1	Importance of malate synthase in the glyoxylate cycle of
2	Ashbya gossypii for the efficient production of riboflavin
3	
4	Takashi Sugimoto · Shin Kanamasa · Tatsuya Kato · Enoch Y. Park
5	
6	
7	
8	
9	
10	Takashi Sugimoto · Enoch Y. Park (⊠)
11	Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka
12	University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
13	e-mail: acypark@ipc.shizuoka.ac.jp
14	Shin Kanamasa
15	JST Innovation Satellite Shizuoka, Japan Science and Technology Agency,
16	3-5-1-Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
17	Tatsuya Kato
18	Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya,
19	Suruga-ku, Shizuoka 422-8529, Japan
20	

21	Abstract The glyoxylate cycle is an anabolic pathway that is necessary for growth
22	on nonfermentable carbon sources such as vegetable oils and is important for riboflavin
23	production by the filamentous fungus Ashbya gossypii. The aim of this study was to
24	identify malate synthase in the glyoxylate cycle of A. gossypii and to investigate its
25	importance in riboflavin production from rapeseed oil. The ACR268C gene was
26	identified as the malate synthase gene that encoded functional malate synthase in the
27	glyoxylate cycle. The ACR268C gene knockout mutant lost malate synthase activity,
28	and its riboflavin production and oil consumption were 10- and 2-fold lower,
29	respectively, than the values of the wild-type strain. In contrast, the ACR268C
30	gene-overexpressing strain showed a 1.6-fold increase in the malate synthase activity
31	and 1.7-fold higher riboflavin production than the control strain. These results
32	demonstrate that the malate synthase in the glyoxylate cycle has an important role not
33	only in riboflavin production but also in oil consumption.
34	
35	KeywordsRiboflavin \cdot Ashbya gossypii \cdot Malate synthase \cdot Gene disruptant \cdot Gene
36	targeting disruption · Glyoxylate cycle

38 Introduction

39 The filamentous hemiascomycete Ashbya gossypii is a natural producer of riboflavin 40 (Demain 1972). Riboflavin is an important growth factor in higher eukaryotes because it 41 is the precursor of flavocoenzymes such as flavin mononucleotide (FMN) and flavin 42 adenine dinucleotide (FAD). A. gossypii has been utilized for industrial riboflavin 43 production, and recently, its entire genome has been completely sequenced and 44 annotated (Dietrich et al. 2004; Hermida et al. 2005). Currently, A. gossypii is used in 45 the biorefining of waste vegetable oil. However, when waste oily resources are used as 46 the carbon source, increased riboflavin productivity is required for the process to be 47 economically viable. Therefore, several research groups (Schmidt et al. 1996a; Park et 48 al. 2007) have applied classical mutagenesis and mutant selection techniques using 49 antimetabolites such as itaconate and oxalate for this purpose. Schmidt et al. (1996b) 50 found that itaconate is inhibitory to isocitrate lyase and itaconate-resistant strain is 51 useful to improve riboflavin yield. Thus, metabolic engineering has been currently 52 practiced for improving the riboflavin yield by overexpression and modification of key 53 enzymes, e.g. threonine aldolase (Monschau et al. 1998) and phosphoribosyl 54 pyrophosphate synthase (Jiménez et al. 2005; 2008). 55 The glyoxylate cycle is a C₄-dicarboxylic acid interconversion pathway, which 56 has been characterized as a "glyoxylate bypass of tricarboxylic acid (TCA) cycle" 57 because the malate dehydrogenase, citrate synthase, and aconitase activities are shared

58 by both cycles (Kornberg and Madsen 1957). The glyoxylate cycle plays an essential

59	role in cell growth on nonfermentable carbon sources such as acetate, ethanol, and fatty
60	acids and in fungal virulence in microorganisms. Dysfunctional mutants of Candida
61	albicans that lacked isocitrate lyase (ICL1, E.C. 4.1.3.1) or malate synthase (MLS1, E.C.
62	2.3.3.9) in the glyoxylate cycle lost their ability to form pseudohypha and their fungal
63	virulence in mice (Lorenz and Fink 2001). In Saccharomyces cerevisiae, disruptants of
64	these genes were unable to utilize carbon sources such as ethanol, acetate, or oleic acid
65	(Fernandez et al. 1992; Hartig et al. 1992; Kunze et al. 2002). The metabolic importance
66	of ICL1 has been well-studied as a key enzyme in riboflavin biosynthesis from oils in A.
67	gossypii since its activity was positively correlated to the riboflavin yield (Kanamasa et
68	al. 2007; Maeting et al. 1999; Schmidt et al. 1996a).
69	Malate synthase is an acyltransferase that converts glyoxylate and acetyl-CoA to
70	malate. In this reaction, the acetyl residue from acetyl-CoA is transferred to glyoxylate.
71	The malate that is generated is either converted to oxaloacetate for continuous
72	glyoxylate cycle or is used as the initial substrate in gluconeogenesis for conversion to
73	phosphoenolpyruvate by phosphoenolpyruvate carboxykinase (PCK1, E.C. 4.1.1.49).
74	Although MLS1 activity is believed to be necessary for mycelial growth on
75	nonfermentable carbon sources, A. gossypii MLS1 has not been functionally identified
76	and characterized in riboflavin biosynthesis from vegetable oils.
77	In this study, the MLS1 homologue was disrupted and overexpressed in A.
78	gossypii to facilitate the identification and characterization of the gene product. We
79	could demonstrate that MLS1 is one of the important key enzymes for the improved

