1	Molecular chaperone-assisted production of human
2	α -1,4-N-acetylglucosaminyltransferase in silkworm larvae
3	using recombinant BmNPV bacmids
4	
5	Makoto Nakajima • Tatsuya Kato • Shin Kanamasa • Enoch Y Park
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	Makoto Nakajima · Tatsuya Kato · Shin Kanamasa · Enoch Y Park (🖂)
16	Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka
17	University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
18	e-mail: <u>acypark@ipc.shizuoka.ac.jp</u>
10	Makata Nakajima , Tatsuwa Kata , Shin Kanamasa
19	Department of Amplied Dislocical Chamistry Faculty of Apriculture Shiruska
20	Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka
21	University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

22	Abstract: In this study, human α -1,4- <i>N</i> -acetylglucosaminyltransferase (α 4GnT)
23	fused with GFP _{uv} (GFP _{uv} - α 4GnT) was expressed using both a transformed cell system
24	and silkworm larvae. A Tn-pXgp-GFP _{uv} - α 4GnT cell line, isolated after expression
25	vector transfection, produced 106 mU/ml of α 4GnT activity in suspension culture.
26	When <i>Bombyx mori</i> nucleopolyhedrovirus containing a GFP _{uv} - α 4GnT fusion gene
27	(BmNPV- CP^{-}/GFP_{uv} - α 4GnT) bacmid was injected into silkworm larvae, α 4GnT
28	activity in larval hemolymph was 352 mU/ml, 3.3-fold higher than that of the
29	Tn-pXgp-GFP _{uv} - α 4GnT cell line. With human calnexin (CNX) or human
30	immunoglobulin heavy chain-binding protein (BiP, GRP78) coexpressed under the
31	control of the ie-2 promoter, α 4GnT activity in larval hemolymph increased by 1.4 -
32	2.0-fold. Moreover, when BmNPV- CP^{-}/GFP_{uv} - α 4GnT bacmid injection was delayed
33	for 3 hours after BmNPV- <i>CP</i> ⁻ /CNX injection, the α 4GnT activity increased
34	significantly to 922 mU/ml, 8.7-fold higher than that of the Tn-pXgp-GFP _{uv} - α 4GnT
35	cell line. Molecular chaperone assisted-expression in silkworm larvae using the
36	BmNPV bacmid is a promising tool for recombinant protein production. This system
37	could lead to large-scale production of more complex recombinant proteins.
38	Keywords human chaperone \cdot silkworm \cdot bacmid \cdot BmNPV \cdot human

39 α -1,4-*N*-acetylglucosaminyltransferase

40 Introduction

41	α -1,4- <i>N</i> -acetylglucosaminyltransferase (α 4GnT) catalyzes the transfer of
42	<i>N</i> -acetylglucosamine (GlcNAc) to β -galactose (β Gal) residues with α -1,4-linkages,
43	forming the unique glycan GlcNAc α \rightarrow 4Gal β \rightarrow R. The α 4GnT enzyme appears to be
44	expressed in gastric gland mucous cells and in Brunner's glands in gastroduodenal
45	mucosa, since its product glycan is present in the mucin of gastric gland cells
46	containing α 1,4-GlcNAc-capped O-glycans [1-3]. α 4GnT is also expressed in
47	adenocarcinoma cells such as gastric, pancreatic and biliary tract cancers [4].
48	Quantitative analysis of α 4GnT mRNA expressed in the peripheral blood detected
49	pancreatic cancer cells expressing α 1,4-GlcNAc-capped O-linked glycans, suggesting
50	a possible use of α 4GnT as a biomarker for pancreatic cancer [5, 6].
51	α 4GnT cDNA was isolated by expression cloning from a gastric mucosa cDNA
52	library [7]. α 4GnT is a type II transmembrane protein with 3 amino acids of
53	N-terminal domain, 22 amino acids of transmembrane/signal anchoring domain, a stem
54	domain and a large catalytic domain, similar to other all glycosyltransferases. α 4GnT
55	also has four potential N-glycosylation sites. Except for this α 4GnT, all
56	<i>N</i> -acetylglucosaminyltransferases reported until now have transferred β -GlcNAc
57	residues to their acceptors.
58	Glycosyltransferases mediate the specific transfer of a saccharide from a sugar
59	nucleotide to an acceptor, and their rigid specificity is required for oligosaccharide
60	synthesis [8]. However, preparing large amounts of glycosyltransferases and sugar

61	nucleotides is difficult. To resolve this problem, human α 4GnT was produced in a
62	baculovirus expression system using insect cells and larvae. Insect larvae, especially
63	silkworm larvae, are used as living factories for the production of recombinant proteins
64	[9-11]. Protein production using insect larvae is easy to manipulate and to scale-up. In
65	this study, we expressed active human α 4GnT in insect cells and silkworm larvae.
66	Moreover, to improve production, α 4GnT and human chaperones were coexpressed in
67	the larvae. Coexpression of desired proteins and chaperones has been performed in the
68	baculovirus expression system (BES) in various insect cells [12-14], but this is the first
69	application in silkworm larvae.
70	In this report, a coexpression system of heterologous proteins and chaperones was
71	established in silkworm larvae using a Bombyx mori nucleopolyhedrovirus (BmNPV)
72	bacmid. Improved production of α 4GnT could be achieved by delaying injection of
73	recombinant bacmids. Molecular chaperone-assisted protein expression in silkworm
74	larvae using recombinant BmNPV bacmid may allow the mass production of
75	recombinant proteins for functional analysis and crystallization.
76	
77	Materials and methods
78	
79	Insect, cell line and cell culture
80	The Tn-5B1-4 cell line derived from Tricoplusia ni was purchased from Invitrogen
81	(San Diego, CA). Tn-5B1-4 cells were cultivated in Express Five Serum-Free-Medium
82	(Invitrogen) supplemented with 1% antibiotic-antimycotic (Invitrogen) and 18 mM

