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Phase retrieval from experimental far-field intensities

using a Gaussian beam

Abstract

The noniterative phase retrieval method by use of Gaussian filtering is applied to the
reconstruction of phase objects from experimental far-field intensities. In this method,
the complex amplitude of transmitted light through an object is reconstructed from
three far-field intensities, which are measured with the modulation of the object by
laterally shifted and unshifted Gaussian filters. In the experiment, the amplitude of a
Gaussian beam illuminating objects is utilized as a Gaussian filter, and, as the phase
objects, a converging lens with a small exit pupil and a plastic fiber immersed in
optical adhesive are used. The experimental results show that the Gaussian beam of
a laser is capable of retrieving the phases of those objects with the accuracy of the

range from ~1/10 to 1/4 of the laser’'s wavelength.



I. INTRODUCTION

Phase measurements of wave fields are of importance in various areas of science and
engineering. In optics, interferometric techniques are generally used to determine
the phase. For high-frequency waves such as x-rays, electrons, and atomic waves,
the phase measurement using interferometric techniques is difficult because, in such
waves, a coherent reference wave is barely obtained and some severe conditions on
measurement system are required when observing interference fringes. Thus there have
been studies of noniterferometric methods of retrieving a phase distribution from the
intensities of a wave field.!=® One approach to the phase retrieval from intensities is the
use of iterative algorithms, in which the phase is determined as an iterative solution
under some constraints, that is, measured intensities and a prior: information of a
wave field. In iterative algorithms, there are several types for using some constraints,
for example, image and far-field intensities of an object,’ a prior: information (e.g,
non-negativity and/or support of an object) and far-field intensity,'™!! two far-field
intensities of an object modulated and unmodulated by an exponential filter,!? far-field
intensities of an object and the object multiplied by a window function®?, and far-field
intensities of an object and its small-phase solution used as a starting point for an
iterative algorithm.!* The demonstration of iterative algorithms has been shown in
the phase measurement, for example, in electron microscopy? and the x-ray imaging
for noncrystalline samples.'®> The other approach to the phase retrieval is the use of
analytic (noniterative) methods, for example, phase retrieval based on the properties
of wave functions pertaining to entire functions,>”® and phase recovery by solving
the transport-of-intensity equation.'®=!? The intensity propagation-based method has

. : 22
been applied to phase measurements using x-rays,?® electrons,*" and neutrons.

Recently we proposed a phase retrieval method by use of Gaussian filtering, 22
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which is based on the properties of entire functions of a wave field. In this method,
the phase of a wave field in a plane is retrieved by solving simultaneous equations
consisting of unknown coefficients in the Fourier-series of the phase and intensity data
in the far-field plane for an object measured by modulation of the object with a
known Gaussian function and with its shifted functions along horizontal and vertical
directions in rectangular coordinates.

In this paper we demonstrate the application of the method using the modulation
with Gaussian filtering to the reconstruction of complex amplitude in the object plane
from its Fourier intensity data collected in a laboratory experiment. Two types of
objects are treated here: one is composed of a converging lens and a small circular
aperture, and the other is a plastic fiber immersed in optical adhesive. In the present
optical system, the amplitude of a Gaussian beam illuminating objects is utilized for
modulating the objects as a Gaussian filter. From the experimental results, it is found
that the Gaussian beam from a laser is capable of retrieving the phases of the objects
with the averaged root-mean-squared errors of the range from ~ 27 /10 to 27 /4 rad. A
brief outline of the phase retrieval method used here is given in Sec. II. Experimental

results and discussion are presented in Sec. III, and Sec. IV is the conclusions.

2. Outline of the Phase Retrieval Method

In this section, a summary of the phase retrieval method using a Gaussian beam?* is
described for the sake of readability. An object of two-dimensional complex amplitude
transmittance (or reflectance) f(u,v) (which is assumed to be of finite extent) is illu-

minated by a Gaussian beam with a wavelength A, of which the complex amplitude is



expressed in the form

Wo u? + v? m(u? + v?)
b A2 exp [ - mw v |
(wv) = Agy ( e )eXp {Z AR | (1)

where A is a constant complex amplitude, W; is the waist radius, and W and R
denote the beam radius and the radius of curvature, respectively, on the object plane
and are assumed to be known constants. The Gaussian amplitude of the beam is
utilized as a Gaussian filter that is necessary for the present phase retrieval. The
object reconstruction is based on two far-field intensity measurements. One of the
measured data terms is the intensity distribution of the Fourier transform Fi(z,y) of
the object illuminated by the Gaussian beam, and the other is the intensity distribution
of the Fourier transform Fy(x,y) of the object illuminated by its shifted beam with
a horizontal displacement 7 (which is assumed to be another known constant). The

complex amplitude Fi(z,y) is given by

27
/ f(u,v)b(u,v) exp za(:cunLyv) dudv, (2)

where unimportant multiplicative constants associated with the diffraction integrals
are ignored, d is the normal distance between the u — v and z — y planes, and o is
the extent of the object. With the definition in Eq.(1), the shifted Gaussian beam is

represented by
2 2

21U 2rTU T T
. 1) — b 21 3 - - / . 3
b(u — 7,v) = b(u,v)exp <w,2) exp ( =R ) exp < 2 + i /\R> (3)

Equation (3) indicates that the shifted Gaussian beam consists of the original beam,

an exponential function, a linear phase factor, and a complex constant. The effect
of the exponential function on the Fourier intensity of the object is utilized for phase

retrieval. Substituting Eq.(3) into Eq.(2) instead of b(u, v), we obtain

, 7-2 ‘71—7_2 .
FQU:ul/) = exp <_M/2 )\R) //Uf('u,,v)b(u,v)




X exp {—z%{(r +ic+ s)u+ yv]} dudv, (4)
where
=20 5)
and
5= a% (6)

The values of ¢ and s can be evaluated from the known constants 7, d, A, W, and R.

Then the relation between Fi(z,y) and Fy(z,y) is written from Egs.(2) and (4)

’/"2 ,7'('7'2

Fy(z,y) = exp (——W—2 —l—zﬁ> Fi(z +ic+s5,9). (7)

The function Fy(z,y) corresponds to the function Fi(z,y) displaced along the imagi-
nary axis of the complex plane of its argument z simultaneously with the displacement
s along the z axis, except for the complex constant term. Then, let M(z,y) and ¢(z,y)

be the modulus and the phase, respectively, of Fi(z,y), i.e.,
Fy(z,y) = M(z,y) explio(z, y)]. (8)

Expanding the real variable z in Eq.(8) into the complex one, z +ic, and using Eqs.(7)

and (8), we can obtain a relationship

‘Fg(%*S,]J)‘ _ZQ_ (9)

In Mz xicy) WP = —Im¢ (z +ic,y),

where Im denotes the imaginary part of a complex function. On the left-hand side
of Eq.(9) the second term consists of the known constants, and the first term can
be calculated from the observed intensity data in the Fourier plane because |Fa(z —
s,y)| is the modulus obtained through compensation of the modulus |Fy(x,y)| for its

displacement s along the = axis and because |M (x +ic,y)| is the modulus of the

5



Fourier transform of the product of the inverse Fourier transform of M (z,y) and the
exponential function exp(2mrcu), as described in the previous paper.? We can retrieve
the phase distributions along lines parallel to the z axis by solving Eq.(9) with a
Fourier series expansion. The phase ¢(x,y) on a set of 1-D lines parallel to the z axis

is represented in terms of a Fourier series basis:**

N
nm . nm
olx,y) = 3 [an(y) cos ==z + buly) sin —-z]. (10)
n=1
where the observational region of the function Fi(z,y) is designated as —I < z < [, and
N is sufficiently large. Thus the unknown function ¢(z,y) on a set of 1-D lines parallel
to the z axis is represented by the unknown coefficients a,(y) and b,(y), (n = 1, ..., N).

Substituting relation (10) into Eq.(9), we obtain

[Pz =sy)] | T & . nw nw oy . . [/nTc
n M (2T i) + e ;{an(y) sin =% — bn(y) cos Tas] sinh < l ) . (11)

By calculating the left hand side of relation (11) at 2NV values of z, we obtain 2N
simultaneous equations from which the unknown coefficients a,(y) and b,(y) , (n =
1,...,N) for the set of lines parallel to the z axis can be determined. However, there
are unknown constant phase differences among the retrieved phase distributions along
those lines. To resolve this ambiguity, we take an additional intensity measurement of
the Fourier transform F3(z,y) with the Gaussian beam shifted in the v axis’s direction.
From the moduli [Fy(z,y)| and |F3(x,y)|, we determine the constant phase differences.
Then the overall phase distribution ¢(z, y) can be determined. Finally, we reconstruct
the object function f(u,v) by eliminating the effects of the known Gaussian beam
from the inverse Fourier transform of the function consisting of the measured modulus

|Fi(x,y)| and the retrieved phase ¢(x,y).



