) [ [ {-Se0,2)6(6,2) + Bolt,2) Ad(E,2) + Fy(z, u(t2), Vult, 2)- V(1)

+F,(z,ult, z), Vul(t, 2))d(t, z) badt = /Q vo(2)$(0, z)dz

e J L¥(0,T) x Q), s-limu(t, z) = uo(z) in L*(Q), u(t) —w € W3*(Q) for

>0
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for any ¢ € C§°([0, 00) x ).

3 Constructing a weak solution

For a positive number h we construct a sequence {u,}32_, in W22(€) in the following
way. For £ = 0 we let ug be as above and for ¢ = —1 we set u_; = uy — hvy. For £ > 1 u, is
defined as the minimizer of the functional

—92
/ |'u Ue_1 + Up— 2| dr + J(U) (J is as in (2.4))

in the class {v € W22(Q);v —w € Wg*(?)}. By (2.5) and Poincaré’s inequality we see that
there exist constants ¢g and ¢; depending on §2 and w such that

J() = co || v [lwez) —a

for each v € W*2(Q) with v — w € WZ?*(Q). It follows from (2.5) and Sobolev’s imbedding
theorem that J is weakly lower semicontinuous on W22(§)). These facts yield the existence
of a minimizer of F,.

If .J is convex, then the following energy inequality holds ([9]):

1.

—/ qu—W—ll-dac+ J(w) < - / luo|*dz + J(ug).
2 Ja h?

In our case J is probably not convex, but we can obtain the weakened inequality.

Lemma 3.1

1 [Ug—’u,g_1|2
_ L S < N ——
L 72 cl:z:+J(ue)+1_(1_Cp0h

/ [vol? + J (uo) + 1],
where C' denotes a constant.
1
Proof. Let us write J = J; + Jo, where Ji(u) = ;L |Au|*dz for u € W22?() and

Jo(u) = /Q F(z,u, Vu)dz.
By the minimality of Fp(ug) we have

(3.1) Fo(ue) =

B 16( Uz—ue—l) —up_1 + o’
= = =

for 0 < 6 < 1. By an easy calculas we obtain

-9
/ |u£ ue 1+uz 2| da:-l—-](uz) S]—“(Quf—lr (1 —Q)Uc—l)

dz 4+ J(Ous + (1 — Q)ue_y)

lug — 2up_q + Ue—2|2 — 10(up — up—1) — up—1 + Ue—2|2

< (1= 0)(Olug — upa[* = Jug1 — ue2f).
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This and (3.1) imply
i 1 49!’11,@ — Ug_lfz
3.2 —9)= . Stk B
(32 (1-9); L e da 4+ J ()
_ L7 Juey — uppl? .
<(1-6); lz Tz + J(Bug + (1= O)u,y).

By the convexity of J; we have

(3.3) J(Q’LLe + (1 — 9)’&3_1) < 6J1(Ue) + (1 — 19).]1 (Ug_l) + J2(6Uﬂ +(1 - Q)Ue_l)
= 0](’&[) + (1 — 9)»](’(1@_1) - QJQ(Ug) - (1 - 9)J2(U@-1) + J2(0U€ + (J. - H)Ug__l).

Since F is convex with respect to p, we have

(34) JQ (9’&3 + (1 — H)Ug_l)
< %F(x, Bug + (1 — O)ug_r, Vag)dz + (1_9%F(x,eue+(1 — O)up_y, Vug_1)de.

Now we write

(35) 0 A F(, 0ue + (1 = 0)ug_r, Vig)dz — 6.Jy(uy)
.
=01 -0) AA Fy(2,ue — 01— 0) (ug — w_y), Vag)do (e — up_,)da.
Thus by (3.2), (3.3), (3.4), and (3.5) we have
1 9|’Ug - U[—1l2
(1-0); A e+ J(w) - 07 (w)
1 [ Jupey —up_ql?
< a-op [Pzl 0 g )
— (1 =0)Ja(ue—1) + (1 —8) L F(z,0up + (1 — O)up_1, Vup_y)dz
1
+ 0(1 - 9) A/O Fy(x,w - 0'(1 - 9)(Ue - Ug_l), VUg)dO'(’U,g - Uc_l)dl'.

Multiplying (1 — 6)~! to the both side and letting 6 1, we have

.. L7 Jue — up_y? Lor Jupoy — up_pl? ‘
—Jo(up_1) + AF(SE,U(,VU(-QCZZ‘"“AFy(ﬂf,Ug, V) (ue — up_1)dzx.
Here

(3.7) L F(z, up, Vitg_)dz — Jy(ug_1)
1
= /(;/0 Fy(ﬂf,uz-1 + U(W - uz_l), V’Ug_l)da(ue - Ue_l)dx.
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Using (2.5), we have by (3.6) and (3.7)

(3.8) %K)'ﬁi—'ﬁ;‘ﬂﬁdﬂﬂuz) < %Ki'“‘;l;“fidm.f(w_l)
+Co A (1+ Juet|® + [ug]® + | Voo | + | Vae|™) ue — ue_i]dz.
Now note the inequality
(3.9) / (14 (g1 | + [uel® + [Vatg1|™ + [Vaug| ™) Jug — wp_1|dz
< Ch[/ (1+ lue-1[*® + [ugl®® + |V, 1|2T2+|Vw|2'"2)dx+/ ———' ki llzdx]