80	production of riboflavin from rapeseed oil. Moreover, supplementation malate into the
81	A. gossypii culture was effective in improving riboflavin productivity.
82	
83	Materials and methods
84	
85	Strains and growth conditions
86	
87	A. gossypii ATCC 10895 (AgWT) and Escherichia coli DH5 α were used as the A.
88	gossypii wild-type and DNA manipulation host strains, respectively. E. coli DH5a was
89	grown in LB medium (pH 7.5) consisting of 1% (w/v) polypeptone-S (Nihon
90	Pharmaceut. Co., Ltd., Tokyo, Japan), 0.5% (w/v) bacto yeast extract (Becton,
91	Dickinson and Company, NJ, USA), and 0.5% (w/v) sodium chloride (Wako Pure
92	Chem. Ind., Ltd., Osaka, Japan).
93	The media used for A. gossypii culture were as follows: YD medium (pH 6.8)
94	containing 1% (w/v) yeast extract (Oriental Yeast Co., Ltd., Tokyo, Japan) and 1%
95	(w/v) glucose; YR medium (pH 6.8) containing 1% (w/v) yeast extract and 1% (w/v)
96	rapeseed oil; seed medium for riboflavin production (per liter) consisting of 30 g corn
97	steep liquor (Wako), 9 g yeast extract, and 15 g rapeseed oil (pH 6.8); production
98	medium (per liter) containing 60 g corn steep liquor, 30 g gelatin (Wako), 1.5 g
99	KH ₂ PO ₄ , 1.5 g glycine, 4.4 mg CoCl ₂ , 17.9 mg MnCl ₂ ·4H ₂ O, 44.2 mg ZnSO ₄ ·7H ₂ O,
100	and 10.3 mg MgSO ₄ ·7H ₂ O, and 50 g rapeseed oil (pH 6.8). Cultures were performed in

101	500-ml shaker flasks with a working volume of 50 ml of each medium. The cultures
102	were incubated on a rotary shaker (Bio Shaker; Takasaki Scientific Instrument Co.) at
103	220 rpm and 28°C. For selective growth of the transformants, Geneticin (Wako) was
104	added to the cultures to a final concentration of 200 μ g/ml.
105	
106	Homology search of A. gossypii malate synthase using BLAST
107	
108	The amino acid sequence of A. gossypii malate synthase was obtained from the Ashbya
109	Genome Database (AGD; <u>http://agd.vital-it.ch/index.html</u>) described by Hemida et al.
110	(2005). The amino acid sequence of the malate synthase from S. cerevisiae that was
111	identified by Hartig et al. (1992) was used as the query sequence for cross-species
112	BLAST homology searching in the DNA Data Bank of Japan
113	(DDBJ; <u>http://www.ddbj.nig.ac.jp/</u>). The acquired FASTA format amino acid sequences
114	of several species, including A. gossypii, were multialigned by ClustalX (Larkin et al.
115	2007) and modified by GeneDog.
116	
117	Plasmid constructions
118	
119	DNA was manipulated using standard procedures (Sambrook and Russell 2001). The
120	control plasmid (pARK) and expression plasmid with the ACR268C gene in A. gossypii
121	(pAMK) were constructed using pAUR123 (TaKaRa Bio Inc., Shiga, Japan), as shown

in Scheme 1A. The ACR268C gene was PCR amplified with 100 ng of AgWT

123 chromosomal DNA as the template using the KOD-Plus DNA polymerase (Toyobo, Co.,

124 Ltd., Osaka, Japan). PCR was carried out using the AgMLS1-Ex-F and AgMLS1-Ex-R

125 primers (Table 1) under the following conditions: 1 cycle at 95°C for 2 min followed by

126 35 cycles at 95°C for 30 s, 55°C for 1 min, and 68°C for 2 min. The amplified fragment

127 was purified by GFX PCR DNA and the Gel Band Purification Kit (GE Healthcare UK

128 Ltd., Buckinghamshire, England). The ACR268C gene was inserted between the KpnI

129 and XbaI sites located downstream of the alcohol dehydrogenase promoter (ADH_{pro}) in

130 pAUR123, using a DNA ligation kit (Mighty Mix, TaKaRa Bio Inc.). The resulting

131 plasmid was designated pARM.