3. Experimental Results and Discussion

We have done the phase retrieval from experimental intensity data for two types of
object: (1) a converging lens with a small circular aperture and (2) a plastic fiber
immersed in optical adhesive. We first show the reconstruction of the former object.
The optical system used in performing the experiment is shown in Fig.1. A He-Ne
laser beamn of wavelength A = 0.6328uum is used to illuminate an object consisting of
a converging lens L; and a 1-mm diam circular aperture situated on the center of the
lens. Lens Ly of focal length f, = 405mm produces a Fourier transform of the complex
amplitude in the plane of the circular aperture that is defined as the object plane. The
Fourier intensity data are collected by a charge coupled device (CCD) camera. The
video signal is converted to a 256 x 256 8-bit digital image by using a digital image
memory. Calculating the phase retrieval and reconstructing the complex amplitude in
the object plane are carried out by a personal computer. The Gaussian beam of the
laser used as a Gaussian filter has the radius W = 0.546mm and the radius of curvature
R = 455mm in the place of the object plane. The examples of the object reconstruction
are shown in Figs. 2 and 3, which correspond to the cases of the converging lens objects
L, with focal lengths f; = 202mm and f; = 253mm, respectively. Figure 2(a) (or 3(a))
shows the measured Fourier intensity corresponding to the intensity of the complex
amplitude Fy(z,y) in Sec.2. Figures 2(b) and (c) (or 3(b) and (c)) show the Fourier
intensities of the object shifted with displacement 0.05mm in each direction of v and v
axes on the object plane, respectively, instead of shifting the Gaussian beam, because
the measurement with shifting the object is easier in this optical system than that
with shifting the beam. The amount of the displacement determines the inclination
of the exponential function exp(27u/W?) in Eq.(3), which is a significant function for

the phase retrieval method. Studies of numerical experiments on phase retrieval using
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Fig.1. Schematic arrangement of the experiment: f, is a focal length of lens L.

exponential filtering indicate that suitable values of the term 27/W? are about in the
range 0.027/D < (27/W?) < 0.27/D, where D denotes the width of an object. In the
present experiment, the value of 27/W?2(=0.335) is in that range.

The Fourier phase of the object was calculated from three intensities in Figs.2(a),
(b), and (c) (or 3(a), (b), and (c)). Then the object was reconstructed by eliminating
the effect of the Gaussian beam from the inverse Fourier transform of the complex
function with the retrieved phase and the modulus of the intensity in Fig.2(a) (or
Fig.3(a)). Figures 2(d) and (e) (or 3(d) and (e)) represent the modulus and phase of
the reconstructed object, where these figures show only the central 64 x 64 points for
display purpose. In Fig.4, the cross-sectional profiles of the reconstructed phases along
the lines that passes through the center of the reconstructed objects are compared with
the phase distributions in the object plane calculated from the focal length f; of the
lens L;. The dotted curves in Figs.4(a) and (b) show the calculated phase distributions
from the focal lengths f; = 202mm and f; = 253mm, respectively. The solid and
dashed curves in Fig.4(a) (or Fig.4(b)) show the cross-sectional profiles at the center
of the reconstructed phases along the lines parallel to the v and v axes, respectively. In
Figs.4(a) and (b), the averaged root-mean-squared (RMS) errors for the cross-sectional

profiles of the reconstructed phases are 0.557 rad and 0.168 rad, respectively, within



the width of the object. Since the ideal form of the object modulus is a cylindrical
shape, it can be seen from Figs.2, 3, and 4 that the reconstruction quality of the object
modulus appears to be less accurate than that of the object phase. This fact is due to
the following two reasons. One is that it is difficult to reconstruct the edge part of the
cylindrical modulus from far-field data with very noisy components for high spatial-
frequency. The other is that the Fourier modulus are less influenced by a change of
object modulus than by a change of object phase. Conversely, the reconstruction of
object modulus is very sensitive to noise in the Fourier modulus. This is a property
in the Fourier transform relationship.*

Next we present the phase retrieval for the object of a plastic fiber. The transversal
cross-section of the object for an optical axis is illustrated in Fig.5. The fiber consists
of the core of a refractive index n; = 1.492 and the cladding of a refractive index
ny = 1.402. The diameters of the fiber and its core are 250um and 240um, respec-
tively. The fiber is put between slide glasses, and optical adhesive is poured into an
opening surrounding the fiber. The refractive index of the adhesive after hardening
is ng = 1.519. In order to remove unwanted light from measured data, the extent
of illuminating light on the fiber is restricted by a slit on the slide glass as shown in
Fig.5. The object plane is defined as the plane immediately behind the slide glass
on the right hand side in Fig.5. Then the complex amplitude in the object plane is
reconstructed by using the same optical system as shown in Fig.1 except for the use
of the Fourier transforming lens L, of focal length f» = 100mm in order to obtain
higher spatial-frequency components for the fiber object. Since the phase distribution
of the fiber in the axial direction can be assumed to be constant, the fiber object can
be regarded approximately as a one-dimensional (1-D) object. Thus we here treat the

reconstruction of a 1-D complex amplitude corresponding to a two-dimensional
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Fig.2. Reconstruction of the object consisting of the converging lens with the focal length
f1 = 202 mm and the circular aperture of 1-mm diameter: (a) is the Fourier intensity of the
object. (b) and (c) are the Fourier intensities of the object shifted with displacement 0.05
mm in each direction of u and v axes in Fig.1, respectively. (d) and (e) are the modulus
and the phase, respectively, of the reconstructed object from the data of (a), (b), and (c).
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complex amplitude integrated in the direction of the v axis on the object plane. The
1-D complex amplitude was reconstructed by using a 1-D phase retrieval method (i.e.,
the same procedure as in Sec.2 except for substituting y = 0 into the equations) from
1-D intensity distributions along the z axis of two Fourier intensities of the object
unshifted and shifted in the u axis’s direction with displacement 7 = 0.06mm. Figures
6(a) and 6(b) show the modulus and the phase of the reconstructed complex amplitude
in the object plane, respectively. In Fig.6(b), the reconstructed phase is represented
only within the extent of the fiber’s diameter for display purpose, and the dotted curve
shows the phase distribution calculated from the known refractive indexes ny, nq, and
ns in the assumption that the deviation of the light is negligible.?® The averaged RMS
error for the reconstructed phase is 1.76 rad within the extent of the fiber. Although
the reconstructed modulus is contaminated by noise, the retrieved phase is very close
to the calculated one except for the abrupt variations at the both ends. The abrupt
variations appeared at both ends of the calculated phase are due to the influence of
the fiber’s cladding layer with 5.0um. Those variations cannot be retrieved in this
experiment, because the spatial resolution on the object plane is limited to 9.1um by

apparatuses used here for the measurement of Fourier intensities.

IV. CONCLUSIONS

Phase retrieval from Fourier intensities of objects by use of Gaussian filtering has
been demonstrated in a laboratory experiment. The phase retrieval method used here
is one of noninterferometric techniques, and is based on measurements of two Fourier
intensities of an object modulated with shifted and unshifted Gaussian filters along the

transverse direction for the optical axis. Although the Gaussian amplitude distribution
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Fig.3. Same as in Fig.2 except that the focal length of the object lens is fi = 253 mm.
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Fig.4. Cross-sectional profiles of the reconstructed object phases: (a) and (b) correspond
to the phase distributions in Figs.2(e) and 3(e), respectively. In each figure, the solid and
dashed curves show the cross-sectional profiles at the center of the reconstructed phases
along the lines parallel to the u and v axes, respectively, and the dotted curve shows the
calculated phase from the focal length of the object lens.
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Fig.5. Schematic diagram of the fiber object.

of a laser beam is utilized here instead of a Gaussian filter, the reconstructed phases
for the converging lens and the fiber objects show good agreement with the calculated
phase from known parameters of the objects with the accuracy of the range from
~ 27/10 to 2m /4 rad. Thus the experimental results verify that the use of the Gaussian
beam of a laser is very effective in the present phase retrieval. Since the present
method has no need of a coherent reference wave, the measurement system used here
is very simple and insensitive to alignment in contrast to interferometric techniques.
In addition there is a possibility that the method can be applied to measurement
systems with an x-ray or an atomic wave, in which a coherent reference wave is barely
obtained. However, there exist some remaining issues, for example, the how to do
the Gaussian filtering for phase retrieval in such a wave, and the investigation of the

influence of partially coherent illumination on the phase retrieval.
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Fig.6. Reconstruction of the complex amplitude in the object plane of the fiber object: (a)
and (b) are the reconstructed modulus and phase, respectively. The reconstructed phase is
represented only within the extent of the fiber’s diameter for display purpose. The dotted
curve shows the phase distribution calculated from the known refractive indexes of the
fiber and the surrounding optical adhesive.
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Noniterative two-dimensional phase-retrieval method

from two Fourier intensities using an exponential filter

Abstract

A noniterative method of retrieving the two-dimensional phase of a wave field from two
intensity measurements is proposed. In the measurements, one records two far-field
intensities of the wave field modulated and unmodulated with an exponential filter.
The phase retrieval method is based on the solution of the simultaneous equations
with unknown coefficients of the two-dimensional discrete Fourier transform for the
phase. Then there is no need for the information about the wave field, which is
used in iterative phase retrieval methods. The usefulness of this method is shown
in computer simulated examples of the reconstruction of two-dimensional complex

amplitude objects.



I. INTRODUCTION

Non-interferometric reconstruction of the phase of wave fields is a topic of current
interest in a number of areas for object imaging or structure determination by use of
various waves such as optical,' x-ray,? electron,® and atomic! waves. It is generally
difficult that the determination of the phase of a wave field from one measurement of its
intensity distribution. To retrieve the phase requires more information about the wave
field. Many methods have been developed to solve the phase retrieval problem.”~'?
Iterative methods are widely used, of which there are several types for using some
information, for example, two intensities of a wave field in object and far-field planes,'?
a priori information (e.g., non-negativity and/or extent of a wave field in an object
plane) and far-field intensity,"*'5 and two far-field intensities of a wave field modulated
and unmodulated by an exponential filter.!® However, the use of iterative methods is
accompanied by convergence problems, and hence those methods sometimes stagnate
in a local minimum solution different from a true one.

