Structure-activity relationship study of flowering-inducer FN against Lemna paucicostata

Kenji Kai, ${ }^{\text {a, } \dagger}$ Jun Takeuchi, ${ }^{\text {b }}$ Taichi Kataoka, ${ }^{\text {b }}$ Mineyuki Yokoyama ${ }^{\text {c }}$ and Naoharu Watanabe ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Graduate School of Science and Technology, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka 422-8529, Japan
${ }^{\text {b }}$ Faculty of Agriculture, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka 422-8529, Japan
${ }^{\text {c }}$ H\&BC Research Center, Shiseido Co. Ltd., 2-12-1, Fukuura, Kanaza-ku, Yokohama 236-8643, Japan

* Corresponding author

Tel./fax: +81-54-238-4870; e-mail address: acnwata@agr.shizuoka.ac.jp
${ }^{\dagger}$ Present address: Graduate School of Life and Environmental Sciences, Osaka Prefectural University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan

Abstract

FN1 (1) and FN2 (2), cycloadducts of α-ketol octadecadienoic acid (3) with norepinephrine (NE), induce flowering in Lemna paucicostata. In order to broaden our understanding of structural requirements of FN for flower induction, nine analogs of 3 (4-12) were synthesized and reacted with NE under basic conditions. These analogs, except for $\mathbf{8}, \mathbf{1 0}$ and 12, exhibited significant activity regarding to floral induction in L. paucicostata. Similar experiments were carried out by using 3 and epinephrine, and it was demonstrated that these products also possessed biological activity.

Keywords: Lemna paucicostata; Flowering; FN; Oxylipins; Analog; Structure-activity relationship.

.

1. Introduction

Flowering time in plants is controlled by coincidence of internal and environmental signals. These different pathways converge to regulate a set of genes related to floral initiation. Many studies have suggested that FLOWERING LOCUS T(FT) is a major floral activator and a candidate for encoding florigen. ${ }^{1}$ Very recently, FT protein was determined as a mobile flowering signal in Arabidopsis thaliana. ${ }^{2}$ The protein encoded by $H d 3 a$, a rice ortholog of $F T$, was also shown to be a florigen. ${ }^{3}$ Therefore, FT/Hd3a protein should be a general signal that regulates the transition from vegetative to floral phases in higher plants. However, taking into consideration agrochemical usage, these proteins seem to be unfavorable due to the difficulties in their application. Thus, the development of chemicals having such an activity is a very important to control flowering in plants.

In course of screening for endogenous flowering inducers, (12Z,15Z)-9-hydroxy-10-oxooctadeca-12,15-dienoic acid (3) (Fig. 1), an oxylipin, was isolated from Lemna paucicostata. ${ }^{4}$ This fatty acid, however, needs norepinephrine (NE) as a co-activator to show its activity. Further investigations have revealed that FN1 (1) and FN2 (2) are truly active compounds, which are expected to be formed by cycloaddition between 12-olefin of 3 and α, β-unsaturated carbonyl of noradrenochrome, an oxygenated form of NE. ${ }^{5,8}$ Previous work to gain a better understanding of the structure-activity relationship (SAR) study focused on altering the fatty acid part of FN. ${ }^{4}$ This attempt provided a suggestion that the conjugated diene, α-ketol and carboxy groups in fatty acids are important to induce the flowering in L. paucicostata. However, since the structural element in all test compounds is rather different, it seems to be difficult to interpret the results obtained in that study. Few analogs of $\mathbf{3}$ with alteration at
the respective structural moiety have been synthesized and tested for biological activity. Therefore, clearly much work needs to be done before we have sufficient knowledge of the structural requirements of FN for its activity. This effort is also important to identify FN's mode of action in floral development.

We report here the SAR study of the fatty acid moiety of FN for flowering in L. paucicostata by using series of 3 analogs shown in Figure 2 (4-12). Firstly, we synthesized nine fatty acid analogs, where single or combinative alterations have been made to the structural components of 3 . Because we were also interested in whether FN analogs derived from 3 and epinephrine (Epi) induce flowering, the analogs were prepared and tested for their ability to induce flowering. We used a new method to prepare FN derivatives from corresponding fatty acid analogs, which improve the yield of cycloaddition between fatty acid and NE.

2. Results and discussion

2.1. Synthesis of analogs 4-12

In order to know the structural requirements of FN for flower induction, we designed nine structural analogs of $\mathbf{3}$ as shown in Figure 2. Our general synthetic strategy for the synthesis of $\mathbf{4 - 9}$ is based on the earlier work, where the key reaction is coupling of epoxides 15-18 with 1-heptyne (13) or 1,4-heptadiyne (14) (Scheme 1). ${ }^{6}$ Preparation of analogs $\mathbf{1 0}$ and $\mathbf{1 1}$ were accomplished as described in the previous report. ${ }^{5}$ Diol 12 was obtained by reducing 3 with NaBH_{4} quantitatively.

Synthesis of epoxy building blocks 15-18 are summarized in Schemes 2-4.
Treatment of mono methyl azelate (19) with $\mathrm{BH}_{3} \cdot$ THF complex in THF afforded 20
quantitatively, and subsequent oxidation of $\mathbf{2 0}$ with PDC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded 21. Grignard reaction of 21 with vinylmagnesium bromide in THF at $-78^{\circ} \mathrm{C}$ gave an allyl alcohol 22 in a yield of 45%. Treatment of 22 with m-CPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing saturated aq. NaHCO_{3} afforded a diastereomeric mixture of epoxide 23. The hydroxy group of $\mathbf{2 3}$ was then protected as TBDMS ether to give the desired epoxide 15. The overall yield of $\mathbf{1 5}$ was 16% based on 19 (5 steps), this being slightly better than the previous method (12\%). ${ }^{6}$ Compound 26 was obtained from cycloheptanone (24) which was first transformed into lactone 25 via a Baeyer-Villiger reaction (Scheme 3). The lactone ring of $\mathbf{2 5}$ was then opened to corresponding hydroxyester $\mathbf{2 6}$ with conc. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}(91 \%$ yield). According to the synthesis of $\mathbf{1 5}$ from 20, desired epoxide 16 was synthesized from 26. Compound 16 was obtained in an overall yield of 12% from 24. Similarly, epoxide 17 was synthesized from mono methyl glutarate (30) as shown in Scheme 4. The overall yield of $\mathbf{1 7}$ was 3.5% based on $\mathbf{3 0}$ (6 steps). Epoxide 18 was easily prepared from methyl undec-10-enoate (35) by epoxidation with m-CPBA in a yield of 98%.