83	glutamate. B. mori fifth-instars (Ehime Sanshu, Ehime, Japan) were reared on an
84	artificial feed, Silkmate 2 (NIHON NOSAN Co, Yokohama, Japan), in a 27°C
85	incubator.
86	
87	Construction of expression vectors and recombinant BmNPV bacmids
88	A 947 bp truncated fragment of human α 4GnT gene was obtained from
89	Quick-Clone human stomach cDNA (Clontech, Palo Alto, CA, USA) by PCR using
90	α 4GnT-F and α 4GnT-R primers (Table 1). Amplified PCR fragments were digested
91	with KpnI and EcoRI, and inserted in the KpnI and EcoRI sites of
92	pBlueBacHis2-GFP _{uv} [15]. To add the signal peptide coding region of <i>B. mori</i>
93	bombyxin (bx), each GFP _{uv} - α 4GnT fusion fragment was amplified by PCR using bx-F
94	and α GnT-R primers containing the signal peptide coding region. The DNA
95	amplification cycle was 95°C for 3 min for one cycle, followed by 30 cycles of
96	amplification by denaturation at 95°C for 30 s, annealing at 50°C for 30 s, and
97	extension at 72°C for 2 min. PCR products were inserted into pENTR/D-TOPO
98	(Invitrogen), resulting in pENTR/GFP _{uv} - α 4GnT. The GFP _{uv} - α 4GnT fusion gene was
99	inserted into pDEST8 (Invitrogen) using pENTR/GFP _{uv} - α 4GnT by Gateway Cloning
100	Technology (Invitrogen), resulting in pDEST/GFP _{uv} - α 4GnT. Construction of the
101	recombinant BmNPV bacmid BmNPV- <i>CP</i> ⁻ /GFP _{uv} -α4GnT, was performed using the
102	bacmid system of BmNPV with cysteine protease deleted (BmNPV-CP ⁻) to suppress
103	the degradation of expressed recombinant proteins [16].
104	Molecular chaperones were expressed under either the polyhedrin or the ie-2

 $\mathbf{5}$

105	promoter. The BmNPV-CP bacmid containing each chaperone under the polyhedrin
106	promoter was constructed by the same method as BmNPV- CP^{-}/GFP_{uv} - α 4GnT. Genes
107	of calnexin (CNX), calreticulin (CRT), ERp57, immunoglobulin heavy chain binding
108	protein (BiP, GRP78) and heat shock protein 70 (Hsp70) were amplified by PCR using
109	primers shown in Table I and Quick-Clone human stomach cDNA (Clontech) as a
110	template. The amplification cycle was 95°C for 3 min for one cycle, followed by 30
111	cycles of amplification by denaturation at 95°C for 30 s, annealing at 50°C for 30 s and
112	extension at 72°C for 1.5 or 2 min.
113	The ie-2 promoter from Orgyia pseudotsugata multiple nucleopolyhedrovirus
114	works at the early stage of infection [17] and its promoter activity is lower than that of
115	the polyhedrin promoter. To construct BmNPV-CP ⁻ bacmids containing each chaperone
116	under the ie-2 promoter (BmNPV(ie)-CP ⁻ bacmids), the polyhedrin promoter region of
117	the pDEST8 vector containing each chaperone gene was exchanged with the ie-2
118	promoter region from pIB vector (Invitrogen). Then, using each resulting plasmid as a
119	destination vector, five kinds of BmNPV(ie)-CP ⁻ bacmids containing each chaperone
120	under the ie-2 promoter were constructed by the same method as
121	BmNPV- CP^{-}/GFP_{uv} - $\alpha 4GnT$.
122	Insect cell expression vectors were constructed by inserting the GFP _{uv} - α 4GnT
123	gene with a bx signal peptide coding sequence, or the signal peptide coding sequence
124	of glycoprotein 64 (gp) from Autographa californica multiple nucleopolyhedrovirus

125 (AcMNPV) into the pXinsect-DEST38 vector (Invitrogen) using Gateway Cloning

126 Technology, to obtain pXbx/GFP_{uv}- α 4GnT and pXgp/GFP_{uv}- α 4GnT.

127

128	Transfection,	isolation	and	cultivation	of stal	ole cell	lines
-----	---------------	-----------	-----	-------------	---------	----------	-------

129	Tn-5B1-4 cells were transfected with either pXbx/GFP _{uv} - α 4GnT or

130 pXgp/GFP_{uv}-α4GnT and pBmA:neo (Invitrogen) using Cellfectin (Invitrogen) as

131 previously described [15]. Transfected cells were subcultured in Express Five medium

132 containing 700 µg/ml Geneticin (Invitrogen) for 4-5 weeks to obtain polyclonal stably

transformed cell lines. Colonies of these cell lines were picked and cultured separately

134 to isolate monoclonal cell lines. To produce GFP_{uv} - $\alpha 4GnT$ fusion protein, isolated cells

135 were cultivated in suspension cultures in 100-ml flasks with a working volume of 20

136 ml, in Express Five medium. Agitation speed and temperature were controlled at 100

137 rpm and 27°C, respectively.