On the other hand, there is the other approach to the phase retrieval problem,
which is the use of noniterative (analytic) methods, for example, phase retrieval based

7,11,12

on the properties of wave functions pertaining to entire functions, and phase

recovery by solving the transport-of-intensity equation.’»!”=2* The main difference be-
tween two types of the analytic methods is that the former methods are able to cope
with the existence of vortices (i.e., screw dislocations) in the phase distribution in con-
trast to the latter ones. As one of the former methods, a linear, one-dimensional (1-D)
method of retrieving the phase from two far-field intensities of a wave field modulated
and unmodulated by an exponential filter in an object plane was proposed.®h?* In this

method, the phase in far-field plane of the wave field is retrieved by solving simul-

taneous equations from the two far-field intensities. When applying the 1-D method

[}
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to the two-dimensional (2-D) case, three 2-D intensities measurements are required:**
one far-field intensity of a wave field in an object plane and two far-field intensities of
the wave field modulated with exponential filters along the horizontal and the vertical
directions in 2-D coordinates. However, it has been shown that the iterative method!®
is able to retrieve the 2-D phase from only two far-field intensities of a wave field
modulated and unmodulated with an exponential filter. So far, there has not been
any noniterative method for the phase retrieval from such two far-field intensities.

In this paper, to the best of my knowledge, it is first shown that 2-D phase re-
trieval can be solved by using a noniterative method from only two far-field intensities
obtained with and without an exponential filter. In the noniterative method, the 2-D
analytic properties of these two intensity functions are utilized for the solution of the
simultaneous equations with unknown coefficients of the 2-D discrete Fourier trans-
form for the phase distribution in the far-field plane. Hence there is no need for the
information about the wave field in an object plane (e.g., the extent of the object) ,
which is used in the iterative method!® to increase the speed of convergence.

In Section 2, I formulate the 2-D noniterative phase retrieval method. Tests of the
method by computer simulation of 2-D complex amplitude objects are represented in

Section 3, and Section 4 presents the conclusions.

2. Formulation of the 2-D Phase Retrieval Method

We here consider the phase retrieval from intensities measured in the Fourier transform
plane for an object illuminated by a quasi-monochromatic fully spatially coherent
licht. Although the theoretical development in this section is restricted to the optical

diffraction phenomenon, there is a possibility that the present method can be applied
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Fig.1. Axes of coordinates used in the formulation of the method: the rotational angle
between the object function f(u,v) and the exponential filter exp(—2mcl) is represented by
6.

to an arbitrary phenomenon with a Fourier transform relationship.

We assume that the object has a 2-D complex amplitude transmittance (or re-
flectance) f(u,v) with a finite extent. The reconstruction of the object function f(u,v)
is based on two far-field intensity measurements. One of the measured data terms is
the intensity distribution of the Fourier transform Fy(x,y) of the object illuminated
by a plane wave, and the other is the intensity distribution of the Fourier transform
Fy(x,y) of the object modulated by an exponential filter exp(—2mcl), where ¢ is a
known constant and U is the axis of coordinates rotated at an angle 6 to the x axis as
shown in Fig.1: U = ucosf + vsinf. Then the rotated axis for the y axis is given by
V = —usinf + vcosf. The angle 8 is assumed to be another known constant for the

filter. Then the complex amplitudes I (z,y) and Fy(z,y) are given by, respectively,

Fi(z,y) = //U flu,v)exp {—'é%i\—r(xu + yv)A dudv, (12)

and
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Fy(zy) = // fu,v) exp[—2me(u cos § + vsin0)] exp —z'd/\ (zu + yv)| dudv, (13)

where unimportant multiplicative constants associated with the diffraction integrals
are ignored, d is the normal distance between the u — v and z — y planes, \ is the
wavelength of the illuminating light, and o is the extent of the object. Then the

relationship between Fy(z,y) and Fy(z,y) is written from Eqgs.(1) and (2) as
Fy(z,y) = Fi(z —icy,y — icy) (14)

where ¢;[= (cdA) cosf] and cy[= (cd))sin @] are evaluated from the known constants
¢, 8, d, and A. The function Fy(z,y) corresponds to the function Fj(x,y) displaced
simultaneously along the imaginary axes of the Four-dimensional complex plane of
its arguments = and y. In the previous paper,® we regarded the function Fy(z,y)[=
Fy(X —ic,Y), where (X,Y) are the rotated coordinates from (z,y) by the angle 6] as
the function Fi(z,y)[= F1(X,Y)] displaced along the imaginary axis of the complex
plane of the argument X', and then the 1-D phase retrieval procedure has been applied
to the lines parallel to the X axis. In contrast to that, we here utilize the following
2-D phase retrieval procedure.

Let M(z,y) and ¢(z,y) be the modulus and the phase, respectively, of Fi(z,y),
lLe.,

Fi(z,y) = M(z,y) explid(z, y)]. (15)

Expanding the real variables z and y of Fy(x,y) into the complex ones, z — ic; and
y — icp, and taking the modulus of the resultant function, the Fourier modulus of the

object modulated with the exponential filter can be represented from Eq.(4) as

|Fi(z —ict,y —icy)| = [M(x — icy,y — ica)| exp[—Ima(x —icy,y — icy)], (16)
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where Im denotes the imaginary part of a complex function. Substitution of Eq.(3)

into Eq.(5) yields

|F2(l‘, y)‘

In - -
|M (z —ic1,y — ico)|

= —Im¢ (x —ic1,y —ica), (17)

where the values of the moduli on the left-hand side are assumed to be not zero. The
term on the left-hand side of Eq.(6) can be calculated from the observed data because
|Fy(z,y)| is the measured modulus when using the exponential filter and because
|M (z —ic1,y — icp) | is evaluated as the modulus of the discrete Fourier transform of
the product of the inverse Fourier transform of the measured modulus M (z,y) and
the exponential function exp{—2m(ciu + czv)/dA] in the same way as in Egs.(1)-(3).
Next we consider a method of computing the 2-D phase distribution directly from
Eq.(6). One approach to solving Eq.(6) is to represent ¢(z, y) in terms of a 2-D discrete

Fourier transform:

N/2-1 M/2-1

oz, y) = D, > anmexp [ZM (%a) + %y)] , (18)

n=—N/2+1 m=—M/2+1
where the observational region of the function Fi(z,y) is designated as —K/2 <z <
K/2 and —L/2 <y < L/2, and both of N and M are even numbers more than 2 and
sufficiently large to enable the phase distribution to be reconstructed. Thus the un-
known function ¢(x,y) is represented by the unknown complex coefficients anm. Since
the Fourier transform of a real function is a Hermitian function, the complex Fourier
coefficient a,,, of the real function ¢(z,y) has the properties of Hermitian functions,
namely the real and the imaginary parts of a,m are even and odd functions, respec-

tively. Thus, in the case of expression (7), a total of unknown coefficients amounts to
N-1 — — -1 -1
(N-DM D41 (N-DM 1)

2 2
unknowns, respectively, for the real and the imaginary parts of an,. The imaginary

(N —1)(M —1), which are composed of
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part of ¢(x — ic1,y — ice) is written from expression (7) as

N/2-1 M/2-1

Imé(z —ic1,y —ico) & Y > {Im Gpm COS [277 <—;%x + %y)]

n=—N/2+1 m=—M/2+1

+ Reanm sin [27r <%x i %y)] } exp [27r (cl% + cz%>](,19)

where Re denotes the real part of a complex function, and the term Im agg is always
zero because of the Hermitian character of a,,,. By substituting expression (8) into
Eq.(6), we have one equation in the (N —1)(M —1) unknowns. Thus the (N —1)(M —1)
known values in the left-hand side of Eq.(6) generate (N — 1)(M — 1) simultaneous
equations in the (N —1)(M —1) unknowns. When solving the simultaneous equations,
however, we have to pay attention to the treatment of the constant and linear phases
of ¢(z,y). First, it is noted that the constant phase corresponding to the term Re ago
cannot be determined from the simultaneous equations, because the sinusoidal function
for n = m = 0 in the right-hand side of expression (8) becomes zero for all values of
x and y. However, the constant phase is a trivial ambiguity for the reconstruction
of the object function and then it can be disregarded for phase retrieval. Thus the
term Reagy as well as Imagp is excluded from expression (8). Secondly, we consider
the influence of a linear phase 27(az + by) on the simultaneous equations, where a
and b are relevant to the unknown coordinate components of the object’s position in
the u — v plane. The imaginary part of the linear phase that is extended into the
complex variables, z — ic; and y — icy, in the same procedure as in expressions (7)
and (8) becomes to be a constant —2m(ac; + beg). Therefore, we cannot determine
two unknown parameters a and b from the constant value by solving the simultaneous
equations. Thus we separate the linear phase from the phase in expression (7) and
rewrite the imaginary part of the linear phase as —2mc;a’ in order to determine the

one unknown value o’ instead of a and b. Although the true position of the object
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cannot be obtained then, such ambiguity is unimportant in many applications. By
rewriting the right hand side of expression (8) according to the above consideration

and substituting this expression into Eq.(6), we obtain

N/2-1 M/2-1

|F2(z, )| n_.m
| = e - o cos o (24 )
n|M(:c—ic1,y——icQ)[ 2mera’ =y > Im @y, cos |27 Ka:-l— 7Y

n=—N/2+1 m=—M/2+1

+Rea,m sin [27r (%x + %y)]} exp [271 (cl% + cz%>](20)

where the two terms of Re agy and Im ago are not included on the right-hand side. By
calculating the left-hand side of expression (9) at (N — 1)(M — 1) values of z and y,
we obtain (N — 1)(M — 1) simultaneous equations from which the (N-1)(M-1)
unknown coefficients of Re apm, IM Gnm, and a’ can be determined. The 2-D phase is
retrieved by substituting the solutions for Re sy and Im anm into expression (7) and
adding a deduced linear phase 2ma’z to the result. Consequently, the object function
is reconstructed by an inverse Fourier transform of the function with the observed
modulus and the retrieved phase. However, when an object function is a Hermitian
function [i.e., f(u,v) = f*(~u, —v), where the asterisk denotes the complex conjugate],
it is necessary to use the logarithmic Hilbert transform along with the present method
in the same way as in the previous method,? because in that case the values of the
left-hand side term in expression (9) become zero at all values of z and y.