These epoxide building blocks were transformed into corresponding fatty acid analogs of 3 as shown in Schemes 5 and 6. Treatment of 15 with 1-heptyne (13) and n - BuLi in THF in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ afforded a coupled product $\mathbf{3 6}$ in a yield of 77%. Catalytic hydrogenation of compound $\mathbf{3 6}$ over Lindlar's catalyst easily gave 37 and subsequent oxidation furnished a ketone 38. Deprotection of TBDMS group of 38 with 46% aq. HF-MeCN yielded 39. Ester hydrolysis of 39 with lipase PS provided the desired product 4 in a 9.6% overall yield (5 steps). During demethylation and purification processes, the double bond in 4 migrated from 12- to more stable 10 -position to afford an α, β-unsaturated ketone, which reduced the yield of the desired compound. Following the above strategy, the diene analogs $\mathbf{5}$ and $\mathbf{6}$ were also
synthesized from corresponding epoxides as shown in Scheme 5 (5 steps yield, 5: 4.5\%; 6: 9.0\%). Similarly, analogs 7 and 9 were prepared as shown in Scheme 6. The overall yields of $\mathbf{7}$ and $\mathbf{9}$ were 7.2% and 11%, respectively. The migration of olefinic bound in 7 from C-12 to C-11 yielded analog $\mathbf{8}$ during demethylation with lipase PS.

2.2. Cycloaddition of fatty acid analogs with NE/Epi

In a previous study, ${ }^{5}$ the tricyclic structure of FNs was suggested to be formed by an intramolecular cycloaddtion of the fatty acid-derived olefin across a preformed α, β-unsaturated carbonyl moiety derived from an oxidized NE, noradrenochrome. A plausible mechanism of this cycloaddition is proposed as shown in Scheme 7, though no direct evidences for this mechanism have been obtained. Fatty acid and noradrenochrome concertedly form 6-membered ring intermediate, into which an $\mathrm{H}_{2} \mathrm{O}$ molecule is incorporated to yield an FN-like compound. From this, a significant implication concerned that the reaction should be promoted under O_{2} atmosphere. Along this line, we carried out the cycloaddition reaction under several atmospheric conditions and calculated the yields based on the standard curve. Although previous method gave FNs in a yield of 2.3%, the reaction under O_{2} atmosphere more effectively afforded the desired products (13% yield). The conditions under N_{2} atmosphere showed no significant effect on yield of FNs (2.6% yield). These results indicated that oxidation of NE is inevitable for cycloaddition between $\mathbf{3}$ and NE. The cycloadducts were easily separated from byproducts in the reaction mixture by extraction with EtOAc (Fig. 3). It was, therefore, presumed that the structural requirements of FNs for the biological activity can be examined by using the EtOAc extracts of reaction products without further purifications.

In accordance with the above method, we prepared reaction products from analogs 4-12 with NE and analyzed them by using an LC-PDA/MS. The results are summarized in Table 1. Fatty acid analogs having β, γ-unsaturated carbonyl group gave a peak that showed characteristic UV adsorptions for FNs in LC-PDA analysis, whereas others did not. For example, the product of 4 with NE showed $\lambda_{\max }$ at 236,295 and 336 nm . Furthermore, ESI-MS analysis enabled us to detect the desired ions, $[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}$ and $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, of the respective peaks. Fatty acid 3 was revealed to be reacted with Epi to give possible cycloadducts as summarized in Table 1. All products obtained were shown to have the molecular formulae, which were consistent with that of the desired cycloadducts, by HR-MS analysis. These data strongly suggested that the desired derivatives of $\mathrm{FN}(54-60$, Fig. 4) were obtained from fatty acid analogs and NE/Epi in yields ranging from 6 to 20%. Further experiment to completely identify their structures is under way.

2.3. Biological activity of cycloadducts

The above analogs were evaluated for their ability to induce flowering in L. paucicostata. With the exception of compounds $\mathbf{8}, 10$ and $\mathbf{1 2}$, all these analogs proved to have a flowering activity after reacting with NE (Fig. 5). Compound 4, in which 15 -olefinic bond is saturated, displayed high activity of same magnitude as $\mathbf{3}$. This suggested that olefinic bond at 15 -position in compound $\mathbf{3}$ is not important for activity. Similar event was observed in the activities between 9-deoxy analogs 7 and 9 , where no significant difference was detected within a concentration range tested in the experiments. The effect of 9-hydroxy group on flowering activity was also investigated with these analogs. Compounds $\mathbf{7}$ and $\mathbf{9}$ displayed a significant activity but less in
magnitude as the parent compound 3 . This implied that 9-hydroxy group may not be involved in primary recognition of the target whereas the presence is favorable to show high activity. Compounds 5 and 6, in which their alkyl chains are shortened, displayed flowering activity at a concentration of more than $1 \mu \mathrm{M}$. In addition to this, the biological result obtained with methyl ester $\mathbf{1 1}$ indicated that recognition of the aliphatic chain and terminal carboxy group in FNs is relatively obscure. On the other hand, changing of β, γ-unsaturated carbonyl moiety led to complete loss of activity in L. paucicostata. The significant activity of compounds $\mathbf{8}, \mathbf{1 0}$ and $\mathbf{1 2}$ could not be observed even at a concentration of $10 \mu \mathrm{M}$. This result showed that cycloaddition of fatty acid with NE is inevitable process to induce flowering in L. paucicostata. The activity of cycloadducts of $\mathbf{3}$ with Epi was comparable to that of $\mathbf{3}$ with NE at high concentrations, whereas a significant reduction in flowering was observed at lower concentrations. This indicated that secondary amine in FNs is not essential for biological activity, but the presence of methyl group at this position may hamper their recognition by target protein.

In previous SAR studies, ${ }^{4,5}$ the strong flowering activity was observed only when fatty acid 3 was reacted with several catecholamines. The present study, however, provided the compelling results for analogs $\mathbf{4}$ and $\mathbf{1 1}$ in the induction of flowering. This is likely due to the following reasons: (1) olefinic bond in analogs 4 and $\mathbf{1 1}$ migrated from β, γ - to α, β-positions of 10 -carbonyl before reaction with NE, and the resulting compounds never to form the desired adducts; (2) cycloaddition between these fatty acids and NE was not conducted since the previous method is difficult to give the adducts in sufficient amount. The loss of their activity in previous report could be because of either of these things. Biological evaluation of purified cycloadducts is in progress, the result of which will be reported elsewhere in near future.

3. Conclusions

In the present report, we synthesized nine analogs of $\mathbf{3}$, and evaluated their ability to induce flowering in L. paucicostata after the reaction with catecholamine. We observed that all the analogs possessing β, γ-unsaturated carbonyl group were cycloadducted with catecholamine and showed the activity of flowering induction. From the above data, tricyclic structure derived from conjugation of fatty acid with catecholamine was suggested to be inevitable to show an FN-like activity. To date, it is unclear how the derivatives of FN initiate the flowering signals in L. paucicostata. This work will serve as an entry point for the future study of chemical control of flowering in plants. Efforts are underway to further investigate the SAR of FN in flowering.

4. Experimental

4.1. General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JNM EX-270 spectrometer (JEOL, Tokyo, Japan) using TMS in CDCl_{3} as an internal standard. LC-PDA/MS analysis was conducted with an LC-10VP system equipped with an LCMS 2010A mass spectrometer (Shimadzu, Kyoto, Japan). Mass spectra were recorded with JMS-DX303HF (JEOL) and LCMS 2010A mass spectrometers. High-resolution mass spectra were obtained with a JMS-T100LC AccuTOF mass spectrometer (JEOL). HPLC separation was performed with a JASCO (Tokyo, Japan) LC system. Solvents for HPLC were purchased from Kanto Chemical (Tokyo, Japan). A three-solvent system was used to
generate the mobile phase for HPLC: solvent A, 0.05% aq. formic acid; solvent B, 0.05% aq. TFA; solvent C, MeCN. Column chromatography was performed on silica gel 60N (Kanto Chemical) or Wakogel C-200 (Wako Pure Chemical, Osaka, Japan).