132 The kanamycin-resistance gene cassette (*TEF1*_{pro}-Kan[']), which contains the 133 kanamycin resistance gene used as a dominant marker for Geneticin resistance in 134 eukaryotes (Jiménez and Davies 1980) under the control of the A. gossypii translation 135 elongation factor 1 α promoter (*TEF1*_{pro}) and terminator (*TEF1*_{ter}), was amplified using 136 pPKT as the template (Kato and Park 2004) and the AgTEFproH3-F and 137 AgTEFterH3-R primers (Table 1). PCR was carried out using LA-Taq Hot Start Version 138 (TaKaRa Bio Inc.) under the following conditions: 1 cycle at 95°C for 2 min followed 139 by 35 cycles at 95°C for 30 s, 55°C for 1 min, and 72°C for 1.5 min. Final extension was 140 carried out with 1 cycle at 72°C for 10 min. The amplified fragment was purified as

- 141 described above and inserted into the *Hin*dIII sites of pARM and pAUR123. The
- 142 resulting plasmids were designated pAMK and pARK, respectively. pAMK harbored

both $TEF1_{pro}$ -Kan^r and ACR268C, while pARK contained only $TEF1_{pro}$ -Kan^r.

144

145 PCR-based gene targeting disruption

146

147 The knockout mutant of the ACR268C gene was constructed by PCR-based gene 148 targeting disruption, as described by Wendland et al. (2000). Technical protocol of transformation in A. gossypii was performed according to the method described by 149 150 Monshau et al. (1988) and Kanamasa et al. (2007) with some modifications. The 60-bp 151 homologous sequence of the ACR268C gene on both ends of TEF1_{pro}-Kan^r was 152 amplified using pPKT as the template, as shown in Scheme 1B, and the Agmls901-F 153 and Agmls1600-R primers (Table 1). PCR amplification was carried out using LA-Taq 154 Hot Start Version (TaKaRa Bio Inc.) under the following conditions: 1 cycle at 95°C for 2 min followed by 35 cycles at 95°C for 30 s, 55°C for 1 min, and 72°C for 1 min 42 s. 155 156 Final extension was carried out with 1 cycle at 72°C for 10 min. The PCR product was 157 purified as described above. Spores of AgWT (approximately 1.0×10^6) were grown on YD medium for 27 h. 158 159 The grown mycelia were harvested by filtration, washed with distilled water, and 160 suspended in 50 mM potassium phosphate buffer (pH 6.8) containing 25 mM 161 2-mercaptoethanol. The suspension was incubated at 30°C for 30 min with gentle 162 agitation, and the mycelia were collected by filtration and washed with transformation 163 buffer consisting of 270 mM sucrose, 10 mM Tris-HCl (pH 7.5), and 1 mM MgCl₂. The

164	mycelia were finally resuspended in cooled transformation buffer, and 350 μ l of the
165	mycelial suspension was mixed with 300 ng of the above-purified gene-disruption
166	cassette (Scheme 1B). The cassette was introduced into the mycelium by electroporation
167	in a Gene Pulser Xcell system (Bio-Rad Lab. Inc., Hercules, CA, USA) at 1.5 kV/cm,
168	400 Ω , and 25 μ F using 2-mm pre-chilled electrocuvettes (Bio-Rad). The
169	postelectroporated mycelia were incubated on a YD plate to regenerate the mycelia at
170	30°C for 6 h. Subsequently, the mycelia were covered with 20 ml YD medium
171	containing 0.6% agar and 300 μ g/ml Geneticin for isolating the transformants.
172	
173	Confirmation of transformants
174	
175	The disruption of the ACR268C gene was confirmed by PCR using Ex-Taq Hot Start
176	Version (TaKaRa Bio Inc.) with the AgMLS1-V1 and AgMLS1-V2 primers (Table 1)
177	and 200 ng chromosomal DNA from the transformant. The PCR conditions were as
178	follows: 1 cycle at 95°C for 2 min followed by 35 cycles at 95°C for 30 s, 55°C for 1
179	min, and 72°C for 3 min. Final extension was carried out by 1 cycle at 72°C for 10 min.
180	For Southern blotting analysis of the mutant, 100 μ g of the chromosomal DNA was
181	simultaneously digested with BamHI and XhoI, and the products were separated by
182	0.9% (w/v) agarose gel electrophoresis. The DNA fragments were transferred onto
183	Hybond- N^+ (GE Healthcare). A DNA fragment of the kanamycin-resistance gene was
184	used as the hybridization probe. Preparation of the labeled probe and chemiluminescent

185	detection were carried out with the AlkPhos Direct Labeling and Detection system (GE
186	Healthcare), according to the manufacturer's protocol. Positive signals were detected by
187	Fluor-S/MAX (Bio-Rad).
188	To confirm the transformants carrying pARK or pAMK, 10 μ g of total DNA
189	from each transformant was introduced into E. coli cells, and the rescued plasmid was
190	confirmed by restriction enzyme mapping.
191	
192	Quantification of malate synthase mRNA by real-time quantitative RT-PCR
193	
194	A. gossypii mycelia grown in production medium in flask for 26 h were harvested by
195	filtration. Resulting mycelia were mixed with 0.3 g of acid washed glass beads (Sigma)
196	and 1ml of ISOGEN (NIPPON GENE Co., Ltd. Tokyo, Japan), and then fractured by
197	vigorous agitation. Complementary DNA was obtained by reverse transcription-PCR
198	using PrimeScript RT-PCR Kit (TaKaRa Bio Inc.) with the extracted total RNA as the
199	template with random 6 mers primer in the elongation condition at 40°C for 1 h. The
200	template RNA was degraded by 10 mg of RNase (Sigma) at 37°C for 30 min.
201	Messenger RNA levels of malate synthase and actin were quantified by using
202	FullVelocity SYBR Green QPCR Master Mix (Agilent Technologies Inc., CA, USA)
203	under the condition of 1 cycle at 95°C for 5 min, 60 cycles at 95°C for 10 sec and 60°C
204	for 30 sec for amplification plot, and 1 cycle at 95°C for 1 min, 55°C for 30 sex, and
205	95°C for 5 min for dissociation plot. QMLS1-F, -R and QACT1-F, -R primers (Table 1)