138

139 Bacmid injection

140 Forty-five microliters of recombinant bacmid (18 µg) solution containing helper

141 plasmid was suspended with 5 µl of DMRIE-C reagent (Invitrogen) and incubated at

142 room temperature for 45 min. Forty microliters of bacmid-DMRIE-C mixture was

injected into the dorsal of the larvae using a syringe with a 26-gauge beveled needle.

144 To coexpress with chaperones, 22.5 μ l, containing 9 μ g of the

145 BmNPV-*CP*⁻/GFP_{uv}-α4GnT bacmid and 9 μg of the BmNPV-*CP*⁻ bacmid containing

146 the chaperone genes with helper plasmid was mixed, and then injected by the same

147 protocol as single bacmid injection. To improve α 4GnT expression, time-delayed

148	injection of the two bacmids was performed. The BmNPV-CP ⁻ bacmid containing each
149	chaperone gene was injected 3, 6, 12, 18, and 24 h earlier than
150	BmNPV- CP^{-}/GFP_{uv} - α 4GnT bacmid injection. Number of silkworm larvae for this
151	study was 10 larvae each experiment and average activity was taken as data.
152	
153	Analysis of a4GnT activity
154	The α 4GnT activity was measured by mixing 50 μ l of enzyme solution and 50 μ l
155	substrate solution (50 mM Tris-HCl (pH 8.0), 20 mM MnCl ₂ , 10 mM uridine
156	5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), 10 mM p-nitrophenyl-galactose
157	(Gal β - <i>p</i> NP), 2 mM ATP) and incubating at 37°C. At each sampling time, 10 µl of
158	incubated reaction mixture was added to 190 μl of distilled water, followed by boiling
159	for 5 min. After passing through a 0.45 μ m nitrocellulose filter (Millipore, Bedford,
160	Massachusetts, USA), filtrates were analyzed by HPLC. Mightysil RP-18 (H) GP
161	150-4.6 (KANTO CHEMICAL Co Inc., Tokyo, Japan) was used as column. Reaction
162	products were eluted with 10% methanol and detected at an absorbance of 300 nm.
163	HPLC was performed at 40°C with a flow rate of 0.8 ml per min. One unit of enzyme
164	activity was defined as the amount of enzyme capable of catalyzing the transfer of 1
165	µmol of GlcNAc per minute.
166	
167	Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fluorescent
168	image analysis and Western blot

169 To detect the expression of recombinant protein, samples were subjected to SDS-PAGE

170on 10 or 12% polyacrylamide gels using the Mini-protean II system (Bio-Rad). For 171fluorescent image analysis, samples were suspended in sample buffer (Aoki et al., 1721996) without boiling and then directly subjected to SDS-PAGE. After SDS-PAGE, fluorescent bands for the GFP_{uv}-α4GnT fusion protein were detected with a Molecular 173174Imager FX (Bio-Rad). 175For Western blots, samples were subjected to SDS-PAGE, followed by transfer to polyvinylidene fluoride membranes using a Mini Trans-Blot Electrophoretic Transfer 176177Cell (Bio-Rad). After blocking in 5% skim milk in Tris-buffered saline containing 1780.1% Tween 20, the membrane was incubated in 1:1,000 each antibody (anti-HisG 179antibody, anti-human calnexin, anti-human Bip) for 1 hour. The membrane was washed, and incubated in 1:20,000 anti-rabbit or anti-mouse IgG antibody labeled with 180horseradish peroxidase for 1 hour. Detection of CNX and CRT was performed using 181 182ECL Plus Western blotting reagent (GE Healthcare UK Ltd., Buckinghamshire HP7 9NA, England). Specific bands were detected using a Fluor-S/MAX multi-imager 183 184(Bio-Rad). 185

- 186 Results
- 187

188 Expression of human α 4GnT in stable insect cell lines

189 Human α 4GnT was expressed in a transformed insect cell system using Tn-5B1-4 cells.

190 Five cell lines of Tn-pXbx/GFP_{uv}-α4GnT was isolated after transformation with

191 pXbx/GFP_{uv}- α 4GnT, while six cell lines of Tn-pXgp/GFP_{uv}- α 4GnT were isolated after