4.2. Synthesis of (Z)-9-hydroxy-10-oxooctadec-12-enoic acid (4)

4.2.1. Methyl 9-hydroxynonanoate (20).

To a solution of mono methyl azelate (19; $10 \mathrm{~g}, 49.4 \mathrm{mmol}$) in dry THF (25 mL), $\mathrm{BH}_{3} \cdot \mathrm{THF}$ complex (0.9 M in THF; $54.9 \mathrm{~mL}, 49.4 \mathrm{mmol}$) was added dropwise at $-18^{\circ} \mathrm{C}$ over 20 min , and the mixture was stirred for 4 h at rt . After the reaction was quenched with water and $\mathrm{K}_{2} \mathrm{CO}_{3}(11.5 \mathrm{~g}, 83.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 100 \mathrm{~mL})$. Combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under vacuum gave 20 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.24-1.88(8 \mathrm{H}), 1.50-1.64(4 \mathrm{H}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{t}, J=6.6$ Hz), $3.67(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,25.5,29.0,29.1(\mathrm{C} \times 2), 32.6$, 34.0, 51.4, 62.9, 174.3. MS (ESI $) ~ m / z 189[\mathrm{M}+\mathrm{H}]^{+}$.

4.2.2. Methyl 9-oxononanoate (21).

A solution of $20(49.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise to a stirring suspension of PDC ($27.8 \mathrm{~g}, 74.1 \mathrm{mmol}$) and Celite (10 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The mixture was stirred for 4 h at rt and the solvent removed under vacuum. The residue was purified by column chromatography (hexane-EtOAc, 8:2) to give $\mathbf{2 1}$ as a colorless oil ($7.47 \mathrm{~g}, 40.1 \mathrm{mmol}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29-1.39(6 \mathrm{H}), 1.58-1.68$ (4H), $2.28(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 9.78(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,24.8,28.9(\mathrm{C} \times 2), 34.0,43.8,51.4,60.3,174.2,202.7$.

MS (ESI $\left.{ }^{+}\right) m / z 187[\mathrm{M}+\mathrm{H}]^{+}$.

4.2.3. Methyl 9-hydroxyundec-10-enoate (22).

A solution of vinylmagnesium bromide (1 M in THF; $105 \mathrm{~mL}, 105 \mathrm{mmol}$) was added dropwise to a solution of $21(17.8 \mathrm{~g}, 95.5 \mathrm{mmol})$ in dry THF $(200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. After stirring for 5 h at $-25^{\circ} \mathrm{C}$, the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (200 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The concentrate was purified by column chromatography (hexane-EtOAc, 8:2) to give $\mathbf{2 2}$ as a colorless oil ($9.18 \mathrm{~g}, 42.8 \mathrm{mmol}, 45 \%) .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23-1.45(8 \mathrm{H})$, $1.49-1.65(4 \mathrm{H}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s}) .5 .10(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 5.21(1 \mathrm{H}$, d, $J=17.0 \mathrm{~Hz}$), $5.87(1 \mathrm{H}$, ddd, $J=6.5,9.2,17.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 24.9, 25.2, 29.0, 29.1, 29.3, 34.0, 37.0, 51.4, 73.2, 114.5, 141.3, 174.3. MS (ESI $\left.{ }^{+}\right) m / z$ $215[\mathrm{M}+\mathrm{H}]^{+}$.
4.2.4. Methyl 9-hydroxy-9-(oxiran-2-yl)nonanoate (23).

A solution of $22(9.18 \mathrm{~g}, 42.8 \mathrm{mmol}), m-\operatorname{CPBA}(14.7 \mathrm{~g}, 85.6 \mathrm{mmol})$ and saturated aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ was stirred for 6 h at rt . The reaction mixture was washed with saturated aq. NaHCO_{3} and brine, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration of organic layer under vacuum, the residue was purified by column chromatography (hexane-EtOAc, 7:3) to give 23 as a colorless oil ($6.63 \mathrm{~g}, 28.7$ $\mathrm{mmol}, 67 \%$, diastereomeric mixture). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23-1.64(12 \mathrm{H})$, $2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.72(0.5 \mathrm{H}, \mathrm{m}), 2.80(0.5 \mathrm{H}, \mathrm{m}), 3.00(0.5 \mathrm{H}, \mathrm{m}), 3.42(0.5 \mathrm{H}, \mathrm{m})$, 3.61-3.72 ($0.5 \mathrm{H}, \mathrm{m}$), $3.66(3 \mathrm{H}, \mathrm{s}), 3.83(0.5 \mathrm{H}, \mathrm{m}), 4.35-4.51(0.5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (67.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.80,24.83,25.15,28.93,28.96,29.30,29.36,33.37,34.00,34.28$,
43.40, 45.13, 51.41, 54.51, 55.37, 68.41, 71.62, 174.30. MS (ESI $) \mathrm{m} / \mathrm{z} 231[\mathrm{M}+\mathrm{H}]^{+}$.
4.2.5. Methyl 9-[(tert-butyldimethylsilyl)oxy]-9-(oxiran-2-yl)nonanoate (15).

To a solution of $23(3.84 \mathrm{~g}, 16.5 \mathrm{mmol})$ in dry DMF $(100 \mathrm{~mL})$, TBDMS-Cl $(3.23 \mathrm{~g}$, $21.4 \mathrm{mmol})$ and imidazole $(1.45 \mathrm{~g}, 21.4 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture overnight at rt , it was diluted with $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$, washed with 1 M HCl and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under vacuum and purified by column chromatography (hexane-EtOAc, 95:5) to give $\mathbf{1 5}$ as a colorless oil ($3.74 \mathrm{~g}, 10.8 \mathrm{mmol}, 65.4 \%$, diastereomeric mixture). ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.03-0.10(6 \mathrm{H}), 0.86-0.90(9 \mathrm{H}), 1.20-1.70(14 \mathrm{H}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $2.54(0.6 \mathrm{H}, \mathrm{m}), 2.64(0.4 \mathrm{H}, \mathrm{m}), 2.69(0.4 \mathrm{H}, \mathrm{m}), 2.77(0.6 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 2.83-2.93$ $(1 \mathrm{H}, \mathrm{m}), 3.24(0.6 \mathrm{H}, \mathrm{m}), 3.54(0.4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.00,-4.87$, $-4.38,18.17,24.78,24.89,24.91,25.21,25.63,25.80,25.85,29.05,29.13,29.43,29.52$, 34.06, 34.67, $35.23,44.85,51.40,54.66,55.96,71.33,74.54,174.25$. MS (ESI $\left.^{+}\right) m / z$ $345[\mathrm{M}+\mathrm{H}]^{+}$.