Note that, if a sampling point (n/,m’) in the n — m plane satisfies the condition
of eyn'/K + cam//L = 0 (i.e., then the exponential function in the right-hand side of
expression (9) is unity), the (N — 1)(M — 1) simultaneous equations becomes rank-
deficient because in expression (9) the sum of the terms at two points (n’,m’ ) and
(=n’,—m/) (which are symmetrical with respect to the origin) is zero for all values of
z and y owing to the Hermitian property of anm. Thus it is necessary to select the

angle 6 between the (u,v) axes and the exponential filter (i.e., tan® = ¢, /c1 in Fig.1)
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to satisfy the condition of ¢y/c; # —nL/mK for two integers of n and m.

3. Computer Simulation

The phase retrieval method presented in this paper has been tested by computer sim-
ulation of the reconstruction of 2-D complex-valued objects. Figures 2 and 3 show two
examples of reconstructing 2-D complex-valued objects. Data processing by computer
was performed with 32 x 32 sampling points. The duration for the fast Fourier trans-
form algorithm used here was assumed to have the value of 10 for arbitrary units in
each direction of the u and v axes in the object plane. Hence the region (K x L) of
the Fourier phase shown in expression (7) becomes to be 3.2 x 3.2, and the sampling
points N x M for the Fourier phase is 32 x 32. The parameters for the inclination
of the exponential filter exp[—2m(ciu + cav)/dA] used in this simulation are set to be
c; = 0.0145 and ¢, = 0.0198, which are chosen in order to prevent the rank-deficient
of the simultaneous equations using expression (9) (i.e., ca/c1 # —nL/mK for two
integers of n and m). In addition, the value of dX in Eqgs.(1) and (2) is set to be unity
for simplicity.

Figures 2(a) and 2(b) [or Figs.3(a) and 3(b)] show the modulus and the phase of
the original object function, respectively. Figures 2(c) and 2(d) [or Figs.3(c) and 3(d)]
show the modulus and the phase of the object reconstructed from two noiseless Fourier
intensities of the original object modulated and unmodulated with the exponential
filter. The example of the reconstruction from noisy Fourier intensities is shown in
Figs.2(e) and 2(f) [or Figs.3(e) and 3(f)]. To simulate the noisy intensities, complex
normal random noises n;(z,y) and no(z,y), which are independent of each other, are

added to the Fourier transform functions Fi(z,y) and Fy(z,y) [which are shown in
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Fig.2. Examples of the reconstruction by the present method: (a) modulus and (b) phase
of the original object function. (c) and (d) [or (e) and (f)] are the modulus and the phase,
respectively, of the reconstructed object function from noiseless [or noisy (SNR=210)] Fourier
intensities. The units of the coordinates u and v are arbitrary.



Egs.(1) and (2)], respectively. A factor of the signal-to-noise ratio (SNR), defined by
SNR = 3, , |Fi(z,9)?/ X4y In1(z,y)|? is now introduced, and then the SNR for the
reconstruction in the noisy cases of Figs.2 and 3 become 210 and 690, respectively. It
is found from comparison of the reconstructed objects with the original ones in Figs.2
and 3 that the errors surrounding the object’s region in Fig.3 are larger than that in
Fig.2. The reason of this fact is that the density of the sampling points, which is needed
to encode the change of the Fourier phase of the object in Fig.3, is slightly insufficient
for precise reconstruction like that in Fig.2. Hence, even in the high SNR case, the
reconstructed object in Figs.3(e) and 3(f) suffers more errors from the influence of
noise than that in Fig.2. However, it can be seen that the profiles within the object’s

extent is relatively well reconstructed in both cases of Figs.2 and 3.

4. Conclusions

A noniterative phase retrieval method from two Fourier intensities of a 2-D object
modulated and unmodulated by an exponential filter has been presented. So far, only
the iterative method'® has been utilized for the solution of the 2-D phase retrieval from
two Fourier intensities measured by use of an exponential filter. Since the present
method is based on the properties of analytic functions, there is no need for the
information about the object (e.g., the extent of the object), which is used in the
iterative method to increase the speed of convergence. On the other hand, the previous
noniterative-method?® using an exponential filter requires three Fourier intensities in
2-D cases: one Fourier intensity of an object and two Fourier intensities of the object
modulated with exponential filters along the horizontal and the vertical directions in 2-

D coordinates. Although the procedure of calculating the phase in the present method
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(e)

Fig.3. Examples of the reconstruction by the present method: (a) modulus and (b) phase

of the original object function. (c) and (d) [or (e) and (f)] are the modulus and the phase,

respectively, of the reconstructed object function from noiseless [or noisy (SNR=690)] Fourier
intensities. The units of the coordinates v and v are arbitrary.
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is similar to that in the previous noniterative-method, the former differs form the latter
in respect that the analyticity of 2-D functions is used directly for the theoretical basis.

Computer-simulated examples of this method presented the good reconstructions
of the complex objects. However, the main difficulty with practical use of this method
arises from the huge size of the matrix treated in the phase calculation. For example, in
the phase retrieval with NV x N sampling points, it is necessary to solve the simultaneous
equations with the matrix of N* elements. In the previous noniterative-method, the
phase is gotten by simply repeating the solution of simultaneous equations (with the
matrix of N? elements) N times over. Thus, in order to overcome this difficulty, it
may be effective to decompose the huge matrix into a set of small matrices, from which
each spatial part of the phase distribution is retrieved by the present method and then
the phase is synthesized from the spatial parts. The details of such improvement are

currently being studied.
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Lensless imaging from diffraction intensity measurements

by use of a noniterative phase-retrieval method

Abstract

A method of reconstructing the complex amplitude of an object illuminated by a
coherent wave from its Fresnel diffraction patterns is proposed for high-frequency wave
phenomena such as x-rays and electron waves. A noniterative phase retrieval method
by use of a Gaussian filter is utilized here, and it is shown that the object’s illumination
with amplitude distribution in the Fraunhofer diffraction pattern of a circular aperture
can be used as a substitute for the Gaussian filter. This method has the advantage
of retrieving phase vortices in compared with any other noniterative phase retrieval

methods.
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I. INTRODUCTION

The imaging technique utilizing high frequency wave phenomena such as x-rays and
electron waves has been developed with the aim of understanding the structure of
smaller objects. In such imaging techniques, however, we have to solve some prob-
lems relevant to lenses in order to achieve better resolution of images. For example,
in electron microscopy, lens aberration is the major barrier limiting the resolution.
Some software’? and hardware® methods of correcting the images for the effects of
spherical aberration have been proposed. However, spherically corrected images are
still limited in resolution by chromatic aberration.* In x-ray microscopy, the efficiency
of Fresnel zone plates used for imaging is worse than electron lenses. One approach to
overcome these problems is to reconstruct an object from measurements of diffraction
fields without using lenses. For this purpose, we have to measure the modulus and
phase of the diffraction field of an object illuminated by a beam of coherent waves.
However, the directly measurable quantity in the illumination with high frequency
waves such as x-rays and electron waves is only the intensity, which is proportional
to the square of the modulus of the wave field, and the phase is lost on an inten-
sity recording. Determination of the phase from the observed intensity is referred to
as a phase problem, and many method have been developed to solve this problem.
Holography 9 is well-known as a standard approach to this problem in electron mi-
croscopy, in which a hologram is obtained from known reference waves and unknown
object waves, and converted to an image by using either light-optical or digital re-
construction. For such high-frequency waves, however, the phase measurement of a
diffraction field by a holographic or interferometric technique is difficult in practice
because a coherent reference wave is barely obtained and some severe conditions on

the measurement system are required when observing interference fringes. In another
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well-known diffraction methodology such as x-ray crystallography, the phase problem
is solved by using a numerical algorithm © based on the properties of ob ject structures
with periodic repeats (i.e., crystals). However, many samples in materials sciences,
structural biology, and other areas are very often noncrystalline or nonrepetitive, and
thus cannot be accessed by this algorithm.