192	transformation with pXgp/GFP _{uv} - α 4GnT. The Tn-pXbx/GFP _{uv} - α 4GnT 2 cell line
193	was cultivated in a culture flask, and $\alpha 4GnT$ activity was found to be 3.5 mU/ml after
194	6 days of culture. When Tn-pXgp/GFP _{uv} - α 4GnT cell lines were cultured separately to
195	confluence in 6-well plates, the extracellular α 4GnT activity in the
196	Tn-pXgp/GFP _{uv} - α 4GnT 5 cell line was 16.4 mU/ml, which was 4.6-fold higher than
197	the Tn-pXbx/GFP _{uv} - α 4GnT cell line (Table 2). Tn-pXgp/GFP _{uv} - α 4GnT cell lines
198	number 3 and 5 were picked and cultivated in a culture flask. Extracellular α 4GnT
199	activity in Tn-pXgp/GFP _{uv} - α 4GnT cell line 5 reached 106 mU/ml, which was 30-fold
200	higher than the Tn-pXbx/GFP _{uv} - α 4GnT 2 cell line (Fig. 1A). Extracellular α 4GnT
201	activity in Tn-pXgp/GFP _{uv} - α 4GnT cell line 3 was 31 mU/ml. The maximum cell
202	concentration of each of the Tn-pXgp/GFP_uv- α 4GnT cell lines was above 4.5 \times 10 ⁶
203	cells/ml after 5 days of culture (Fig. 1B), indicating that α 4GnT productivity of
204	Tn-pXgp/GFP _{uv} - α 4GnT in cell line 5 was higher than that cell line 3. A previous report
205	found that a GFP _{uv} - β 3GnT2 fusion protein was not secreted by the gp signal peptide in
206	Bm5 cells isolated from <i>B. mori</i> ovaries [10]. This indicates that the bx signal peptide
207	may not be functional in Tn-5B1-4 cells, but Bm5 cells, because bx signal peptide is
208	from bombyxin of silkworm. GFP _{uv} - α 4GnT could be detected by Western blot at
209	approximately 75 kDa, in the culture supernatant of Tn-pXgp/GFP _{uv} - α 4GnT cell line 5
210	(Fig. 1C).

212 Expression of human α4GnT in silkworm larvae

In a previous study, we confirmed that the bx signal peptide allowed recombinant

214	proteins to be secreted into culture supernatants of Bm5 cells, and into the hemolymph
215	of silkworm larvae, but the gp signal peptide did not [10]. Therefore, the bx signal
216	peptide was adopted for silkworm larvae expression. The BmNPV- CP^{-}/GFP_{uv} - α 4GnT
217	bacmid, which contained the GFP _{uv} - α 4GnT gene fused to the bx signal sequence, was
218	injected into silkworm larvae. After breeding for 6-7 days, hemolymph was collected
219	and expression of GFP _{uv} - α 4GnT was confirmed on SDS-PAGE gels, judging by GFP _{uv}
220	fluorescence. A distinct band was detected below 75 kDa (Fig. 2). The molecular
221	weight discrepancy between Fig. 1C and Fig. 2 is because Fig 2 used non-denatured
222	samples to detect GFP _{uv} fluorescence. Non-denatured GFP _{uv} - α 4GnT fusion proteins
223	sometimes have a low molecular weight on SDS-PAGE [18]. No GFP_{uv} fluorescence
224	was detected in mock-injected silkworm larval hemolymph, indicating that the band in
225	Fig. 2 is the GFP _{uv} - α 4GnT fusion protein. α 4GnT activity in hemolymph was 352
226	mU/ml, which was approximately 3.5-fold higher than the Tn-pXgp/GFP _{uv} - α 4GnT cell
227	line 5. When twice as much BmNPV- CP^{-}/GFP_{uv} - α 4GnT bacmid DNA was injected,
228	the $\alpha 4GnT$ activity was the same as for standard bacmid volumes. GFP _{uv} fluorescence
229	was also observed in fat body fractions, where α 4GnT activity was also detected,
230	indicating that active GFP _{uv} - α 4GnT was secreted into hemolymph efficiently, and
231	simultaneously accumulated in fat bodies (data not shown).
232	
233	Human molecular chaperone-assisted expression of GFP _{uv} - α 4GnT in silkworm larval
234	hemolymph

235 To improve GFP_{uv}- α 4GnT secretion into larval hemolymph, GFP_{uv}- α 4GnT was

coexpressed with human chaperone. Five kinds of human chaperones were

237	co-expressed with GFP _{uv} -α4GnT in silkworm larvae.	
-----	--	--

238	For co-expression of GFP _{uv} - α 4GnT with chaperones, the polyhedrin and ie-2
239	promoters used. When the CNX or Bip chaperones were expressed with the ie-2
240	promoter, coexpressed α 4GnT activity in hemolymph was approximately 1.2 fold
241	higher than the mock bacmid injection (Fig. 3). When CNX or Bip was coexpressed
242	under the control of the polyhedrin promoter, α 4GnT activity in larval hemolymph was
243	approximately 1.4 or 2.0-fold higher, respectively, than without chaperone
244	coexpression (Fig. 4). Chaperone-assisted expression of α 4GnT in the silkworm larvae
245	fat body also increased compared to silkworm larvae fat bodies with the
246	BmNPV- <i>CP</i> ⁻ /GFP _{uv} - α 4GnT bacmid, but without chaperone (data not shown).
247	Western blots confirmed the expression of CNX and Bip in silkworm larvae.
248	Expression of CNX and Bip under control of the ie-2 promoter was not observed in the
249	microsome fraction of fat body (data not shown). CNX and Bip expression under the
250	control of the polyhedrin promoter was not observed in larval hemolymph, but was
251	observed in the microsome fraction of the fat body (Fig. 5). The difference in
252	chaperone expression between the ie-2 and polyhedrin promoters was caused by
253	differences in promoter activity. Expression of CNX or Bip under the control of ie-2
254	promoter was so low that CNX and Bip were not detected by Western blot, although
255	α 4GnT activity was enhanced by coexpression. Degradation of CNX was observed in
256	the fat body, but that of Bip was not. Degradation of CNX was also observed in