4.2.6. Methyl 9-[(tert-butyldimethylsilyl)oxy]-10-hydroxyoctadec-12-ynoate (36).

A solution of $n-\mathrm{BuLi}(1.57 \mathrm{M}$ in hexane; $19.5 \mathrm{~mL}, 30.6 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{1 3}$ in dry THF $(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, a solution of $\mathbf{1 5}(5.30 \mathrm{~g}, 15.3 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ complex $(1.88$ $\mathrm{mL}, 15.3 \mathrm{mmol}$) were added dropwise to the reaction mixture. The mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ under Ar and then poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography (hexane-EtOAc, 95:5) to give 36 as an orange oil $(5.23 \mathrm{~g}, 11.8 \mathrm{mmol}, 77 \%$,
diastereomeric mixture). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07-0.10(6 \mathrm{H}), 0.87-0.92$ $(12 \mathrm{H}), 1.22-1.63(18 \mathrm{H}), 2.12-2.40(7 \mathrm{H}), 3.52-3.84(2 \mathrm{H}), 3.66(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (67.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.70,-4.51,-4.46,-4.25,13.96,14.17,18.07,18.68,18.70,22.20$, $22.71,24.51,24.90,25.19,25.86,28.67,28.69,29.07,29.09,29.19,29.54,29.66,31.06$, $31.49,33.77,34.06,34.07,51.41,71.33,72.60,72.67,73.93,75.97,76.38,76.52,82.44$, 82.85, 174.24, 174.26. HR-MS (ESI $) m / z 463.3250[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{NaO}_{4} \mathrm{Si}$, 463.3220).
4.2.7. (Z)-Methyl 9-[(tert-butyldimethylsilyl)oxy]-10-hydroxyoctadec-12-enoate (37).

A solution of $36(5.23 \mathrm{~g}, 11.8 \mathrm{mmol})$ in toluene $(80 \mathrm{~mL})$ was added to a suspension of Lindlar's catalyst ($5 \% \mathrm{Pd}-\mathrm{CaCO}_{3}-\mathrm{Pb}^{2+}, 523 \mathrm{mg}$) in toluene (10 mL). After stirring for 5 h at rt under H_{2}, the mixture was filtered through Celite, and filtrate was evaporated to dryness to give 37 as a colorless oil ($5.01 \mathrm{~g}, 11.3 \mathrm{mmol}, 96 \%$, diastereomeric mixture). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07-0.09(6 \mathrm{H}), 0.86-0.91(12 \mathrm{H}), 1.14-1.77(18 \mathrm{H})$, 2.02-2.41 (6H), 3.39-3.66(2H), 3.67(3H, s), 5.36-5.55 (2H). ${ }^{13} \mathrm{C}$ NMR (67.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.61,-4.42,-4.09,14.03,18.10,22.55,24.91,25.06,25.49,25.88,27.39$, $27.48,29.07,29.19,29.28,29.31,29.66,29.87,31.14,31.53,31.93,33.73,34.07,51.42$, 72.67, 74.28, 74.50, 74.87, 125.26, 125.50, 132.36, 132.82, 174.26. HR-MS (ESI ${ }^{+}$) m/z $465.3371[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{25} \mathrm{H}_{50} \mathrm{NaO}_{4} \mathrm{Si}, 465.3376$).
4.2.8. (Z)-Methyl 9-[(tert-butyldimethylsilyl)oxy]-10-oxooctadec-12-enoate (38).

A solution of DMSO ($2.80 \mathrm{~mL}, 39.5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added dropwise to a solution of $(\mathrm{COCl})_{2}(2.90 \mathrm{~mL}, 33.9 \mathrm{~mL})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ under Ar. After stirring for 10 min at $-60^{\circ} \mathrm{C}$, a solution of $37(5.01 \mathrm{~g}, 11.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise to the above solution. The mixture was stirred for

15 min at $-60^{\circ} \mathrm{C}$ and allowed to warm to $-45^{\circ} \mathrm{C} . \mathrm{Et}_{3} \mathrm{~N}(9.43 \mathrm{~mL}, 67.8 \mathrm{mmol})$ was added to the mixture, which was stirred for 10 min at rt . After quenching the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, and the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography (hexane-EtOAc, 95:5) to give 38 as an orange oil ($1.51 \mathrm{~g}, 3.46 \mathrm{mmol}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05$ $(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.10-1.37(14 \mathrm{H}), 1.46-1.70$ (4H), $1.99(2 \mathrm{H}, \mathrm{q}-\mathrm{like}), 2.29(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 4.04(1 \mathrm{H}$, m), 5.49-5.64 (2H). ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.9,14.0,18.1,22.5,24.7,24.9$, $25.3(\mathrm{C} \times 3), 27.6,29.0(\mathrm{C} \times 2), 29.3,27.6,31.5,34.1,35.0,36.0,51.4,78.7,120.7,133.4$, 174.2, 211.9. HR-MS (ESI $) m / z 463.3224[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{NaO}_{4} \mathrm{Si}$, 463.3220).
4.2.9. (Z)-Methyl 9-hydroxy-10-oxooctadec-12-enoic acid (39).

A solution of $38(1.51 \mathrm{~g}, 3.46 \mathrm{mmol})$ in 46% aq. HF-MeCN ($100 \mathrm{~mL}, 1: 19$) was stirred at rt for 1 h . The reaction was quenched with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. After evaporation, the residual oil is 39 ($1.12 \mathrm{~g}, 3.43 \mathrm{mmol}$, orange oil), which was used in next reaction without any purification step. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.20-1.70$ $(17 \mathrm{H}), 1.81(1 \mathrm{H}, \mathrm{m}), 2.02(2 \mathrm{H}, \mathrm{q}-\mathrm{like}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.24(2 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}$, s), $4.23(1 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{m}), 5.70(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5,23.0$, $25.2,25.3,28.0,29.4,29.5(\mathrm{C} \times 2), 29.7,31.9,34.1,34.5,37.2,51.9,76.5,120.1,134.9$, 174.7, 210.9. HR-MS (ESI $) ~ m / z 349.2357[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{4}, 349.2355$).
4.2.10. (Z)-9-Hydroxy-10-oxooctadec-12-enoic acid (4).

A solution of $39(972 \mathrm{mg}, 2.98 \mathrm{mmol})$ and lipase PS Amano SD (972 mg, Wako Pure Chemical) in 0.1 M phosphate buffer (pH 7.0)-acetone ($60 \mathrm{~mL}, 1: 1$) was stirred at rt for 30 min . The mixture was diluted with water $(60 \mathrm{~mL})$ and extracted with EtOAc (4×60 $\mathrm{mL})$. The EtOAc layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography (hexane-EtOAc, 6:4) and preparative HPLC [column, CAPCELL PAK UG120 $20 \times 250 \mathrm{~mm}$ (Shiseido, Tokyo, Japan); solvent, $60 \% \mathrm{C} /(\mathrm{B}+\mathrm{C})$; flow rate, $10 \mathrm{~mL} / \mathrm{min}$] to give 4 as a white solid (395 mg, $1.26 \mathrm{mmol}, 42 \%) .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}$), 1.19-1.93 (18H), 2.02 (2H, q-like), $2.35(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.24(2 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{m})$, $5.51(1 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.5,24.6,24.7,27.6$, $28.9(\mathrm{C} \times 2), 29.0,29.2,31.4,33.6,33.8,36.8,76.0,119.5,134.5,179.0,210.4$. HR-MS $\left(\mathrm{ESI}^{+}\right) m / z 335.2198[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{4}, 335.2198$).