2
< Ch[/ (L4 [Avea* + [Duel? + [Dup [ + | Augl? )cz“/ [ue - Ue_1| dz]

. n
since 0 < ¢ < >Oand0<r2<——5when
n

n=3,4, and g > . 0 and re >0 when n = 1, Here the constant C' varies tacitly. Hence
we have

, 1 [ |ue — upq]? 1 [ Juemy — upsgl?
(l—Cuoh)[:;A’—ZWZ—I—I—d:L‘JrJ(ue)-I-I] < (1+Cuoh)[§LLel*hzell—dx%](ue—l)"‘l]-

Then we obtain the conclusion by induction on ¢. Q.E.D.
Next we define approximate solutions w"(¢,z) and @*(¢,z) for (t,z) € (0,00) x 2 as
follows: for (¢ — 1)h <t < ¢h

uh(t,:c) = E_—(’éh—?—lﬂug(ar:) + Ehh_ t’Ug_l(.’E)

and
T (t,z) = w(z).

Then the following facts hold (see, for example, [1] or [9]).

Theorem 3.2 ForanyT >0

0
D]l _u_ ll2(0,myx)} s uniformly bounded with respect to h

2) {|| =" H Lo(o,T);w22@) } i uniformly bounded with respect to h
3) {Il v* | oo o)y} is uniformly bounded with respect to h
DH{Il v lwraqoy<q)} is uniformly bounded with respect to h.
Then there exist a sequence {h;} with hj — 0 as j — co and a function u € L*((0,T);

W22(Q) N g WY2((0,T) x Q) such that
T>0

(&3]



5) u' converges to u as j — co weakly star in L=((0,T); W*%(Q))
6) uti converges to u as j — co weakly in WH2((0,T) x Q)

7) uMi converges to u as j — co strongly in L*((0,T) x Q)

8) u"i converges to u as j — oo strongly in L*((0,T) x 0)

9) shmu( ) = ug in L2(Q).

Proof. By Lemma 3.1 we obtain, for each t € (0,7,
= : < (PR , :
5 L) + T 6 0) + 1< (A [ @)+ J(uo) + 1

Since
. 14 C,Ll,oh
lim(————
h—0"1 — C}Loh

we find that there exists a constant Cy = C1(T) such that

t
)h. — eQCuot’

1 1
5 [ )P+ J@ ) + 1< Gl [ (@) + T(uo) + 1]
Hence every assertions are obtained as in the former works, for example compare to [1] or
19} Q.ED.
Remark. In the sequel {u™} and {@"} are often denoted by {u"} and {@"} for simplicity.

Since u, is a minimizer of F,(v), we have

(3.10) 0 = —lfe(ue+5€b)|s—

-/ (LCE 2eta) T Uedl® )+ () ()

+ Fp(z,ue(z), Vue(z)) - Vo(z) + Fy(z, ue(z), Vue(z))d(z) }dz

h
ar

(¢, a:) = we(z) —hue_1(l') . Thus

for any ¢ € Wy (Q). Note that, for (¢ — 1)h < t < ¢h
(3.10) implies

(3.11) / /“* (t,2) “t —h, x)¢(t,x)drdt+/OOOL{Aﬂh(t,x)Agb(t,x)
+  Fy(z, 7" (t,:z:),Vu (t,z))-Vo(t,z) + F,(z,7"(t,z), VT"(t, ) p(t, z) Ydadt = 0

for any ¢ € C3([0,00) x Q). In the same way as in the proof of (4.5) of [5] (compare also to
[12]) we have, as h — 0, passing to a subsequence if necessary,

//ut hr>@@wﬂ_q_fﬁm@m@@mmﬁ—/wgmmﬂw.

Q
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Theorem 3.2 9) means that u satisfies u(0,z) = uo(z) in the weak sense. Theorem 3.2 5)
implies that u satisfies (2.3) in the weak sense since &* — w € L*((0, c0); WE2(Q)) for each
h. Hence our purpose is achieved if we show

(3.12) / /{A (t,2) Ad(t, z) + Fy(z,7"(t, z), V' (¢, z))- Vo (¢, z)
+ By(e, 7 (t, 2), Vah(t, 2))@(t, 2) ydodt
— [T [{oult,2)26(,2) + Fy(eu(t,2), Vu(t,2))- Vé(t,2)
0
+ Fy(z,u(t, ), Vu(t, z))p(t, z) }dzdt
Theorem 3.2 provides just a result for the second derivatives with respect to only z variables,
and hence we cannot apply Rellich’s compactness theorem directly. However the strong

convergence of @ (Lemma 3.2 8)) works instead of the regularity of @"* with respect to ¢ (see
the proof of Theorem 1.1 of [6]). Hence (3.12) can be obtained and we have

Theorem 3.3 u is a weak solution to (2.1)-(2.3).
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