were used for malate synthase and actin, respectively. Actin was used as an internalstandard because of its constitutive expression.

208

209 Enzyme assay

210

211 The malate synthase activity was determined according to the method of Dixon and 212 Kornberg (1959). Ten microliters of the enzyme solution was added to 50 mM Tris-HCl 213 (pH 7.5), 5 mM MgCl₂, 2 mM sodium glyoxylate, and 50 µM acetyl-CoA (Wako), and 214 the final volume was made up to 1 ml. The specific absorbance of acetyl-CoA was 215 measured at 232 nm. One unit of malate synthase activity was defined as the amount of 216 enzyme required to deacetylate 1 micromole of acetyl-CoA per minute. Nonspecific 217 deacetylated acetyl-CoA was measured in the absence of MgCl₂ and sodium glyoxylate. 218 The protein concentration was determined by the Bradford method using a protein assay 219 kit (Bio-Rad) with bovine serum albumin as the standard. 220 221 Analytical methods

222

223 The riboflavin and residual oil concentrations were measured according to the method

224 previously described by Park and Ming (2004). The dry cell weight was measured as

- follows. The mycelia from the culture broth were filtered using filter paper No. 5A
- 226 (Advantec, Tokyo, Japan). The mycelia paste was dried overnight in an oven at 100°C,

227	and the dry cell weight was measured.
228	
229	
230	Results
231	
232	Multiple alignment of amino acid sequences of A. gossypii ACR268Cp
233	
234	When multiple alignment analysis of amino acid sequences of the proteins of yeasts and
235	fungi was carried out, several conserved regions and similar peroxisomal-targeting
236	sequences were observed in the C-terminal region; these were designated SRL and SKL.
237	The malate synthase of <i>S. cerevisiae</i> has a signal sequence and is believed to be
238	transported into the peroxisome (Kunze et al. 2002). The amino acid sequence of
239	ACR268Cp showed 73% identity to the malate synthase from S. cerevisiae (ScMLS1),
240	60% identity to the enzyme from Aspergillus niger (AnMLS1), and 57% identity to the
241	enzymes from C. albicans (CaMLS1) and Neurospora crassa (NcMLS1).
242	Characterization of the features based on the ScMLS1 amino acid sequence obtained by
243	UniProt (<u>http://www.pir.uniprot.org/</u>) suggested that ACR268Cp had two active sites,
244	i.e., a proton acceptor and donor on the 247 th arginine residue and 527 th aspartate
245	residue, respectively.
246	

247 ACR268C gene disruption and its phenotype

249	The ACR268C gene was disrupted, and 6 Geneticin-resistant colonies of A. gossypii
250	were isolated with an efficiency of approximately 20 colony forming units (cfu)/ μ g of
251	DNA. The ACR268C gene disruption was confirmed by genomic PCR using the
252	AgMLS1-V1 and AgMLS1-V2 primers. The presence of the 2.7-kb fragment (lane 2 in
253	Fig. 1A) indicated the introduction of $TEF1_{pro}$ -Kan ^r into the ACR268C gene. This also
254	led to the identification of the Geneticin-resistant colony as an ACR268C gene
255	disruptant. Southern blot analysis was carried out to confirm the disruption of the
256	ACR268C gene. The 2.6-kb DNA fragment was detected using a chemiluminescent
257	kanamycin-resistance gene probe from the chromosomal DNA that had been
258	double-digested with BamHI and XhoI at both ends of the ACR268C gene (Fig. 1B).
259	These results demonstrated that the $TEFI_{pro}$ -Kan ^r gene cassette was integrated into the
260	ACR268C gene, and the gene disruptant was designated $Ag\Delta$ mls1.
261	To investigate the phenotypic variations between the A_g WT and $A_g\Delta$ mls1
262	strains, both strains were cultured in the production medium. The specific malate
263	synthase activity of $Ag\Delta$ mls1 was less than 5 mU/mg protein, which was one-seventh
264	that of the $AgWT$ strain (Fig. 2A). This indicated that replacement of the +961 to +1599
265	region of the ACR268C gene, including the 527 th aspirate residue, with $TEF1_{pro}$ -Kan ^r
266	leads to complete loss of enzyme activity. This resulted in a significant decrease in
267	riboflavin production by the $Ag\Delta$ mls1 strain—approximately 10-fold less than that by
268	the AgWT strain (Fig. 2B). The oil consumption and dry cell weight of Ag Δ mls1 was

half or less than half that of the AgWT strain (Fig. 2C and D).