4.3. Synthesis of (10Z,13Z)-7-hydroxy-8-oxohexadaca-10,13-dienoic acid (5)

4.3.1. 7-Heptanolide (25).

To a solution of m - $\mathrm{CPBA}(9.2 \mathrm{~g}, 53.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, compound 24 was added at $0^{\circ} \mathrm{C}$. After stirring for 5 days at rt , the reaction mixture was filtered, washed with saturated aq. NaHCO_{3} and water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated under vacuum to give $\mathbf{2 5}$ as a colorless oil quantitatively. ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.92(8 \mathrm{H}, \mathrm{m}), 2.56(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 4.36(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}) . \mathrm{MS}$ $\left(\mathrm{EI}^{+}\right) m / z 345 \mathrm{M}^{+}$.

4.3.2. Methyl 7-hydroxyheptanoate (26).

Lactone 25 (106.9 mmol) was opened with $\mathrm{MeOH}(150 \mathrm{~mL})$ in the presence of conc.
$\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ at rt in 8 h . After removing the solvent, the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(150 \mathrm{~mL})$, washed with water twice and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4} . \mathrm{Et}_{2} \mathrm{O}$ layer was concentrated and dried to give 26 as a colorless oil ($13 \mathrm{~g}, 81.1 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35-1.38(4 \mathrm{H}), 1.56-1.67(4 \mathrm{H}), 2.32(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.65(2 \mathrm{H}$, $\mathrm{t}, J=6.3 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,25.3,28.8,32.3,33.9$, 51.5, 62.7, 174.3. MS $\left(\mathrm{FAB}^{+}\right) m / z 161[\mathrm{M}+\mathrm{H}]^{+}$.

4.3.3. Methyl 7-oxoheptanoate (27).

Reaction procedure: 4.2.2. Chromatography: hexane-EtOAc (8:2). Colorless oil (66%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(2 \mathrm{H}, \mathrm{m}), 1.60-1.68(4 \mathrm{H}, \mathrm{m}), 2.32(2 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}), 2.45(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 9.78(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR (67.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.7,24.6,28.6,33.8,43.6,51.5,173.9,202.4 . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z} 159[\mathrm{M}+\mathrm{H}]^{+}$.

4.3.4. Methyl 7-hydroxynon-8-enoate (28).

Reaction procedure: 4.2.3. Chromatography: hexane-EtOAc (7:3). Colorless oil (45\%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29-1.79(8 \mathrm{H}), 2.31(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.67(3 \mathrm{H}$, s), $4.09(1 \mathrm{H}, \mathrm{dt}, J=7.3,14.0 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz})$, $5.87(1 \mathrm{H}$, ddd, $J=7.3,10.5,17.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,24.9,29.0$, 33.9, 36.7, 51.4, 73.0, 114.5, 141.2, 174.2. MS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 187[\mathrm{M}+\mathrm{H}]^{+}$.

4.3.5. Methyl 7-hydroxy-7-(oxiran-2-yl)heptanoate (29).

Reaction procedure: 4.2.4. Chromatography: hexane-EtOAc (6:4). Colorless oil (diastereomeric mixture, 66%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30-1.70(8 \mathrm{H}), 2.32(2 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}), 2.72(0.5 \mathrm{H}, \mathrm{m}), 2.81(0.5 \mathrm{H}, \mathrm{m}), 3.00(0.5 \mathrm{H}, \mathrm{m}), 3.44(0.5 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}$, s), $3.82(0.5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.72,24.75,24.92,29.00,29.07$,
$33.92,33.93,34.15,43.37,45.12,51.47,54.45,55.30,60.38,68.30,71.47,174.17 . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right) m / z 203[\mathrm{M}+\mathrm{H}]^{+}$.

4.3.6. Methyl 7-[(tert-butyldimethylsilyl)oxy]-7-(oxiran-2-yl)heptanoate (16).

Reaction procedure: 4.2.5. Chromatography: hexane-EtOAc (85:15). Orange oil (diastereomeric mixture, 69%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.01-0.07(6 \mathrm{H})$, $0.82-0.86(9 \mathrm{H}), 1.22-1.62(8 \mathrm{H}), 2.27(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.49(0.5 \mathrm{H}, \mathrm{m}), 2.59-2.62$ $(0.5 \mathrm{H}, \mathrm{m}), 2.66(0.5 \mathrm{H}, \mathrm{m}), 2.75-2.89(0.5 \mathrm{H}, \mathrm{m}), 3.20(0.5 \mathrm{H}, \mathrm{m}), 3.49-3.55(0.5 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.04,-4.90,-4.40,18.13,20.98,24.50,24.80,24.94$, $25.62,25.77,25.82,29.12,29.22,31.55,33.95,34.47,35.04,44.80,44.87,51.41,54.58$, 55.90, 60.34, 71.25, 74.45, 171.08, 174.11. MS (ESI $\left.{ }^{+}\right) m / z 317[\mathrm{M}+\mathrm{H}]^{+}$.

4.3.7. Methyl 7-[(tert-butyldimethylsilyl)oxy]-8-hydroxyhexadeca-10,13-diynoate (40).

1,4-Heptadiyne (14) was freshly prepared from ethylmagnesium bromide and propargyl bromide in the presence of copper(I) chloride as reported previously. ${ }^{7}$ Synthesis of $\mathbf{4 0}$ was conducted by using $\mathbf{1 4}$ instead of $\mathbf{1 3}$. Reaction procedure: 4.2.6. Chromatography: hexane-EtOAc (85:15). Orange oil (diastereomeric mixture, 58%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07-0.10(6 \mathrm{H}), 0.88(9 \mathrm{H}), 1.11(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $1.28-1.65(8 \mathrm{H}), 2.12-2.20(2 \mathrm{H}), 2.27-2.40(4 \mathrm{H}), 3.11(2 \mathrm{H}, \mathrm{m}), 3.60-3.78(2 \mathrm{H}), 3.66(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.71,-4.53,-4.47,-4.25,9.70,9.74,12.33,13.85$, $13.87,14.17,18.05,22.68,24.45,24.57,24.85,24.88,25.85,29.24,29.35,31.40,33.57$, $33.97,34.01,51.47,71.10,72.40,72.67,73.36,73.44,73.84,76.74,76.79,77.21,81.91$. 82.00, 174.16, 174.21. HR-MS (ESI $\left.{ }^{+}\right) m / z 431.2636[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NaO}_{4} \mathrm{Si}$, 431.2594).
4.3.8. (10Z,13Z)-Methyl

7-[(tert-butyldimethylsilyl)oxy]-8-hydroxyhexadeca-10,13-dienoate (41).
Reaction procedure: 4.2.7. Orange oil (diastereomeric mixture, quantitatively). ${ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.07-0.09(6 \mathrm{H}), 0.91(9 \mathrm{H}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$, $1.21-1.75(6 \mathrm{H}), 2.04-2.35(6 \mathrm{H}), 2.73-2.95(2 \mathrm{H}), 3.45-3.74(1 \mathrm{H}), 3.67(3 \mathrm{H}, \mathrm{s}), 5.26-5.54$ (4H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.60,-4.42,-4.10,13.96,14.21,18.08,20.43$, $20.57,24.90,25.19,25.68,25.87,51.42,72.65,74.17,74.48,74.83,125.28,125.64$, 125.84, 126.85, 129.02, 130.48, 130.88, 132.15, 174.11, 174.15. HR-MS (ESI $\left.{ }^{+}\right) m / z$ $435.2910[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{NaO}_{4} \mathrm{Si}, 435.2907$).
4.3.9. (10Z, 13Z)-Methyl 7-[(tert-butyldimethylsilyl)oxy]-8-oxohexadeca-10,13-dienoate (42).