Recently, another approaches have been developed to solve the phase problem un-
der the more general condition that an object is noncrystalline and its diffraction
intensities are measured directly without using lenses and reference waves. One of
them is an iterative method using a prior: information (e.g., nonnegativity and/or
extent of a wave field in an object plane) with the diffraction intensities, which is
proposed by Fienup” as a modification of the original Gerchberg-Saxton algorithm.®
The demonstration of iterative algorithms has been recently shown in the x-ray phase
retrieval experiments for noncrystalline samples,®!® and the computer simulations of
phase retrieval from diffraction patterns for complex large biomolecules with coher-
ent x-ray illumination ' and for a single noncrystalline object illuminated with a
coherent electron beam.'> However, the use of iterative methods is accompanied by
convergence problems, and hence those methods sometimes exhibit slow convergence
and stagnation in a local minimum solution that is different from a true one. Thus
there are some studies on noniterative methods for phase retrieval from diffraction
intensities, for example, phase recovery by solving the transport-of-intensity equation
from intensity distributions in two or three transverse planes,!3-16 and phase retrieval
by solving simultaneous equations for unknown phase from three diffraction inten-
sities of an object filtered with known Gaussian functions,!” which is based on the
properties of entire functions (i.e., wave functions belong to entire functions).!®19 The

former method has been used for phase retrieval in the Fresnel region in electron 2°
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and optical microscopy,?! x-ray imaging,?? and so on. The reconstruction by the latter
method was demonstrated in the optical experiments with a Gaussian beam instead
of the Gaussian filter.23 The latter method has the advantage of retrieving the phase
distribution with the vortices (i.e., screw dislocations) in contrast with the former one,
because entire functions, of which the properties is used in the method, intrinsically
include zero points (which indicate the possible presence of vortices in the phase). In
the former method, it has been shown?* that the solution of the transport-of-intensity
equation does not yield unique results when phase vortices are present. The pres-
ence of wave-field vortices is ubiquitous rather than exotic. It is the known fact that
vortex-free propagating wave fields will almost always develop vortices after evolving
through a certain critical length of space.?>?® Thus, in the phase measurements for
optical, x-ray, and electron wave fields, it is possible that phase vortices may arise.
Therefore the retrieval of phase vortices is significant in the phase problem. Iterative
methods have been used for the phase retireval in the presence of vortices.24?%27 In
noniterative methods, to the best of my knowledge, the latter method is the only di-
rect one of phase retrieval which can retrieve the phase when vortices are present. In
the latter method, however, it is a subject of inquiry how to do Gaussian filtering for
phase retrieval of x-rays or electron waves.

Thus, an extension of the latter method is presented in this paper. In the extended
method, the Fraunhofer diffraction pattern of a circular aperture (i.e., 2 besinc func-
tion) is used as the object’s illumination instead of a Gaussian beam‘, and such an
illumination enables the object reconstruction by the latter method from the diffrac-
tion intensities for x-rays or electron waves, provided that the object’s extent is con-
fined within ~ 1/3 of the first zero’s radius of the besinc function. The validity of

this method is demonstrated here in computer simulations of the reconstructions of a
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Aperture plane Object plane Observation plane

YA

Fig.1. Schematic diagram of the object-reconstruction system by use of the phase retrieval.
The object function is reconstructed from Fresnel-zone intensities of the object unshifted
and shifted in each direction of u and v axes in the illumination of the Fraunhofer diffraction
pattern of a circular aperture.

general complex object and a particular object with phase vortices.

2. Formulation of the Reconstruction Method

We consider the object reconstruction in the two-dimensional (2-D) arrangement of
Fig.1. This layout consists of three planes perpendicular to an optical axis, which
are the aperture, the object, and the observation planes. We assume that an object
of complex-amplitude transmittance f(u,v) (which is assumed to be of finite extent)
in the object plane is illuminated by the amplitude distribution in the Fraunhofer
diffraction pattern of a circular aperture with a known radius w in the aperture plane.
If a unit-amplitude, coherent monochromatic plane wave of the wavelength A is incident
normally on that aperture, then the field distribution b(w, v) in the object plane is given

by 28

2 ikz1 T o2
b(u, v) = et [ k 2J1 (kwvu? +v /zl)7 (21)

2, .2
: —(u® +
I\ Z2,21( v )] kwvu? 4+ 12/ z

where J; is a Bessel function of the first kind, order 1, z; is the normal distance

between the aperture and object planes, and k is the wave number. Then, by use of
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the Fresnel approximation, the complex amplitude in the observation plane is written
as

eikzz

_ .k, 2
Fi(z,y) = e, P [zQZQ(x +y )J Ui(z,y), (22)

where

Ui(z,y) = //a f(u,v)b(u,v) exp [z;—(uz + vz)] exp [—z%(xu + yv)} dudv, (23)

22

in which o denotes the extent of the object. If the complex amplitude U,(z,y) is
obtained in an experiment, the object function can be reconstructed from Ui (z,y) by
using the inverse Fourier transform and eliminating the effect of the illuminating field
b(u, v) (which is calculated from the known constants A, w, and 2;) from the resultant
function. Unfortunately, the only physical quantity that can be directly observed is
the intensity for high frequency phenomena such as light, x-rays, and electron waves.
The phase information is lost on an intensity recording. Thus we consider here the
object reconstruction method based on the phase retrieval from three Fresnel-zone
intensity measurements. One of the measured data terms is the intensity distribution
of Fi(z,y), and the others are the intensity distributions of the Fresnel-zone transforms
of the object shifted along the u and v axes. First, we consider the Fresnel-zone
transform Fy(z,y) of the shifted object with horizontal displacement 7 in the u axis’s

direction (which is assumed to be another known constant). The complex amplitude

F>(z,y) is given by
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Fy(z,y)=A //o f(u—7,v)b(u,v) exp [zi(zﬂ + 02)} exp [——z;—:—(xu + yv)| dudv

229 2

=A’//a f,v)b(u + 7,v) exp [izizz(u’2 + vz)J

L2 , ,
X exp {_ZX};M — T + yv]} du'dv, (24)

where A = (€% /i)z,) exp [ik(z® + y?) /220), A = Aexplir(7?> — 2z7) /A2y, and o' =
u — 7. Equation (4) indicates that the object’s shift corresponds to the both shifts
of the illuminating field b(u,v) in the object plane and the complex amplitude in
the observation plane. Secondly, we assume that the extent of the central lobe of
the illuminating field b(u,v) is larger than the object’s extent ¢ enough to represent
approximately the besinc function of b(u, v) as a Gaussian function in Egs.(3) and (4).
This approximation can provide the use of the noniterative phase retrieval methodl?
in the following way.

The besinc function in Eq.(1) can be expanded by a polynomial approximation as

2J1(r) r2 ot

where

kwvu? + v?
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Fig.2. Difference between the functions 2J;(r)/r and exp(—r2/8) as a function of r.

Thus we try to approximate the besinc function as a Gaussian function exp(—72/8),

of which the Maclaurin expansion becomes

exp(—%l):l—%z-l-l—;%+---. (27)
The deviation of 2J;(r)/r from exp(—r?/8) is shown in Fig.2 as a function of r. From
studies of numerical experiments, this approximation was found to be effective for the
phase retrieval provided that the radius r is smaller than ~ 1/3 of the first zero’s
radius (ro = 3.83) of the besinc function. Under the condition that the object’s extent
is confined within the radius » = r/3, we can substitute exp(—r?2/8) into Eq.(1)
instead of the besinc function:

Tw?et*a k k*w?(u? + v?)
b W oxp |ime (u? + 0° _rww rv) 28
(u.0) = T exp i) e |- )

14

and then the function b(v' + 7,v) in Eq.(4) can be rewritten as

: v, _(TwN? ko 'E_l(__ﬁwT)z
b(u'+ 7,v) = b(v,v) exp [ (/\21) Tu} exp (l P )exp [Z 2\ 2z . (29)




Equation (9) indicates that the shifted function consists of the original function, an
exponential function, a linear phase factor, and a complex constant. The present phase
retrieval relies on the effect of the exponential function on the Fresnel-zone intensity
of the object. Substituting Eq.(9) into Eq.(4) and using Eq.(3), we can obtain the

relationship between the Fresnel-zone moduli of the shifted and unshifted objects:

1 /mwr\?2
= - === —5—1 3
el =ex |5 (3 )| 1o = - (30
where
5= (1 + Q)T, (31)
<1
and
Azg [ W\ 2
= —={—) T 32
¢ 2r (/\zl)T (32)

Equation (10) indicates that the modulus of Fy(z,y) corresponds to one of Ui(z,y)
displaced along the imaginary axis of the complex plane of its argument z, simultane-
ously with the displacement s along the z axis, except for the exponential term with
the known constant parameters. As we shall see, the displacement along the imaginary
axis renders the modulus of Fy(z,y) dependent on one-dimensional (1-D) bhases of
Ui(z,y) along lines parallel to the z axis.

Let M(z,y) and ¢(x,y) be the modulus and the phase, respectively, of Uy (z,y),
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ie.,

Ui(z,y) = M(z,y) explig(z, y)]. (33)

Note that M(z,y) is equivalent to the observable modulus |Fi(z,y)| of Eq.(2). When
the real variable z of U;(z,y) is expanded into the complex one, = — ic, the modulus

of the function Uy(z,y) is written from Eq.(13) as

|Ur(z — ic,y)| = |[M(z — ic,y)| exp[—Im¢(z — ic,y)], (34)

where Im denotes the imaginary part of a complex function. If the values of the moduli
|M(z — ic,y)| and |Fy(z,y)| are not zero, the relationship between these moduli can

be written from Eqs.(10) and (14) as

|[Fa(z+s,y) | 1/mwr\2_ .
1n|M(:U—ic,y)|+§(/\_,2'1) =—Im¢ (z —ic,y). (35)

On the left-hand side of Eq.(15) the second term consists of the known constants, and
the first term can be calculated from the observed data because |Fy (z + s,y) | is ob-
tained through compensation of the modulus |F; (z,y) | in Eq.(10) for its displacement
s along the = axis and because |M (z —ic,y) | is given by the modulus of the Fourier
transform of the product of the inverse Fourier transform of M (z,y)(= |Fi(z,y)|) and
the exponential function exp(—2mcu/Az;).1°

By representing a 1-D phase along the line parallel to the z axis in terms of a Fourier

series with unknown coeflicients, we can use Eq.(15) to construct a set of simultaneous
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equations from which the unknown coefficients can be computed.!” The 1-D phases
along lines parallel to the z axis can be retrieved by this procedure. Note that, even if
the moduli [M(z —ic, y)| and |Fy(z + s, y)| have some zeros, the unknown coefficients
can be determined from the data of the moduli at the points except at the zeros.
However, there are unknown constant phase differences among these lines because
their phase calculations are independent of one another. To solve this ambiguity, we
take a third intensity measurement of the Fresnel-zone transform F3(z,y) of the object
f(u,v — v) that is shifted with displacement v (which is also assumed to be a known
constant) in the v axis’s direction. Using the same derivation as in Eqgs.(4)-(10), we

can obtain the relationship

TwT

Rl = oo -5 (52) iy -5 -0, ()

where
§ = (1 + -z—i’) v, (37)
and
Azg [ Tw \ 2
/
=== v 3
¢ 27 ()\Zl) v ( 8)