270	The mycelial morphology of $Ag\Delta$ mls1 differed from that of $AgWT$. In the
271	AgWT strain, as the culture progressed, the mycelia transformed into hypertrophic cells
272	(HM in Fig. 3). In contrast, the $Ag\Delta$ mls1 cells maintained their morphology as thin
273	filamentous mycelia (FM in Fig. 3) from the beginning, i.e., when the culture was
274	initiated. Oil droplets in the $Ag\Delta$ mls1 strain remained even after a culture time of 6 d,
275	indicating the presence of residual oil (O in Fig. 3). Fewer riboflavin-accumulating
276	yellowish mycelia (R in Fig. 3) were observed in $Ag\Delta$ mls1 than in $AgWT$. Crystallized
277	riboflavin (CR in Fig. 3) was observed in hypertrophic mycelia of $AgWT$ but not in
278	those of the $Ag\Delta$ mls1 strain.
279	
280	Riboflavin production, malate synthase activity, and the transcriptional level in the
281	malate synthase-overexpressing transformant
282	
283	The presence of the pARK and pAMK plasmids in the transformant was verified by
284	digesting the extracted plasmid DNA with KpnI and XbaI. Electrophoretic analysis
285	demonstrated the presence of bands of size approximately 850 bp and 1.9 kb, which
286	represent the kanamycin-resistance gene and ACR268C gene, respectively (lane 3 in Fig.
287	4A). The transformants with $AgWT$ /pARK and $AgWT$ /pAMK were designated $AgWP$
288	and AgMLS1, respectively.
289	The specific malate synthase activity of A_g MLS1 was significantly higher than

290	the activities of the $AgWP$ (Fig. 4B) and $Ag\Delta mls1$ strains (Fig. 2A), indicating that the
291	ACR268C gene encodes malate synthase. When the $AgWP$ and $AgMLS1$ transformants
292	were cultured in the production medium, the riboflavin production by AgMLS1 was
293	1.7-fold higher than that by $AgWP$ (Fig. 4C), even though the values of oil consumption
294	and dry cell weight were similar to those of $AgWP$ (data not shown).
295	Real-time quantitative RT-PCR revealed that <i>MLS1</i> mRNA level of <i>Ag</i> MLS1
296	strain was approximately 1.6- and 8-fold higher than those of $AgWP$ and $Ag\Delta mls1$,
297	respectively (Figs. 5 and 4B). This indicates that the plasmid pAMK expressing MLS1
298	functions appropriately.
299	
300	Additive effect of glyoxylate and malate on riboflavin production in the ACR268C
301	gene-disruptant
302	
303	Malate synthase gene disruption led to a significant decrease in riboflavin production,
304	suggesting that continuous glyoxylate cycling and/or gluconeogenesis bypass from
305	malate might be blocked. Glyoxylate and malate are the substrate and product of malate
306	synthase, respectively. Therefore, to investigate the effects of glyoxylate and malate on
307	metabolic flux, the $AgWT$ and $Ag\Delta mls1$ strains were cultured in glyoxylate- or
308	malate-supplemented production medium. Remarkable phenotypic differences were not
309	observed between the strains upon culture in the 50 mM glyoxylate-supplemented
310	culture (data not shown). However, the 50 mM malate-supplemented cultures of $AgWT$

311	and $Ag\Delta$ mls1 strains showed higher riboflavin production, oil consumption, and dry cell
312	weight in comparison with the values of the control culture. The riboflavin
313	concentrations of the $Ag\Delta$ mls1 and $AgWT$ strains were more than 2-fold higher than
314	those of the strains cultured without the malate additive (Fig. 6A). In particular, in the
315	culture of the $Ag\Delta$ mls1 strain, 50 g/l of oil was completely consumed (Fig. 6B), which
316	differed drastically from the result obtained in the absence of the malate additive (Fig.
317	2C).
318	
319	Discussion
320	
321	In this study, the ACR268C gene was identified to encode malate synthase, and its role
322	in riboflavin biosynthesis in A. gossypii was investigated using rapeseed oil as the sole
323	carbon source. We analyzed the amino acid sequence of ACR268Cp and found
324	sequences that were similar to two active sites and the C-terminal peroxisome targeting
325	signal (-SRL) (Gould et al 1988) of S. cerevisiae malate synthase. In the ACR268C
326	gene-disruptant, the 527 th aspartate, which functions as a proton donor, was replaced
327	with the kanamycin-resistance gene, and the disruptant did not exhibit any malate
328	synthase activity (Fig. 2A). This strain also showed decreases in the riboflavin
329	concentration, oil consumption, and dry cell weight. Therefore, malate synthase is
330	important for riboflavin biosynthesis and the assimilation of vegetable oils. This is
331	similar to the functioning of isocitrate lyase (Schmidt et al. 1996b). However,