Reaction procedure: 4.2.8. Chromatography: hexane-EtOAc (95:5). Orange oil (41\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{t}, J=$ $7.5 \mathrm{~Hz}), 1.20-1.40(4 \mathrm{H}), 1.50-1.70(4 \mathrm{H}), 2.06(2 \mathrm{H}, \mathrm{m}), 2.29(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.75$ $(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 3.35(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}), 5.24-5.45(2 \mathrm{H})$, 5.52-5.63 (2H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9,14.2,18.1,20.6,24.5,24.7,25.7$ $(\mathrm{C} \times 3), 25.8,29.0,33.9,34.8,36.0,51.4,78.6,121.0,126.4,131.5,132.4,174.1,211.6$. HR-MS (ESI $) ~ m / z 433.2750[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NaO}_{4} \mathrm{Si}, 433.2750$). 4.3.10. (10Z,13Z)-7-Hydroxy-8-oxohexadeca-10,13-dienoate (5).

Reaction procedure: 4.2.9, 4.2.10. Chromatography: hexane-EtOAc (6:4), HPLC [CAPCELL PAK UG120 $20 \times 250 \mathrm{~mm}, 60 \% \mathrm{C} /(\mathrm{B}+\mathrm{C}), 10 \mathrm{~mL} / \mathrm{min}]$. White solid $(66 \%, 2$ steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.20-1.75(7 \mathrm{H}), 1.84(1 \mathrm{H}$, $\mathrm{m}), 2.06(2 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 2.78(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.28(2 \mathrm{H}, \mathrm{t}$-like $)$,
$4.27(1 \mathrm{H}, \mathrm{m}), 5.29(1 \mathrm{H}, \mathrm{m}), 5.42(1 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{m}), 5.63(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (67.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,20.6,24.4,24.5,25.8,28.7,33.3,33.7,36.7,76.0,119.9,125.9$, 132.7, 132.8, 179.1, 210.1. HR-MS $\left(\mathrm{ESI}^{+}\right) m / z 305.1730[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NaO}_{4}, 305.1729\right)$.
4.4. Synthesis of (8Z,11Z)-5-Hydroxy-6-oxotetradeca-8,11-dienoate (6)
4.4.1. Methyl 5-hydroxypentanoate (31).

Reaction procedure: 4.2.1. Colorless oil (98\%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54-1.78(5 \mathrm{H}), 2.36(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.65(2 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,32.0,33.6,51.5,62.2,174.2 . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z} 133$ $[\mathrm{M}+\mathrm{H}]^{+}$.

4.4.2. Methyl 5-oxopentanoate (32).

Reaction procedure: 4.2.2. Chromatography: hexane-EtOAc (6:4). Colorless oil (64%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.96(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.38(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $2.54(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}), 9.78(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 17.3, 32.9, 42.9, 51.6, 173.3, 201.4. MS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z} 131[\mathrm{M}+\mathrm{H}]^{+}$.

4.4.3. Methyl 5-hydroxyhept-6-enoate (33).

Reaction procedure: 4.2.3. Chromatography: hexane-EtOAc (6:4). Orange oil (30\%). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52-1.77(4 \mathrm{H}), 2.36(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s})$, $4.12(1 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.7,33.8,36.2,51.5,72.7,114.9,140.8,174.0 . \mathrm{MS}$ $\left(\mathrm{FAB}^{+}\right) m / z 159[\mathrm{M}+\mathrm{H}]^{+}$.
4.4.4. Methyl 5-hydroxy-5-(oxiran-2-yl)pentanoate (34).

Reaction procedure: 4.2.4. Chromatography: hexane-EtOAc (5:5). Colorless oil (diastereomeric mixture, $41 \%) .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.57-1.88(4 \mathrm{H}), 2.38(2 \mathrm{H}$, $\mathrm{m}), 2.71-2.76(1 \mathrm{H}), 2.80-2.84(1 \mathrm{H}), 2.97-3.03(1 \mathrm{H}), 3.46(0.5 \mathrm{H}, \mathrm{m}), 3.84(0.5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.68,20.73,32.66,33.64,33.71,33.76,43.45,45.06$, 51.56, 54.32, 55.19, 68.12, 71.16, 173.94. MS (FAB^{+}) $m / z 175[\mathrm{M}+\mathrm{H}]^{+}$.
4.4.5. Methyl 5-[(tert-butyldimethylsilyl)oxy]-5-(oxiran-2-yl)pentanoate (17).

Reaction procedure: 4.2.5. Chromatography: hexane-EtOAc (95:5). Colorless oil (diastereomeric mixture, 46%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.04-0.11(6 \mathrm{H})$, 0.87-0.90 (9H), 1.50-1.86(4H), 2.30-2.36(2H), $2.64(0.5 \mathrm{H}, \mathrm{m}), 2.70(0.5 \mathrm{H}, \mathrm{m}), 2.77$ $(0.5 \mathrm{H}, \mathrm{t}$-like $), 2.84-2.94(1 \mathrm{H}), 3.27(0.5 \mathrm{H}, \mathrm{m}), 3.57(0.5 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (67.5 MHz, CDCl_{3}) $\delta-5.06,-4.91,-4.38,18.13,20.37,20.78,25.63,25.78,25.83$, 33.92, 34.06, 34.56, 44.78, 44.88, 51.49, 54.40, 55.75, 70.95, 74.24, 173.81. HR-MS $\left(\mathrm{ESI}^{+}\right) m / z 311.1653[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}, 311.1654$).
4.4.6. Methyl 5-[(tert-butyldimethylsilyl)oxy]-6-hydroxytetradeca-8, 11-diynoate (44).

Reaction procedure: 4.2.6. Chromatography: hexane-EtOAc (9:1). Orange oil (diastereomeric mixture, 78%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08-0.11$ (6 H), 0.89 (9H), $1.11(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.40-1.80(4 \mathrm{H}), 2.12-2.41(6 \mathrm{H}), 3.11-3.13(2 \mathrm{H}), 3.55-3.81$ $(2 \mathrm{H}), 3.66(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.71,-4.56,-4.48,-4.30,9.71$, $9.75,12.38,13.86,14.19,18.05,21.47,22.85,24.38,25.86,31.127,33.17,33.99$, $34.12,51.51,71.16,72.25,72.41,73.35,73.55,76.00,76.41,81.95,82.03,173.76$. HR-MS (ESI $) m / z 403.2279[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{Si}, 403.2281$).