257 Tn-5B-4 cells transformed with CNX expression plasmid [13].

The ie-2 promoter works at the early stage of infection and the polyhedrin 258259promoter works at the very late stage of infection [17]. To express molecular chaperone more efficiently before the expression of GFP_{uv} - $\alpha 4GnT$, 260261BmNPV(ie)-CP⁻/CNX or BmNPV(ie)-CP⁻/Bip bacmids were injected into silkworm 262larvae before injection of the BmNPV-CP⁻/GFP_{uv}-α4GnT bacmid. Bacmid-injected silkworm larvae were bred for 6 days and larval hemolymph was harvested (Fig. 6A). 263When BmNPV-*CP*⁻/GFP_{uv}- α 4GnT bacmid injection was delayed for 3 hours after 264BmNPV(ie)-CP/CNX bacmid injection, α 4GnT activity in larval hemolymph was 265approximately 1.9-fold higher (922 mU/ml) than in larval hemolymph without 266chaperone (479 mU/ml) (Fig. 6B). α4GnT activity was retained in a 24-hour injection 267delay, but was degraded without chaperone expression. 268When the BmNPV- $CP^{-}/GFP_{uv}-\alpha 4GnT$ bacmid was injected 6 hours after 269BmNPV(ie)- CP^{-}/Bip bacmid injection, $\alpha 4GnT$ activity in hemolymph was 270approximately 1.5-fold higher (603 mU/ml) than without chaperone (391 mU/ml) (Fig. 2716C). α4GnT activity was also retained after 24-hour injection delay. The 272273BmNPV-CP⁻/CNX bacmid, which contains the CNX gene controlled by the polyhedrin 274promoter, was also injected into silkworm larvae before injection of the 275BmNPV-*CP*/GFP_{uv}- α 4GnT bacmid, after which bacmid-injected silkworm larvae were bred for 6 days and larval hemolymph was harvested. Expression of 276GFP_{uv}- α 4GnT in hemolymph was enhanced slightly, but α 4GnT activity was not 277

- observed after 9, 12, 18, and 24 hour delays in BmNPV-*CP*⁻/GFP_{uv}-α4GnT bacmid
- 279 injection (data not shown)
- 280

281	Discu	ission

- In this study, α4GnT was expressed in both Tn-5 B1-4 cells and silkworm larvae as a
- 283 GFP_{uv} fusion protein. The α 4GnT activity in the hemolymph of
- 284 BmNPV-*CP*⁻/GFP_{uv}- α 4GnT bacmid-injected silkworm larvae was 352 mU/ml, which
- was 3.3-fold higher than that of the highest Tn-pXgp/GFP_{uv}- α 4GnT cell line (Table 3).
- 286 The α 4GnT activity in larval hemolymph was improved by coexpression with
- molecular chaperones under the control of the polyhedrin or ie-2 promoters. In
- 288 particular, ie-2 promoter-driven coexpression of CNX or Bip increased activity in
- hemolymph by 1.1-1.2 fold, even though chaperone expression was too low to be
- 290 detected by Western blot. Moreover, a 3-hour delay in injection of the
- 291 BmNPV- CP^{-}/GFP_{uv} - α 4GnT bacmid after injection of BmNPV(ie)- CP^{-}/CNX bacmid
- increased α 4GnT activity to 921 mU/ml in larval hemolymph, which was
- approximately 8.7-fold higher than that of the Tn-pXgp/GFP_{uv}- α 4GnT cell line. This
- suggested that even a small amount of molecular chaperone, expressed in the
- Endoplasmic reticulum (ER) at the early stage of infection, could enhance the folding
- 296 of GFP_{uv}- α 4GnT, and that chaperone expression can be effective for recombinant
- 297 expression in silkworm larvae. Moreover, α4GnT activity was retained after chaperone
- 298 coinjection with the BmNPV- CP^{-}/GFP_{uv} - α 4GnT bacmid (Fig. 6), suggesting that CNX
- and Bip might protect GFP_{uv} - $\alpha 4GnT$ from degradation in the fat body during the late

stage of baculovirus infection.

301	CNX and CRT are lectin-like chaperones and bind to the $Glc_1Man_9GlcNAc_2$ chain
302	of N-linked oligosaccharides in glycoproteins, and help glycoproteins fold correctly
303	with the help of ERp57, a thiol-disulfide oxido-reductase involved in formation,
304	reduction and isomerization of disulfide bonds [19, 20]. α 4GnT has four potential
305	N-glycosylation sites and eight cysteine residues [7]. An increase of activity in
306	hemolymph was observed only when CNX or ERp57, and not CRT were coexpressed,
307	suggesting that GFP _{uv} - α 4GnT might bind to CNX and ERp57 in ER in fat body cells,
308	enhancing the folding of GFP _{uv} - α 4GnT, and increasing α 4GnT activity in larval
309	hemolymph. Recently, it was reported that substrate specificity of ERp57 is determined
310	by interaction with CNX and CRT [21]. If GFP _{uv} - α 4GnT is coexpressed with CNX and
311	ERp57, its folding might be even more efficiently enhanced than with coexpresssion
312	with a single chaperone. The expression level of the cocaine-sensitive serotonin
313	transporter decreased after coexpression with CNX and ERp57, however, compared to
314	coexpression with only CNX [22]. Bip belongs to the HspA family and is also an ER
315	folding assistant [23]. Bip enhanced the level of soluble intracellular and secreted IgG
316	in Tn-5B1-4 cell cultures [24], and nicotine receptor subunits are associated with three
317	chaperones (CNX, ERp57 and Bip) [25]. The activity of α 4GnT in larval hemolymph
318	increased with coexpression of CNX, ERp57 and Bip, suggesting that α 4GnT might
319	associate with these three chaperones in the ER.
320	Expression of CNX or Bip under the control of the ie-2 promoter was detected in

the microsome fraction by Western blot, and α 4GnT activity in larval hemolymph increased with coexpression of CNX or Bip. Enhanced secretion of α 4GnT activity in hemolymph was observed only with early injection of CNX or Bip gene-containing bacmids, suggesting that molecular chaperone expression under the control of the ie-2 promoter caused accumulation in the ER that might enhance correct folding and stability of GFP_{uv}- α 4GnT fusion proteins.