By using the relation of Eq.(16) and the same procedure as the phase calculations
along lines parallel to the z axis, we can determine the phases of Uj(z,y) along lines
parallel to the y axis. A phase distribution along one line in the y axis’s direction

can be regarded as the constant phase difference among the 1-D phases along the
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lines parallel to the z axis. Then the overall 2-D phase ¢(z,y) is determined by
addition of the constant phase to the 1-D phase on each line parallel to the z axis.
Note that the orthogonality between two displacements (7 and v) of the object is
not necessary for phase retrieval, because the constant phase difference among the
1-D phases can be also determined from the data for the object’s displacement along
an inclined line. It is found from Eq.(3) that the object function f(u,v) is finally
reconstructed by eliminating the effects of the known illuminating beam b(u,v) and
the quadratic phase factor exp[ik(u? + v?)/22,] from the inverse Fourier transform of
the complex amplitude function with the measured modulus |Uy(z,y)|(= |Fi(z,y)|)
and the retrieved phase ¢(z,y). The present phase retrieval method is applicable for
all kinds of functions except the Fourier transforms of Hermitian functions, in which
the equations of Eq.(15) cannot be solved because the modulus |F3(z + s, y)| becomes
equivalent to |M(z — ic,y)| for all value of z. However, even if an object function is
a Hermitian function [i.e.,f(u,v) = f*(—u, —v)], such an object function can be also
reconstructed by using the present method because the product of the object function
and the quadratic phase factor becomes to be a non-Hermitian function generally.

Hence, the reconstruction for all kinds of object functions can be expected in practice.

3. Numerical Examples

The reconstruction method presented in the previous section has been tested by com-
puter simulation of examples of 2-D complex-valued objects. Data processing by
computer was performed with 256 x 256 sampling points. The modulus and the phase
of the original object function used in the first simulation are shown in Figs.3(a) and

3(b), respectively, where the figures show only the central 128 x 128 points out of

47



(b)

Fig.3. Original object function used in the computer simulation: (a) modulus and (b) phase
of an object with the circular extent of radius ~ 14pm.

256 X 256 points in an assumed square with sides of 100um on the object plane. The
modulus and phase are constructed from normal random numbers by a computer. The
distribution of the modulus is in the range between 1 and 3 for arbitrary units within
circle of radius ~ 14um, and the modulus outside the circle is zero. The distribution
of the phase is in the range between -1.57 rad and 1.25 rad. We also assume that a
monochromatic plane wave x-ray with wavelength A = 0.682nm (1.83 keV) is normally
incident on a circular aperture with the radius 5um, and an object is illuminated by thé
Fraunhofer diffraction amplitude distribution of the aperture. The distances between
the aperture and object planes and between the object and Fresnel-zone planes in
Fig.1 are assumed to be z; = 600mm and 2z, = 80mm, respectively. Since the first
zero’s radius of the diffraction pattern of the aperture is ~ 50um in the object plane,
an effective area for the illumination of objects in the present phase retrieval becomes
to be within a circle of radius ~ 17um (i.e., about one third of 50pm) as mentioned in
Sec.2. The object’s extent in Fig.3 is set to be smaller than this effective area. It was

seen from another simulations that the reconstruction error gradually increases with
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Fig.4. Reconstruction of the object shown in Fig.3 from noisy Fresnel-zone intensities when
in the system of Fig.1 the distances z; = 600mm, z; = 80mm, the aperture of the radius
5um, and the coherent illumination with wavelength A = 0.682nm are used. (a)Modulus
and (b) phase of the reconstructed object, and (c) and (d) are cross-sectional profiles of
the functions in (a) and (b), respectively, taken along horizontal lines passing through the
center. The dotted and solid curves represent the original and the reconstructed objects,

respectively.

the increase of the object’s extent from the effective area.

Figures 4(a) and 4(b) show the modulus and the phase of the object reconstructed
from noisy Fresnel-zone intensities of the object and the shifted objects with a. horizon-
tal displacement of 7 = 6.25um and a vertical displacement of v = 6.25um. As shown
in Eq.(9), the object’s shift under the illumination of the Gaussian beam corresponds
to the product of the object and the exponential function exp [-—(’nw / )\zl)27'u’], which
is the key to the phase retrieval in this paper. From studies of numerical experiments,®
it was found that the suitable values of the inclination factor a = (mw/X21)?7 of the
exponential function are approximately in the range 0.047/0y, < a < 0.5m /0y, where
o, denotes the width of the object in the direction of u axis. In the present simulation

using o, = 28um, and 7 = 6.25um, the value a (= 9.24 x 1072) is in that range. Cross-
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Fig.5. Original object function used in the computer simulation: (a) modulus and (b) phase
of an object with two first-order vortices of Laguerre-Gaussian mode.

sectional profiles of the original and the reconstructed modulus and phase along the
horizontal line that passes through the center of the object are compared in Figs.4(c)
and 4(d), respectively. For simulating the noisy intensities, three complex normal ran-
dom noises n;(z,y) (2 = 1,2,3) are produced by a computer and added to the complex
amplitudes Fi(z,y) (¢ = 1,2, 3) in the Fresnel-zone plane, respectively. A factor of the
signal-to-noise ratio (SNR), defined by SNR. = 3°, . |Fi(z,9)|?/ . |n1(z, y)[?, is now
introduced, and then the SNR in Fig.4 becomes 499.

A measure of the quality of reconstruction is defined by the normalized root-mean-
squared (rms) error,

SOIF(v) — £, 0) 2]

S S e ’ -

where f(u,v) and f.(u,v) are the original and the reconstructed object functions,
respectively. The rms error for the reconstructed object in Fig.4 is 0.463. The ad-
vantage of the present method is that one can retrieve the phase distribution with

vortices (i.e., screw dislocations). To demonstrate the phase retrieval of vortices, an
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Fig.6. Reconstruction of the object shown in Fig.5 from noisy Fresnel-zone intensities when
the same parameters as in Fig.4 are used in the system of Fig.1. (a)Modulus and (b) phase
of the reconstructed object, and (c) and (d) are cross-sectional profiles of the functions in (a)
and (b), respectively, taken along horizontal lines passing through the center. The dotted
and solid curves represent the original and the reconstructed objects, respectively.

object with vortices of Laguerre-Gaussian mode was assumed. Figures 5(a) and 5(b)
show the modulus and phase of the original object having two first-order vortices of
opposite charge, where the figures are represented with the central 128 x 128 points on
the same scale as in Fig.3. Figures 6(a) and 6(b) show the modulus and phase of the
object reconstructed in noisy case (SNR= 444) by using the same object’s displace-
ment as in Fig.4. Figures 6(c) and 6(d) indicate comparison between cross-sectional
profiles of the original and the reconstructed objects along the horizontal line through
the center. The rms error for the reconstructed object in Fig.6 is 0.401. It is found
from the results in Figs.4 and 6 that the reconstructed objects are somewhat degraded

owing to the presence of noise, but they represent the main features of the original

objects in the general case and in particular in the presence of vortices.
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4. Conclusions

A noniterative method for reconstructing an object function from its diffraction in-
tensities has been presented. In this method, the Fraunhofer diffraction pattern of a
circular aperture is used as the illumination for an object, and the complex amplitude
of the object is reconstructed by inverse Fourier transforming the complex amplitude
in the Fresnel-zone plane, of which the phase is retrieved from three intensity mea-
surements in the Fresnel-zone region: the Fresnel intensity of the object and the two
intensities of the object shifted along two orthogonal directions in the object plane.
The phase retrieval method in this paper is based on the approximation of the ampli-
tude function of the object’s illuminating beam to a Gaussian function. In the case
of the illumination with the Fraunhofer diffraction pattern (i.e., besinc function) of a
circular aperture, it was found from computer simulations that this approximation is
effective for phase retrieval provided that the extent of the object is smaller than ~ 1/3
of the first zero’s radius of the besinc function. This effective extent of the illuminating
beam can be easily adjusted by changing the distance between the aperture and the
object planes. Although the present method requires a shaping of the illuminating
beam, the system of making the Gaussian-like beam with a circular aperture is very
simple and implemented easily in measuring with x-rays or electron waves. However,
there exists no high-power source like a laser in such wave phenomena, and so it may
be necessary that a beam of x-rays or electron waves is focused to a small spot on the
aperture plane by a zone plate or a electron lens in order to increase the signal-to-noise
ratio of measurements.