4.4.7. (8Z,11Z)-Methyl

5-[(tert-butyldimethylsilyl)oxy]-6-hydroxytetradeca-8,11-dienoate (45).
Reaction procedure: 4.2.7. Chromatography: hexane-EtOAc (9:1). Orange oil (diastereomeric mixture, 81%). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.08-0.09(6 \mathrm{H}), 0.90$ $(9 \mathrm{H}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.23-1.70(5 \mathrm{H}), 1.90-2.34(5 \mathrm{H}), 2.72-2.84(2 \mathrm{H}, \mathrm{m})$, 3.39-3.70 (2H), $3.66(3 \mathrm{H}, \mathrm{s}), 5.25-5.56(4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.61$, $-4.47,-4.17, \quad 14.04,14.18,14.22,18.08,20.57,20.62,25.52,25.68,25.86,29.27$, $29.30,31.52,31.75,33.94,34.12,51.49,72.67,74.12,74.47,74.91,125.49,125.70$, $126.82,126.89,130.60,131.00,132.17,132.56,173.79,173.92 . \mathrm{HR}^{2}-\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $407.2594[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NaO}_{4} \mathrm{Si}, 407.2594$).
4.4.8. (8Z,11Z)-Methyl 5-[(tert-butyldimethylsilyl)oxy]-6-oxotetradeca-8,11-dienoate (46).

Reaction procedure: 4.2.8. Chromatography: hexane-EtOAc (95:5). Orange oil $(68 \%) .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.89-0.96(12 \mathrm{H})$, 1.57-1.69 (4H), 1.95-2.08 (4H), $2.31(2 \mathrm{H}, \mathrm{t}$-like $), 3.35(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}$, m), 5.24-5.65 (4H). ${ }^{13} \mathrm{C}$ NMR (67.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.0,14.2,18.1,20.5,25.6,25.7$ $(\mathrm{C} \times 3), 25.9,29.4,31.5,33.8,34.2,51.5,78.3,120.8,126.3,131.2,132.4,173.5,211.1$. HR-MS (ESI $\left.{ }^{+}\right) m / z 405.2433[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NaO}_{4} \mathrm{Si}, 405.2437$).

4.4.9. (8Z,11Z)-5-Hydroxy-6-oxotetradeca-8,11-denoate (6).

Reaction procedure: 4.2.9, 4.2.10. Chromatography: HPLC [CAPCELL PAK UG120 $20 \times 250 \mathrm{~mm}, 39 \% \mathrm{C} /(\mathrm{B}+\mathrm{C}), 10 \mathrm{~mL} / \mathrm{min}]$. White solid ($21 \%, 2$ steps). ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.89(2 \mathrm{H}, \mathrm{m}), 2.06(2 \mathrm{H}$, quint, $J=7.6 \mathrm{~Hz}) 2.45$
$(2 \mathrm{H}, \mathrm{m}), 2.78(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.44(2 \mathrm{H}, \mathrm{dd}, J=1.3,5.6 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{m}), 5.40(1 \mathrm{H}$, m), 5.50-5.69 (2H). ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,20.6,24.4,25.8,29.6,32.4$, 36.7, 75.7, 119.4, 125.8, 132.7, 133.0, 170.4, 205.2. HR-MS (ESI ${ }^{+}$) $m / z 253.1434$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}, 253.1440$).
4.5. Synthesis of (Z)-10-oxooctadec-12-enoic acid (7) and (E)-10-oxooctadec-11-enoic acid (8)
4.5.1. Methyl 9-(oxiran-2-yl)nonanoate (18).

A solution of $35(10 \mathrm{~g}, 50.4 \mathrm{mmol}), m-\operatorname{CPBA}(17.3 \mathrm{~g}, 100.8 \mathrm{mmol})$ and saturated aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ were stirred for 6 h at rt . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The concentrate was purified by column chromatography (hexane-EtOAc, 9:1) to give 18 as a colorless oil ($1.06 \mathrm{~g}, 43.9 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23-1.64(14 \mathrm{H}), 2.31(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{m}), 2.76(1 \mathrm{H}$, $\mathrm{dd}, J=4.2,4.6 \mathrm{~Hz}), 2.92(1 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.9$, 25.9, 29.0, 29.1, 29.2, 29.3, 32.4, 34.0, 47.1, 52.4, 51.4, 174.3. MS (ESI $\left.{ }^{+}\right) m / z 214$ $[\mathrm{M}+\mathrm{H}]^{+}$.
4.5.2. Methyl 10-hydroxyoctadec-12-ynoate (48).

Reaction procedure: 4.2.6. Chromatography: hexane-EtOAc (9:1). Colorless oil (65\%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.23-1.64(16 \mathrm{H})$, 2.13-2.45 (6H), $3.67(3 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,18.7$, $22.2,24.9,25.6,27.7,28.7,29.0,29.1,29.3,29.5,31.0,34.1,36.1,51.4,70.2,76.0$, 83.2, 174.3. HR-MS (ESI $\left.{ }^{+}\right) m / z 333.2394[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{3}, 333.2406$).

4.5.3. (Z)-Methyl 10-hydroxyoctadec-12-enoate (49)

Reaction procedure: 4.2.7. Chromatography: hexane-EtOAc (9:1). Colorless oil (71\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.23-1.62(12 \mathrm{H}), 2.05$ $(2 \mathrm{H}, \mathrm{m}), 2.21(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s})$, $5.40(1 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.5,24.9,25.7,27.4$, 29.1, 29.2, 29.3, 29.4, 29.6, 31.5, 34.1, 35.4, 36.8, 51.4, 71.5, 125.1, 133.6, 174.3. HR-MS (ESI ${ }^{+}$) $\mathrm{m} / \mathrm{z} 335.2545[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NaO}_{3}, 335.2562$).
4.5.4. (Z)-Methyl 10-oxooctadec-12-enoate (50).

Reaction procedure: 4.2.8. Chromatography: hexane-EtOAc (95:5). Orange oil (64\%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$), 1.23-1.64 (12H), 2.05 $(2 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.15(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 3.67$ $(3 \mathrm{H}, \mathrm{s}), 5.51-5.62(2 \mathrm{H}, \mathrm{m}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} 311[\mathrm{M}+\mathrm{H}]^{+}$.

4.5.5. (Z)-10-Oxooctadec-12-enoic acid (7).