Coexpression of recombinant proteins with molecular chaperones has been 327 performed in various expression systems, including bacteria, yeast, insect cells and 328 mammalian cells. This study showed that molecular chaperone-assisted expression is 329 applicable to the silkworm expression system. Coexpression of several proteins in 330 silkworm is easily achieved using the bacmid system, and expression levels can be 331controlled by regulating the amount of injected bacmid DNA. A time-delayed injection 332 of the recombinant protein coding bacmid relative to the molecular 333 chaperone-encoding bacmid is a powerful tool for recombinant protein production. 334 This system could lead to the large-scale production of more complex proteins. 335 336 Acknowledgements This work was supported by the Program of Basic Research 337

Activities for Innovative Biosciences (PROBRAIN), Japan. We are very grateful to

339 Professors T. Murata and T. Usui in the Biochemistry Lab. of Shizuoka University for

340 kindly providing substrates of for the α 4GnT assay.

341

342 **References**

343	1.	Fujimori, Y., Akamatsu, T., Ota, H., Katsuyama, T. (1995). Proliferative markers in
344		gastric carcinoma and organoid differentiation. Human Pathology, 26, 725-734.
345	2.	Matsuzawa, K., Akamatsu, T., Katsuyama, T. (1992). Mucin histochemistry of
346		pancreatic duct cell carcinoma, with special reference to organoid differentiation
347		simulating gastric pyloric mucosa. Human Pathology, 23, 925-933.
348	3.	Nakamura, N., Ota, H., Katsuyama, T., Akamatsu, T., Ishihara, K., Kurihara, M.,
349		Hotta, K. (1998). Histochemical reactivity of normal, metaplastic, and neoplastic
350		tissues to α -linked <i>N</i> -acetylglucosamine residue-specific monoclonal antibody
351		HIK1083. Journal of Histochemistry and Cytochemistry, 46, 793-801.
352	4.	Nakajima, K., Ota, H., Zhang, M.X., Sano, K., Honda, T., Ishii, K., Nakayama, J.
353		(2003). Expression of gastric gland mucous cell-type mucin in normal and
354		neoplastic human tissues. Journal of Histochemistry and Cytochemistry, 51,
355		1689-1698.
356	5.	Ishizone, S., Yamauchi, K., Kawa, S., Suzuki, T., Shimizu, F., Harada, O.,
357		Sugiyama, A., Miyagawa, S., Fukuda, M., Nakayama, J. (2006). Clinical utility of
358		quantitative RT-PCR targeted to α 1,4-N-acetylglucosaminyltransferase mRNA for
359		the detection of pancreatic cancer. Cancer Science, 97, 119-126.
360	6.	Shimizu, F., Nakayama, J., Ishizone, S., Zhang, M.X., Kawakubo, M., Ota, H.,
361		Sugiyama, A., Kawasaki, S, Fukuda, M., Katsuyama, T. (2003). Usefulness of the
362		real-time reverse transcription-polymerase chain reaction assay targeted to
363		alpha1,4-N-acetylglucosaminyltransferase for the detection of gastric cancer.

364	Laboratory	investigation,	83, 187-197.
	~	0 /	,

365	7.	Nakayama, J., Yeh, J.C., Misra, A.K., Ito, S., Katsuyama, T., Fukuda, M. (1999).
366		Expression of cloning a human α 1,4- <i>N</i> -acetylglucosaminyltransferase that forms
367		GlcNAc α 1 \rightarrow 4Gal β \rightarrow R, a glycan specificially expressed in the gastric gland
368		mucous cell-type mucin. Proceedings of the National Academy of Sciences USA,
369		96, 8991-8996.
370	8.	Murata, T., Usui, T. (2006). Enzymatic synthesis of oligosaccharides and
371		neoglycoconjugates. Bioscience Biotechnology and Biochemistry, 70, 1049-1059.
372	9.	Muneta, Y., Zhao, H.K., Inumaru, S., Mori, Y. (2003). Large-scale production of
373		porcine mature interleukin-18 (IL-18) in silkworms using a hybrid baculovirus
374		expression system. Journal of Veterinary Medical Science, 65, 219-223.
375	10.	Park, E.Y., Kageshima, A., Kwon, M.S., Kato, T. (2007). Enhanced production of
376		secretory β 1,3- <i>N</i> -acetylglucosaminyltransferase2 fusion protein into hemolymph
377		of Bombyx mori larvae using recombinant BmNPV bacmid integrated signal
378		sequence. Journal of Biotechnology, 129, 681-688.
379	11.	Pham, M.Q., Naggie, S., Wier, M., Cha, H.J., Bentley, W.E. (1999). Human
380		interleukin-2 production in insect (Trichoplusia ni) larvae: effects and partial
381		control of proteolysis. Biotechnology and Bioengineering, 62, 175-182.
382	12.	Hsu, T.A., Betenbaugh, M.J. (1997). Coexpression of molecular chaperone Bip
383		improves immunoglobulin solubility and IgG secretion from Trichoplusia ni insect
384		cells. Biotechnology Progress, 13, 96-104.