Computer-simulated examples of this method have presented good reconstructions
of the complex objects. Since the phase retrieval method used here is noniterative and

analytic, there are not convergence problems such as the stagnation and the slow speed

52



convergence. In addition, the present simulations have shown that this method is able
to cope with the existence of vortices in the phase distribution in contrast with all the
noniterative phase retrieval methods developed until now. Consequently, these results
exhibit that the present method provides potentially very useful means for object’s

imaging in a wide class of wave fields that obey linear phenomena.
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Phase retrieval from diffraction intensities

by use of a scanning slit aperture

Abstract

A noniterative method of retrieving the phase of a wave field from intensities measured
while scanning a slit aperture is proposed. In the measurements, one records the
diffraction intensities of wave fields transmitted through the slit which is scanned along
two directions in the Fresnel-zone plane of an object’s field. From these intensities, the
phase in the Fresnel-zone plane can be retrieved by the method, in which a novel phase
calculation technique using Fourier transforms is included. Since the method does not
require lens systems, it provides potentially useful means for coherent imaging by use

of x-rays, electrons, or nuclear particles.
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I. INTRODUCTION

Non-interferometric reconstruction of the phase of wave fields in coherent scattering
phenomena is a topic of current interest in a number of areas for object imaging or
structure determination by use of various waves such as optical, x-ray, electron, and
atomic waves.! The iterative method using a priori information (e.g., nonnegativ-
ity and/or extent of a wave field in an object plane) with the diffraction intensities
are widely used, which was proposed by Fienup? as a modification of the original
Gerchberg-Saxton algorithm.® For example, the demonstration of the object recon-
struction by use of the iterative method has been shown in the x-ray phase retrieval
experiments for noncrystalline samples,*~®, the coherent electron imaging of a car-
bon nanotube from its diffraction intensity,” and the computer simulation of phase
retrieval from diffraction patterns for complex large biomolecules with coherent x-ray
illumination® or for a single noncrystalline object illuminated with a coherent elec-
tron beam.® However, the use of iterative methods is accompanied by convergence
problems, and hence those methods sometimes stagnate in a local minimum solution
different from a true one. Recently, it was shown that an iterative method from multi-
diffraction patterns measured by use of overlapping aperture positions in the object
plane is useful to eliminate such ambiguities in the retrieved phase.®

On the other hand, there are some studies on noniterative methods for phase re-
trieval from diffraction intensities, for example, phase recovery by solving the transport-
of-intensity equation from intensity distributions in two or three transverse planes,!!~4
and phase retrieval by solving simultaneous equations for unknown phase from three
diffraction intensities of an object filtered with known Gaussian functions,®!® which
is based on the properties of entire functions. It is well-known that wave functions

belong to entire functions.'”!® The former method has been used for phase retrieval in
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electron microscopy,!® x-ray imaging,?® and so forth. The reconstruction by the latter
method was demonstrated in the optical experiments with a Gaussian beam instead
of the Gaussian filter.?! The latter method has the advantage of retrieving the phase
distribution with the vortices (i.e., screw dislocations??) in contrast with the former
one,? because entire functions intrinsically include zero points, which indicate the
possible presence of vortices in the phase. In the latter method, however, there exists
the difficulty of filtering a small object with Gaussian functions.

Thus an extension of the latter method is presented in this paper. In the extended
method, the Gaussian filtering for phase retrieval is done indirectly by taking the
correlation of a slit aperture with the Fresnel diffraction amplitude of an object. The
intensity data of such a correlation are obtained by measuring the diffraction intensities
of a wave field transmitted through the slit aperture which is scanned on the Fresnel-
zone plane. Then the one-dimensional phases in the Fresnel-zone plane of the object
can be retrieved from two series of the intensities measured while scanning the slit by
a new phase calculation technique using Fourier transforms. Combining these phases
and another retrieved phase from the data obtained by a 90° rotation of the above
slit, the two-dimensional phase in the Fresnel-zone plane can be determined, and then
the object function is reconstructed by transforming the inverse Fresnel diffraction of
the complex function consisting of the measured modulus and the retrieved phase.

The reconstruction method is developed in Section 2. In Section 3, the resolution
attainable by the system with a scanning slit is discussed. The validity of this method
is demonstrated in Section 4 with a computer simulation of the reconstruction of an

object with phase vortices. Concluding remarks are given in Section 5.
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2. Formulation of the Reconstruction Method

Figure 1 shows a schematic diagram of the measurement system with a scanning
slit aperture. We assume that an object of complex amplitude transmittance f(u,v)
(which is assumed to be of finite extent) in the object plane is illuminated by a coherent
monochromatic plane wave of wavelength A. In the Fresnel-zone plane with coordinates
x and y, a scanning slit aperture is inserted to take a correlation of the slit function
and the field distribution F(z,y) of the wave diffracted from the object. By use of the

Fresnel approximation, F(z,y) is written as
Fle,y)=[ [ £ v)exp {ix-l(@ = uf + (y = v)?] | dudv, (40)

where o denotes the extent of the object, z is the normal distance between the u-v
and z-y planes, unimportant multiplicative constants associated with the diffraction
integrals are ignored. Assuming the Fresnel diffraction of the wave transmitted through

the slit aperture, the complex amplitude H(,7n) in the detector plane is given by

H(& n)=q //_: F(z,y)R(z — s) exp {z%[(x —s)?+ y2]}

X exp {—i%[x({ — )+ yn]} dzdy, (41)

where [ is the normal distance between the z-y and &-n planes, R(z) is the aperture
function of unit-amplitude transmittance within its extent, s is the position of the
center line of the slit on the z axis, and q = exp[in(£2 — s% +n%)/\]. First, in the

present method, the one-dimensional phases of the function H(&,7) along the lines
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Fig.1. Schematic diagram of the object-reconstruction system that uses phase retrieval. The
object reconstruction is based on the measurement of two series of intensities recorded along
the lines parallel to the 7 axis at two coordinates of s and s + 7 in the detector plane as a
function of the slit position s.

parallel to the £ axis are retrieved from two series of intensities, which are recorded
at two coordinates ¢ = s and € = s + 7 (where 7 is a constant) in the detector plane
as a function of the slit position s. Secondly, the phases of H(£,n) along lines parallel
to the n axis are also retrieved from data obtained by a 90° rotation of the slit. Then
the two-dimensional phase of F(z,y) is reconstructed by eliminating the effect of the
slit function R(z) from slices of H(£,n) parallel to the £ and 7 axes and combining
one-dimensional phases of the resultant functions in two dimensions.

Thus, substituting Eq.(1) into Eq.(2) and integrating for y coordinate, the two

intensities of H(£,n) at £ = s, s + 7 can be written as

2

|H(s,n)[*= (42)

/s:a F'(z,n) R(z — s)dx

and

2

NH(s + 7 m)*= (43)

)

s+a
/ F' (z,7) R(z — ) exp (—i2rzr /M) dz

where a denotes half a width of the slit,
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F'(z,n)= / / Flu,v) exp H;(x —u)? + i o l)sz exp [—i%nv] dudv(44)

and unimportant multiplicative constant is ignored. In Egs.(3) and (4), the Fraun-
hofer approximation was assumed to be satisfied for the diffraction intensities along
the direction of ¢ axis (i.e., the quadratic phase factor exp [z%(a: - 3)2] in Eq.(2) is
approximately unity over the slit function in the z direction).

To utilize the phase retrieve method based on the properties of entire functions,'%:16
we assume that the extent of the inverse Fourier transform of R(z) [i.e., a sinc function]

has large extent enough to approximate it into a Gaussian function within the extent

of the inverse Fourier transform of F”(z,n) :

/ ~ R(z)exp (i2mux/X2)dx = 2a sinc(2rau/\z)

B (2rau/Az)?
—_ 2a 1 - __T———_“ cee ¥
=~ 2aexp|[—(2mau/Az)?/6], (45)

where the Maclaurin expansion of the sinc function is used for the approximation. It
can be seen from Eq.(5) that the one-dimensional inverse Fourier transform of F’ (z,n)
for z coordinate corresponds to the product of the spatial-frequency spectrum of the
object function along the direction of u axis with a quadratic phase factor. From
studies of numerical experiments, the approximation in Eq.(6) was found to be effective
provided that the main part of the object’s frequency spectrum is smaller than ~ %

of the first zero’s extent of the sinc function. Thus substituting the Fourier transform
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of Eq.(6) into Eqgs.(3) and (4) instead of R(z), we obtain the relation between the two

intensities of H(&,n) at € =s,s + 7
|H (s + 7,m)|*=exp(—3¢?/2a*)|H (s — ic', )|, (46)

where ¢ = 2ma?7/3\l. Then substitution of H(s,n) = M (s,n) exp[i¢(s,n)] into Eq.(7)

yields

ln[ |H(s +7,7)]

m] +36%/4a” = ~Img(s —ic'm) (47)

where M(s,n) and ¢(s,n) are the modulus and phase of H(s,n), and Im denotes the
imaginary part of the complex function.

In the previous papers,!>6 the phase ¢(s,7) along the direction of £ axis was solved
from Eq.(8) by representing the phase in terms of a Fourier series basis. In this paper,
a new method of solving Eq.(8) by Fourier transforms is presented. Thus we rewrite
Eq.(8) in the form

D(s,n) = —Imé(s —ic,7), (48)

where D(s,n) is a measurable function consisting of two terms on the left-hand side

in Eq.(8). The Fourier transform of Eq.(9) for s coordinate can be written as

FID(s,m)) =~ [ s — i m) = (s +ic )] expl—iznas)ds,  (49)

where F|-] denotes the Fourier transform, which is assumed to be a function of variable
a, and the asterisk means a complex conjugate. Integration by substitution for s +1ic’

in the right-hand side of Eq.(10) yields
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FIDG )] =~ [ [pls,m) exp(emac) — ¢*(s, ) exp(~2mac’)

2 )

x exp(—i2ras)ds,

= i¢sinh(2rac) /OO #(s,n) exp(—i2ras)ds, (50)

—00

where the property of the real function of the phase [i.e., ¢(s,n) = ¢*(s,n)] was
used. Hence the phase ¢(s,n) along the direction of £ axis can be obtained from the

measurable function D(s,n) by

_1| F[D(s;m)]
¢(s,m) = [m} ) (51)

where F~1[.] denotes the inverse Fourier transform.