332 Kanamasa et al. reported that an isocitrate lyase gene-disrupted mutant lost the ability to 333 produce riboflavin but grew well in the production medium (Kanamasa et al. 2007). 334 This suggests that malate synthase may have an important role not only in riboflavin 335 production but also in the maintenance of hyphal growth and turnover of carbon 336 assimilated from nonfermentable carbon sources under aerobic conditions. With regard 337 to mycelial morphology, hypertrophic mycelia were hardly observed in the disruptant in 338 comparison with the wild-type strain, even during the late culture period. Empirically, 339 hypertrophic mycelia are predominant in riboflavin producing A. gossypii throughout 340 late culture period. This suggests that the stagnation of the glyoxylate cycle results in 341 retardation of both cell growth and riboflavin biosynthesis because the supply of both 342 malate and oxaloacetate may be limited. Malate and oxaloacetate are substrates for 343 glyoxylate cycle turnover, malate/aspartate shuttle (Schmitt and Edwards 1983), and 344 gluconeogenesis (Fig. 7). These processes are necessary for the biosynthesis of the 345 sugar phosphate (such as ribulose-5-phosphate) and purine nucleotide (such 346 as guanosine triphosphate) for the riboflavin scaffold (Stahmann et al. 2000). 347 As for malate synthase-overexpressing strain, even though the expression 348 promoter and/or replication origin was adopted relatively at low mRNA level, as 349 compared to those of TEF1 promoter and 2 µm origin, the riboflavin concentration of 350 the MLS1-overexpressing strain was 1.7-fold higher than that of the wild-type. This is 351 due to an increase in the malate synthase activity and the mRNA level (Figs. 4B-C and 352 5). Therefore we expect and suggest that adoption of strong expression promoters may

353 increase the riboflavin yield to a better extent in this experiment.

354 *MLS1* disruptant strain did not respond to a malate-supplemented culture. 355 Although malate addition led to an increase in oil consumption, riboflavin production 356 was not restored significantly in the disruptant, unlike the wild-type strain. It is probable 357 that ACR268Cp may have another function distinct from malate synthase activity. On 358 the other hand, a glyoxylate (substrate of malate synthase)-supplemented culture did not 359 have any effects on riboflavin production, oil consumption, and cell growth in both the 360 A. gossypii wild-type and disruptant strains, in spite of the presence of excess substrate 361 (data not shown). This suggests that the efficiency of acetyl-CoA turnover is a limiting 362 factor for malate synthase activity in glyoxylate additive culture, and that malate can be 363 driving force for effective turnover of glyoxylate cycle, gluconeogenesis, and TCA 364 cycle (Fig. 7). Therefore, efficient turnover and/or excess supplementation of key 365 metabolites such as malate around log-phase on mycelial growth may be important for 366 effective riboflavin production of A. gossypii. An effective oil consumption due to 367 improved mycelia lipase activity (Stahmann et al. 1997) or fortification of metabolic 368 activity on β -oxidation, may be necessary for improving riboflavin productivity. 369 Using an MLS1 disruptant and MLS1-overexpressing transformant, we 370 demonstrated that malate synthase is one of important key enzymes for improving 371 riboflavin production in A. gossypii. However, riboflavin production of AgWP and 372 AgMLS1 strains was half or less than that of the wild-type. It may be due to addition of 373 antibiotics for maintaining subnuclear plasmid, resulting in lower mycelial growth of

374	AgWP strain than that of $AgWT$ strain (data not shown). Kato and Park (2004) showed			
375	similar phenomenon with 2 μ m origin plasmid transformants as well as yeast			
376	autonomously replicating sequence (ARS1) contained in pARK and pAMK, both of			
377	which were functioned in A. gossypii as replication origins (Wright and Philippsen			
378	1991). Therefore, to further improve riboflavin production, it is necessary to			
379	overexpress important key genes in the A. gossypii genome. Jiménez et al. (2008) have			
380	succeeded in chromosomal integration by gene-targeting recombination using a specific			
381	gene cassette with tandem placement of a drug-resistant gene and riboflavin			
382	production-positive gene expression cassettes. In the near future, chromosomal			
383	integration by malate synthase recombination will be useful for improving the riboflavin			
384	yield of A. gossypii.			
385				
386	Acknowledgements This study was supported by a Comprehensive Support			
387	Programs for Creation of Regional Innovation in Japan Science and Technology			