385	13.	Kato, T., Murata, T., Usui, T., Park, E.Y. (2004). Improvement of the production of
386		GFP_{uv} - β 1,3- N -acetylglucosaminyltransferase2 fusion protein using a molecular
387		chaperone-assisted insect cell based expression system. Biotechnology and
388		Bioengineering, 89, 424-433.
389	14.	Zhang, L., Wu, G., Tate, C.G., Lookene, A., Olivecrona, G. (2003). Calreticulin
390		promotes folding/dimerization of human lipoprotein lipase expressed in insect
391		cells (Sf21). Journal of Biological Chemistry, 278, 29344-29351.
392	15.	Kato, T., Murata, T., Usui, T., Park, E.Y. (2004). Comparative analysis of
393		GFP_{uv} - β 1,3- N -acetylglucosaminyltransferase-2 production in two insect-cell-based
394		expression systems. Protein Expression and Purification, 35, 54-61.
395	16.	Hiyoshi. M., Kageshima, A., Kato, T., Park, E.Y. (2007). Construction of a
396		cysteine protease deficient Bombyx mori multiple nucleopolyhedrovirus bacmid
397		and its application to improve expression of a fusion protein. Journal of
398		Virological Methods, 144, 91-97.
399	17.	Theilmann DA, Stewart S. (1992). Molecular analysis of the trans-activating IE-2
400		gene of Orgyia pseudotsugata multicapcid nuclear polyhedrosis virus. Virology,
401		187, 84-96.
402	18.	Aoki, T., Takahashi, Y., Koch, K.S., Leffert, H.L., Watabe, H. (1996). Construction
403		of a fusion protein between protein A and green fluorescent protein and its
404		application to Western blotting. FEBS Letter, 384, 193-197.
405	19.	Ellgaard, L., Frickel, E.M. (2003). Calnexin, calreticulin, and ERp57: teammates

406		in glycoprotein folding. Cell Biochemistry and Biophysics, 39, 223-247.
407	20.	Williams, D.B. (2006). Beyond lectins: the calnexin/calreticulin chaperone system
408		of the endoplasmic reticulum. Journal of Cell Science, 119, 615-623.
409	21.	Jessop, C.E., Tavender, T.J., Watkins, R.H., Chambers, J.E., Bulleid, N.J. (2008).
410		Substrate specificity of the oxidoreductase ERp57 is determined primarily by its
411		interaction with calnexin and calreticulin. Journal of Biological Chemistry, 284,
412		2194-202.
413	22.	Tate, C.G., Whiteley, E., Betenbaugh, M.J. (1999). Molecular chaperones stimulate
414		the functional expression of the cocaine-sensitive serotonin transporter. Journal of
415		Biological Chemistry, 274, 17551-17558.
416	23.	Anelli, T., Sitia, R. (2008). Protein quality control in the early secretory pathway.
417		EMBO Journal, 27, 315-327.
418	24.	Hsu, T.A., Watson, S., Eiden, J.J., Betenbaugh, M.J. (1996). Rescue of
419		immunoglobulins from insolubility is facilitated by PDI in the baculovirus
420		expression system. Protein Expression and Purification, 7, 281-288.
421	25.	Wanamaker, C.P., Green, W.N. (2007). Endoplasmic reticulum chaperones
422		stabilize nicotine receptor subunits and regulate receptor assembly. Journal of
423		Biological Chemistry, 282, 31113-31123.
424		

425 Figure legends

426

427of Tn-pXgp/GFP_{uv}-\alpha4GnT cell line 3 or Tn-pXgp/GFP_{uv}-\alpha4GnT cell line 5 in a 428suspension culture; (C) detection of GFP_{uv} - $\alpha 4GnT$ in culture supernatants of 429Tn-pXgp/GFP_{uv}-α4GnT 5 cells by Western blot. Each cell line was cultivated for 7 430days by suspension cultivation, with sampling each day. Symbols: (A) circle, 431Tn-pXgp/GFP_{uv}-α4GnT 3 cells; square, Tn-pXgp/GFP_{uv}-α4GnT 5 cells; (B) circle, 432Tn-pXgp/GFP_{uv}- α 4GnT 3 cells; square, Tn-pXgp/GFP_{uv}- α 4GnT 5 cells. Closed and 433open symbols indicate cell number and viability, respectively. (C): lane 1, protein marker; lane 2, Tn-pXgp/GFP_{uv}-a4GnT 5 cells. Arrow indicates GFP_{uv}-a4GnT fusion 434protein. 435

Fig. 1 (A) time course of extracellular α 4GnT activity; (B) cell number and viability

436 **Fig. 2** Expression of GFP_{uv}- α 4GnT in hemolymph of silkworm larvae injected with