The complex function H(s,7n) on one-dimensional lines parallel to the £ axis can be
reconstructed from the measured modulus in Eq.(3) and the retrieved phase ¢(s,n).
Then we can calculate the deconvolution of F’(z,7n) from the reconstructed function
H(s,n) by using the known slit function R(z). However, there are unknown constant
phases among these lines that are independent of each other. To retrieve this ambigu-
ity, we make a second measurement for two series of intensities of H(¢,n) at np = s, s+7/
(where 7’ is also a constant) by scanning a slit aperture that is parallel to the z axis
(obtained by a 90° rotation of the above slit). Then the function F’(¢,%) along the
direction of y axis can be reconstructed in the same way as F”(z,7n). The two functions
F'(z,n) and F'(£,y) can be combined in the following way. After canceling the known
quadratic phase exp(inz?/Az) of F'(x,n), we calculate a set of one-dimensional inverse

Fourier transforms of the resultant function along lines parallel to the z axis. Then
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one-dimensional Fourier transforms of the products of the set of the functions and the

quadratic phase exp[—imu?/Az + imu?/A(z + [)] is given by

2

Fé(ﬁ,n)z//; f(u,v) exp [Z—>\(z7r—+l)(u2 + vz)J exp [_i)\(z y (&u + no) | dudv, (52)

on condition that the phase information among slices of F¢(£,n) parallel to the & axis is
unknown. In the same way, the function F}(¢,7) having the phase information in the
n direction can be obtained from F'(£,y). The phase information of F;(£,n) permits
us to determine the differences among the one-dimensional phases associated with
slices of F{(£,n) parallel to the £ axis. By taking the two-dimensional inverse Fourier
transform of the resultant combined function and compensating for the quadratic

(u® +v?)|, we can finally obtain the object function f(u,v).

hase exp i Ul
P PG+

3. Resolution of the phase retrieval using a scanning slit

In this section we discuss the resolution of the object reconstruction using the present
phase retrieval method. As described in Section 2, the approximation of Eq.(6) is
effective provided that the main part of the object’s spatial-frequency spectrum is
smaller than ~ % of the first zero’s extent of the inverse Fourier transform of the slit
function. Hence it is found that the resolution for the object reconstruction from the
intensities of Eqgs.(3) and (4) is limited by two times the width of the slit. However,
the resolution can be improved by changing the coordinates of the measurement points

in the detector plane. To explain this fact, we first rewrite Eq.(1) as
T2 02
F(z,y) = exp [z—)-\;(x +y )] Fy(z,y). (53)
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where

21

Ff(x,y)z//a flu,v)exp [z%(uz + vz)] exp [—z’ > (zu + yv)| dudv. (54)

Thus we consider the amplitude H(£,7) at the coordinates & = s(1 + [/z) in the

detector plane. Substitution of Eq.(14) and £ = s (1 + {/z) into Eq.(2) yields

1 (0t o[- s 5 )]

X Fy(z,y)R(z — s) exp (—ivyn) dzdy. (55)

where ¢ = explins?(1 + [/z)/Az + iwn?/Al]. In this equation, if the distances z
and [ satisfy the conditions required for validity of the Fraunhofer approximation
for a slit of width D (= 2a) in the direction of z axis, the quadratic phase fac-
tor exp {z (/D) [(1 +1/z) (z — 3)2]} is approximately unity over the slit function
R(z — s). Using this approximation, substituting Eq.(15) into Eq.(16), and integrat-

ing for y coordinate, the intensity of Eq.(16) can be written as

2 2

/S _: F} (z,m) R(z — s)do (56)

where

F}(x,n)=//a f(u,v)exp [zg (u; + zi l)} exp {—zi—: (xu + szlv)] dudv. (57)
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where unimportant multiplicative constant is ignored. In the same way, the intensity

of H(&,n) at the coordinate £ = s(1+1/z) + 7 is given by

o]

The resolution of the object reconstruction based on Eqgs.(17) and (19) is made clear by

/::a Fi (z,n) R(z — s) exp(—2mizT/A)dz : : (58)

investigating the inverse Fourier transform of the correlation integral in Eq.(17), which
corresponds to the product of two inverse Fourier transforms of R(x) and Ff(x,n). It
can be seen form Eq.(18) that the inverse Fourier transform of F(x, ) for = coordinate
becomes the product of the object function f(u,v) in the u direction and the quadratic
phase exp(imu?/)Az) in contrast to that of F'(z,n) in Eq.(5). This reason is that the
function F(x,n) does not include the quadratic phase factor explinz?/Az] of F'(z,n)
in the Fresnel-zone plane. Consequently, we find that in this case the resolution of
the object reconstruction is limited by the width of the scanning area with the slit on
the Fresnel-zone plane, provided that the object’s extent in the u (or v) direction is
smaller than ~ % of the first zero’s extent of the inverse Fourier transform (i.e., the

sinc function) of the slit function.

3. Computer simulation

The performance of the present method is demonstrated by computer simulation for
the reconstruction of a two-dimensional complex-valued object. Data processing by
computer was carried out with 256 x 256 sampling points, of which the physical size

was assigned to 1.2 x 1.2 mm. The wavelength was set to 0.6328 um. The distances z

68



(b) (d)
Fig.2. Reconstruction of a complex-valued object with phase vortices in noise-free case:(a)
modulus and (b) phase of an original object, and (c) modulus and (d) phase of a reconstructed

one.

and [ were fixed to 6.67 mm and 20.0 mm, respectively, and the slit aperture of width
63.3 um was assumed. The advantage of the present method is that one can retrieve
the phase distribution with vortices in contrast to the other noniterative methods.!*~4
To demonstrate the phase retrieval of vortices, an object with vortices of Laguerre-
Gaussian mode was assumed. -Figures 2(a) an 2(b) show the modulus and phase,
respectively, of the original object, which was produced by adding a function with two
first-order vortices of opposite charge to a random complex function generated by a
computer. The extent of the object was the square with sides of 0.48 mm. Figures
2(c) and 2(d) show the modulus and the phase of the object reconstructed from series
of noise-free intensities observed at the coordinates £ = s,s +7 and n = s,s+ 7’ in
the detector plane as a function of the position s for the slit apertures parallel to 7
and & axes, respectively, where 7 = 7' = 28.1um was assumed.

The example of the reconstruction from noisy intensities is shown in Fig.3, where
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the distances 7 and 7’ were increased to 56.2um in order to raise the signal level of
the first term on the left-hand side in Eq.(8). For simulating the noisy intensities,
complex normal random noises n(£,n) are produced by a computer and are added
to the complex amplitudes H(£,7n) in the detector plane. A factor of the signal-to-
noise ratio (SNR), defined by SNR = ¥, . |H(s,n)[?/ X, In(s,m)|?, is now introduced,
where H(s,n) and n(s,n) are the complex amplitude and the noise, respectively, at
the coordinate of the position s of the slit parallel to the £ axis. Then the SNR in
Fig.3 becomes 347. Figure 3(a) and 3(b) show the modulus and the phase of the
reconstructed object, and cross-sectional profiles of the original and the reconstructed
moduli and phases along the horizontal line that passes through the center of the
object are compared in Figs.3(c) and 3(d), respectively. It can be seen from Fig.3,
that the reconstruction quality in the neighborhood of the edge of the object’s extent
appears to be less accurate than that of the central part of the object. The reason of
this fact is that the high spatial-frequency components are generally sensitive to noise
in the Fresnel intensities, though these components are necessary for reconstructing
the edge. However, the result faithfully represents the main features of the original

object, particularly, the vortices of the phase.

5. Conclusions

A noniterative phase retrieval method by use of a slit aperture has been presented
that is capable of reconstructing a complex-valued object from diffraction intensities
measured while scanning the slit in the Fresnel-zone plane. The phase retrieval is based
on the properties of entire functions, which are effective under the approximation of

the inverse Fourier transform (i.e., the sinc function) of the slit aperture to a Gaussian
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Fig.3. Reconstruction of the object shown in Fig.2 from noisy intensities: (a) modulus and
(b) phase of the reconstructed object, and (c) and (d) are cross-sectional profiles of the
figures in (a) and (b), respectively, taken along horizontal lines passing through the center
of each figure. The dotted and solid curves represent the original and the reconstructed

objects, respectively.

function. It was found from computer simulations that this approximation can be
used for phase retrieval provided that the main part of the spatial frequency spectrum
of an object is smaller than ~ % of the first zero’s extent of the sinc function. On
this condition, the phase in the Fresnel-zone plane can be retrieved from two series
of intensities recorded at two coordinates in a diffraction plane for the wave passed
through the slit aperture. In particular, a new phase calculation technique has been
presented here, in which the phase can simply be retrieved by using Fourier transforms
in contrast to the solution of the simultaneous equations for unknown coefficients of the
phase in the previous papers.’®!® It has been shown that the resolution of the object
reconstruction using the present method is limited by two times the width of the slit
in the case that the measurement points are depended to only the position of the slit,

but this limitation can be changed into the reciprocal of the width of the scanning area
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with the slit on the Fresnel-zone plane by the measurement of the intensities at the
coordinates depending to the position of the slit and the two distances between the
object and Fresnel-zone planes and between the Fresnel-zone and detector planes. The
computer-simulated example of this method in the former case of the measurement
has presented here the good reconstruction of a complex object with phase vortices.
The performance of this method in the latter case of the measurement will be shown
in a forthcoming paper.

Since the phase retrieval method used here is noniterative and analytic, there are
not convergence problems such as the stagnation and the slow speed convergence.
In addition, unlike the other noniterative methods,!'~* this method can cope with
the existence of vortices in the phase distribution. Consequently, these facts exhibit
that the present method provides potentially very useful means for lensless coherent

imaging in a wide class of wave fields such as x-rays and electron waves.
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