Agency. 388

389

390 References

391

392 Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369-388

393 Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pohlmann R,

Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P (2004) The 394

395 Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces

- *cerevisiae* genome. Science 304:304-307
- 397 Dixon GH and Kornberg HL (1959) Assay methods form key enzymes of the
- 398 glyoxylate cycle. Biochem J 72:3
- 399 Fernandez E, Moreno F, Rodicio R (1992) The ICL1 gene from Saccharomyces
- 400 *cerevisiae*. Eur J Biochem 204:983-990
- 401 Gould SJ, Keller GA, Subramani S (1988) Identification of peroxisomal targeting
- 402 signals located at the carboxy terminus of four peroxisomal targeting signal. J Cell
- 403 Biol 107:897-905
- 404 Hartig A, Simon MM, Schuster T, Daugherty JR, Yoo HS, Cooper TG (1992)
- 405 Differentially regulated malate synthase genes participate in carbon and nitrogen
- 406 metabolism of *S. cerevisiae*. Nucleic Acids Res 20:5677-5686
- 407 Hemida L, Brachat S, Voegeli S, Philippsen P, Primig M (2005) The Ashbya Genome
- 408 Database (AGD)- a tool for the yeast community and genome biologists. Nucleic
- 409 Acids Res 33(Database issue):D348-352
- 410 Jiménez A, Santos MA, Pompejus M, Revuelta JL (2005) Metabolic engineering of the
- 411 purine pathway for riboflavin production in *Ashbya gossypii*. Appl Environ
- 412 Microbiol 71(10):5743-5751
- 413 Jiménez A and Davies J (1980) Expression of a transposable antibiotic resistance
- 414 element in *Saccharomyces*. Nature 287(5785):869-871
- 415 Jiménez A, Santos MA, Revuelta JL (2008) Phosphoribosyl pyrophosphate synthetase
- 416 activity affects growth and riboflavin production in Ashbya gossypii. BMC

417 Biotechnol 8:67-78

418 Kanamasa S, Tajima S, Park EY (2007) Isocitrate dehydrogenase and isocitrate lyase

- 419 are essential enzymes for riboflavin production in Ashbya gossypii. Biotechnol and
- 420 Bioprocess Eng 12:92-99
- 421 Kato T, Park EY (2004) Expression of alanine:glyoxylate aminotransferase gene from
- 422 Saccharomyces cerevisiae in Ashbya gossypii. Appl Microbiol Biotechnol 71:46-52
- 423 Kornberg HL and Madsen NB (1957) Synthesis of C4-dicarboxylic acids from acetate
- 424 by a "glyoxylate bypass" of the tricarboxylic acid cycle. Biochim Biophys Acta
 425 24:651-653
- 426 Kunze M, Kragler F, Binder M, Hartig A, Gurvitz A (2002) Targeting of malate
- 427 synthase 1 to the peroxisomes of *Saccharomyces cerevisiae* cells depends on
- 428 growth on oleic acid medium. FEBS 269:915-922
- 429 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettiqan PA, McWilliam H,
- 430 Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Hiqqins DG
- 431 (2007) ClustalW and Clustal X version 2.0. Bioinformatics 23:2947-2948
- 432 Lorenz MC and Fink GR (2001) The glyoxylate cycle is required for fungal virulence.
- 433 Nature 412:83-86
- 434 Maeting I, Schmidt G, Sahm H, Revuelta JL, Stierhof YD, Stahmann KP (1999)
- 435 Isocitrate lyase of *Ashbya gossypii* transcriptional regulation and peroxisomal
- 436 localization. FEBS Lett 444:15-21
- 437 Monschau N, Sahm H, Stahmann KP (1998) Threonine aldolase overexpression plus

- 438 threonine supplementation enhanced riboflavin production in Ashbya gossypii.
- 439 Appl Environ Microbiol 64(11):4283-4290
- 440 Park EY and Ming H (2004) Oxidation of rapeseed oil in waste activated bleaching
- 441 earth and its effect on riboflavin production in culture of Ashbya gossypii. J Biosci

442 Bioeng 97(1):59-64

- 443 Park EY, Zhang JH, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for
- 444 an improved riboflavin production targeting for biorefinery technology. J Appl

445 Microbiol 103:468-476

446 Sambrook J and Russell DW (2001) Molecular cloning: a laboratory manual. 3rd

447 edition. Cold spring harbor laboratory press.

- 448 Schmitt MR, Edwards GE (1983) Provisions of reductant for the hydroxypyruvate to
- 449 glycerate conversion in leaf peroxisomes: A critical evaluation of the proposed

450 malate/aspartate shuttle. Plant Physiol 72:728-734

- 451 Schmidt G, Stahmann KP, Kaesler B, Sahm H (1996a) Correlation of isocitrate lyase
- 452 activity and riboflavin formation in the riboflavin overproducer *Ashbya gossypii*.
- 453 Microbiology 142:419-426
- 454 Schmidt G, Stahmann KP, Sahm H (1996b) Inhibition of purified isocitrate lyase
- 455 identified itaconate and oxalate as potential antimetabolites for the riboflavin
- 456 overproducer *Ashbya gossypii*. Microbiology 142:411-417
- 457 Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using
- 458 Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical

459 riboflavin	production. A	ppl Microbiol	Biotechnol 53:509-516
----------------	---------------	---------------	-----------------------

- 460 Stahmann KP, Böddecker T, Sahm H (1997) Regulation and properties of a fungal
- 461 lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty
- 462 acid. Eur J Biochem 244:220-225
- 463 Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P (2000)
- 464 PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene
- 465 242:381-391
- 466 Wright MC and Philippsen P (1991) Replicative transformation of the filamentous
- 467 fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS
- 468 elements. Gene 109(1):99-105