437 BmNPV-*CP*⁻/GFP_{uv}- α 4GnT bacmid. GFP_{uv}- α 4GnT fusion protein was detected by

438 GFP_{uv} fluorescence on SDS-PAGE gel. Lane 1: protein marker, Lane 2:

439 BmNPV-*CP*⁻/GFP_{uv}- α 4GnT, Lane 3: mock. Arrow indicates GFP_{uv}- α 4GnT fusion 440 protein.

441 **Fig. 3** α 4GnT activity in hemolymph of silkworm larvae injected with

442 BmNPV- CP^{-}/GFP_{uv} - α 4GnT and chaperone genes in BmNPV(ie)- CP^{-} bacmids, for

443 coexpression of GFP_{uv}- α 4GnT and each chaperone. BmNPV-*CP*⁻/GFP_{uv}- α 4GnT and

444 chaperone genes in BmNPV(ie)-CP⁻ bacmids were mixed at a 1:1 ratio and injected

into ten silkworm larvae. After 6 days, hemolymph was recovered from 10 silkworm larvae and α 4GnT activity was measured. This experiment was repeated 3 times within 6 months. Error bars indicate standard error of the mean of three experiments (SEM, n 448 = 3).

449 **Fig. 4** α 4GnT activity in hemolymph of silkworm larvae injected with

450 BmNPV-*CP*⁻/GFP_{uv}- α 4GnT and chaperone genes CNX or Bip in BmNPV-*CP*⁻ and

451 BmNPV(ie)-*CP*⁻ bacmids, for coexpression of GFP_{uv}- α 4GnT and chaperones.

452 Experimental conditions were the same as in Fig. 3, except for number of used

silkworm larva. In this experiment only ten silkworm larvae were used, and error bars

indicate standard error of the mean of 10 silkworm larvae. Open bar, grey bar and

455 closed bar indicate mock bacmid injection, CNX bacmid injection and Bip bacmid

456 injection, respectively.

457 **Fig. 5** (A) CNX or (B) Bip expression under the polyhedrin promoter in the

458 microsome fraction of silkworm larvae fat bodies during coexpression with

459 GFP_{uv}-α4GnT fusion protein. Fat bodies of silkworm larvae co-expressing

460 GFP_{uv} - α 4GnT with CNX or Bip under the polyhedrin promoter were recovered and

sonicated in Tris buffer. The microsome fraction was collected by ultracentrifugation

462 for Western blotting. Lane 1: protein marker, lane 2: microsome fraction under the

463 control of the polyhedrin promoter, lane 3: microsome fraction in mock.

465	larvae at 3, 6, 9, 12, 18 or 24 hours after injection of a chaperone gene (CNX or Bip) in
466	a BmNPV- <i>CP</i> ⁻ bacmid. A: Scheme of coexpression experiment. B: α4GnT activity in
467	hemolymph of seven or ten silkworm larvae injected with BmNPV(ie)-CP ⁻ /CNX. C:
468	α 4GnT activity in the hemolymph of 7 or 10 silkworm larvae injected with
469	BmNPV(ie)-CP ⁻ /Bip. Open bars and closed bars indicate mock bacmid injection and
470	chaperone bacmid injection, respectively. This experiment was repeated 3 times within
471	6 months. Error bars indicate standard error of the mean of three experiments (SEM, n

472 = 3).

Name	5' - 3'
α4GnT-F	CATGGTACCAAGTCCAGCTGCCTCTTCTGTTTGCCTTCT
α4GnT-R	CCGGAATTCTTATTTGTTACCTGGACCCAGCTCCCCAG
he E	CACCATGAAGATACTCCTTGCTATTGCATTAATGTTGTCAACAGTAAT-
DX-F	GTGGGTGTCAACACAACCGCGGGGGTTCTCATCATC
en E	CACCATGCCCATGTTAAGCGCTATTGTTTTATATGTCCTTTTGGCGGC-
gp-F	GGCGGCGCATTCTGCCTTTGCGCCCCGCGGGGGTTCTCATCATC
BiP-F	CACCATGAAGCTCTCCCTGGTGGCCGCGATGCT
BiP-R	CCAGTATTTACAATATTACAGCACTAGCAGATCAGTGTC
CRT-F	CACCATGCTGCTATCCGTGCCGCTGCT
CRT-R	TCTCTACAGCTCGTCCTTGGCCTG
CNX-F	CACCATGGAAGGGAAGTGGTTGCTGTG
CNX-R	GTTTCACTCTCTGTGGCTTTCTGTTTC
ERp57-F	CACCATGCGCCTCCGCCGCCTAGCGCTGTT
ERp57-R	GCTTTAGAGATCCTCCTGTGCCTTC
HSP70-F	CACCATGGCCAAAGCCGCGGCGAT
HSP70-R	CAGCAATCTTGGAAAGGCCCCTAATCTACCTC

 Table 1
 Primers used for the construction of BmNPV bacmids

$Tn-pXgp-GFP_{uv}-\alpha 4GnT$ cell	Activity	
line	(mU/ml)	
1	0.1	
2	0.7	
3	3.4	
4	2.5	
5	16.4	
6	0.5	

Table 2 Extracellular α4GnT activity in cell line adhesive cultures at 6
 days

	Activity	Fold over cell
	(mU/ml)	line
Culture supernatant of		
$Tn-pXgp/GFP_{uv}-\alpha 4GnT$ cell	106	1.0
line 5		
Silkworm larval hemolymph	352	3.3
Silkworm larval hemolymph		
with CNX coexpression	921	8.7
with Bip coexpression	602	5.7

Table 3 Summary of α4GnT activity in cell culture and silkworm larvae

(B)