470 Table 1 Primers list

Nucleotide sequence $(5' \rightarrow 3')$			
TGG <u>GGTACC</u> CCATGAATCACTGTCCTGA ^a			
AGC <u>TCTAGA</u> GCTCAGAGACGCGACTT ^a			
TGT <u>AAGCTT</u> GACATGGAGGCCCAGAATACCC ^a			
ACG <u>AAGCTT</u> CTTTCTGCGCACTTAACTTCGC ^a			
ctggaggccaagctgtggaacgacattttcaacgtggcgcaggacta			
catcggcatgcgcCTGCAGACATGGAGGCCCAGAATAC ^b			
ctcgccagtgtccgcgagcttgacgcggtggcggacccactggtgaag			
AAGCAGCGCAATGGTAGCAGTCAG			
GTAATCTCCGGCTCGAGGTACTTAGC			
ACGGTGTTACCCACGTTGTTCC			
TCATATCTCTGCCGGCCAAGTC			
TTCTTCCACAACGCGGCTAAGCTA			
ATGTAGTCCTGCGCCACGTTGAAA			

- 471 ^a Underlines indicate restriction enzyme site.
- 472 ^bLower-case letters indicate 60 bp of homologous sequence derived from *ACR268C*
- 473 (*MLS1*) gene.
- 474

475 **Figure legends**

476 Scheme 1 (A) Flow diagram of plasmid construction. Black arrows indicate *TEF1* 477 promoter-kanamycin-resistance gene-*TEF1* terminator (*TEF1*_{pro}-Kan^r). Diagonal 478 squares denote the ACR268C (MLS1) gene, which was amplified using the 479 AgMLS1-Ex-F and –R primers. (B) Disruption of the ACR268C gene in the A. *gossypii* wild-type strain. The asterisk and diagonal box represent the 527th codon 480 481 encoding the aspartate residue, which acts as a proton donor, and a 60-bp 482 homologous region of the ACR268C gene, respectively. 483 Fig. 1 Confirmation of the ACR268C gene-targeted disruptant by PCR and Southern 484 blot analysis. (A) The PCR products were amplified from chromosomal DNA using 485 the AgMLS1-V1 and AgMLS1-V2 primers (Scheme 1B). The up and down arrows 486 indicate fragments of size 2.7 kb and 1.6 kb, respectively. (B) In the Southern blot 487 analysis, chromosomal DNA was digested simultaneously with BamHI and XhoI. 488 The kanamycin-resistance gene, which is absent in the AgWT chromosomal DNA, 489 was used as the probe. Lanes 1 and 2 in (A) and (B) denote AgWT and $Ag\Delta mls1$ 490 (ACR268C gene-disruptant), respectively. 491 Fig. 2 Time course of malate synthase activity (A), riboflavin concentration (B), 492 residual oil concentration (C), and dry cell weight (D) in cultures of the AgWT493 (closed rhombus) and $Ag\Delta$ mls1 (opened triangle) strains. Both cultures were carried 494 out in triplicates, and the average data and standard deviations are shown. 495 Fig. 3 Morphological changes in the ACR268C (MLS1) gene disruptant and AgWT 496 (A-C) and $Ag\Delta mls1$ (a-c) strains. The mycelia are shown at 3 d (A and a), 5 d (B

- 497 and b), and 7 d (C and c) of culture. HM, O, FM, R, CR, and S denote hypertrophic
- 498 mycelia, residual oil droplet, filiform mycelia, riboflavin, crystallized riboflavin,
- and spore, respectively. Bars indicate a 10-µm scale.
- 500 Fig. 4 Confirmation of constructed plasmids (A) and time course of malate synthase
- 501 activity (B) and riboflavin concentration (C) in cultures of the AgWP (opened
- square) and AgMLS1 (closed circle) strains. (A) The plasmids were digested with
- 503 *Kpn*I and *Xba*I. M, 1-kb ladder; lane 1, pAUR123; lane 2, pARK; and lane 3,
- 504 pAMK. Each of the constructed plasmids pARK and pAMK was prepared from the

505 total DNA extracted from the AgWP and AgMLS1 strains, respectively. Each

- 506 culture was carried out in triplicates, and the average data and standard deviation507 are shown.
- 508 **Fig. 5** Analysis of intracellular transcriptional level using quantitative real-time PCR.
- 509 Quantification of *MLS1* mRNA was represented by ratio of *MLS1* and *ACT1*. Total
- 510 RNA was extracted from 26 h grown mycelia (n=4).
- 511 **Fig. 6** Riboflavin production (A) and residual oil concentration (B) in cultures of AgWT
- 512 (rhombus) and $Ag\Delta$ mls1 (triangle) strains with (closed symbols) or without (open
- 513 symbols) 50 mM malate. Each culture was carried out in triplicate, and the average
- 514 data and standard deviations are shown.
- 515 Fig. 7 Putative metabolic pathway for riboflavin biosynthesis in A. gossypii. The
- 516 pathways in which malate synthase and isocitrate lyase are involved are indicated
- 517 by the thick solid line and dotted line, respectively.