Reaction procedure: 4.2.10. Chromatography: Chromatography: HPLC [CAPCELL PAK UG120 $20 \times 250 \mathrm{~mm}, 39 \% \mathrm{C} /(\mathrm{B}+\mathrm{C}), 10 \mathrm{~mL} / \mathrm{min}]$. Orange oil (22%). ${ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.30-1.42(14 \mathrm{H}), 1.53-1.65(4 \mathrm{H}), 2.02(2 \mathrm{H}$, q-like), $2.34(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.43(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.15(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, 5.48-5.64 ($2 \mathrm{H}, \mathrm{m}$), $6.47(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.5,23.7,24.6$, 27.5, $29.0(\mathrm{C} \times 3), 29.1(\mathrm{C} \times 2), 31.5,33.9,41.7,42.2,120.9,133.7,179.4,209.4$. HR-MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} 319.2246[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{3}, 319.2249$).
4.5.6. (E)-10-Oxooctadec-11-enoic acid (8).

Orange oil (27\%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.10-1.70$ (20H), $2.22(2 \mathrm{H}, \mathrm{q}-\mathrm{like}), 2.36(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 2.54(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J$ $=15.8 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{dt}, J=6.9,15.8 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{br}) .{ }^{13} \mathrm{C}$ NMR $\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.0,22.5,24.4,24.6,28.0,28.8,28.9,29.0,29.1,29.2,31.5,32.5,33.9,39.9,130.1$, 148.5, 179.7, 202.2. $\mathrm{HR}-\mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z 319.2251[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{3}$, 319.2249).
4.6. Synthesis of (12Z,15Z)-10-oxooctadeca-12,15-dienoic acid (9)
4.6.1. Methyl 10-hydroxyoctadeca-12,15-diynoate (51).

Reaction procedure: 4.3.7. Chromatography: hexane-EtOAc (9:1, 8:2). Orange oil (51%). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.20-1.64(14 \mathrm{H}), 2.17$ $(2 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.38(2 \mathrm{H}, \mathrm{m}), 3.19(2 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.7,12.3,13.8,24.9,25.5,27.7,29.1(\mathrm{C} \times 2), 29.3,29.4$, 34.1, 36.2, 51.4, 70.1, 73.4, 76.6, 77.5, 82.0, 174.3. HR-MS (ESI ${ }^{+}$) $m / z 329.2088$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3}, 329.2093$).
4.6.2. (12Z,15Z)-Methyl 10-hydroxyoctadeca-12,15-dienoate (52)

Reaction procedure: 4.2.7. Chromatography: hexane-EtOAc (8:2). Orange oil (77\%). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.20-1.50(12 \mathrm{H}), 1.62(2 \mathrm{H}, \mathrm{t}, J=$ $7.0 \mathrm{~Hz}), 2.02-2.13(4 \mathrm{H}), 2.19-2.35(4 \mathrm{H}), 2.81(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{m}), 3.67$ $(3 \mathrm{H}, \mathrm{s}), 5.25-5.60(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,20.5,24.9,25.7(\mathrm{C} \times 2)$, $29.0,29.1,29.3,29.5,34.1,35.3,36.8,51.4,71.4,125.5,126.8,131.4,132.1,174.3$. HR-MS (ESI $\left.{ }^{+}\right) m / z 333.2405[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calc. for $\left.\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{3}, 333.2406\right)$.
4.6.3. (12Z,15Z)-Methyl 10-oxooctadeca-12,15-dienoate (53).

Reaction procedure: 4.2.8. Chromatography: hexane-EtOAc (9:1). Orange oil (88\%). ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.08-1.23(8 \mathrm{H}), 1.56-1.65(4 \mathrm{H})$, $2.04(2 \mathrm{H}$, quint, $J=7.6 \mathrm{~Hz}), 2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.42-2.52(4 \mathrm{H}), 2.78(2 \mathrm{H}, \mathrm{t}, J=$ 5.7 Hz), $3.18(2 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s}), 5.31-5.59(4 \mathrm{H})$. HR-MS (ESI $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 331.2248$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaO}_{3}, 331.2249$).

4.6.4. (12Z,15Z)-10-oxooctadeca-12,15-dienoic acid (9).

Reaction procedure: 4.2.10. Chromatography: HPLC [CAPCELL PAK UG120 $20 \times 250 \mathrm{~mm}, 55 \% \mathrm{C} /(\mathrm{B}+\mathrm{C}), 10 \mathrm{~mL} / \mathrm{min}]$. Colorless oil (71\%). ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.98(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.09-1.13(8 \mathrm{H}), 1.57-1.63(8 \mathrm{H}), 2.07(2 \mathrm{H}, \mathrm{m}), 2.35$ $(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.44(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 2.78(2 \mathrm{H}, \mathrm{t}-\mathrm{like}), 3.20(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz})$, $5.28(1 \mathrm{H}, \mathrm{m}), 5.40(1 \mathrm{H}, \mathrm{m}), 5.51-5.63(2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,20.6$, 23.7, 24.3, 25.7, $28.9(\mathrm{C} \times 2), 29.0,29.1,33.9,41.6,42.3,121.2,126.2,131.8,132.4$, 179.7, 209.3. HR-MS (ESI $) ~ m / z ~ 317.2090[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{3}, 317.2093$).

4.7. Synthesis of 9-hydroxy-10-oxooctadecanoic acid (10)

To a solution of $\mathbf{3}(184 \mathrm{mg}, 0.592 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL}), \mathrm{Pd} / \mathrm{C}(91 \mathrm{mg})$ was added at $0^{\circ} \mathrm{C}$. After stirring for 2 h at rt under H_{2}, the suspension was filtered with Celite, and the filtrate was concentrated under vacuum and purified by column chromatography (hexane-EtOAc, 8:2) to give $\mathbf{1 0}$ as a white powder ($100 \mathrm{mg}, 0.318 \mathrm{mmol}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.24-1.63(23 \mathrm{H}), 1.80(1 \mathrm{H}, \mathrm{m}), 2.34$ $(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.45(2 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1$, $22.6,23.6,24.6,24.8,28.9,29.0,29.1,29.2,29.3,31.8,33.7,33.9,37.9,76.3,179.1$,
212.5. $\mathrm{HR}-\mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z 337.2351[\mathrm{M}+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NaO}_{4}, 337.2355$).

4.8. Synthesis of methyl (12Z,15Z)-9-hydroxy-10-oxooctadeca-12,15-dienoate (11)

To a solution of $\mathbf{3}(415 \mathrm{mg}, 133 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, a solution of (trimethylsilyl)diazomethane (2 M in hexane; 3 mL) was added dropwise and stirred for 5 min . After removing the solvent and reagent under vacuum, the resulting oil is purified by HPLC [CAPCELL PAK UG120 $20 \times 250 \mathrm{~mm}, 70 \% \mathrm{C} /(\mathrm{B}+\mathrm{C}), 10 \mathrm{~mL} / \mathrm{min}$] to give 11 as an orange oil ($345 \mathrm{mg}, 1.06 \mathrm{mmol}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98$ $(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.26-1.40(8 \mathrm{H}), 1.50(1 \mathrm{H}, \mathrm{m}), 1.61(2 \mathrm{H}, \mathrm{m}), 1.84(1 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}$, m), $2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.78(2 \mathrm{H}, \mathrm{dt}, J=0.7,6.3 \mathrm{~Hz}), 3.27(2 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s})$, $4.23(1 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{m}), 5.43(1 \mathrm{H}, \mathrm{m}), 5.55(1 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (67.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,20.6,24.7,24.8,25.8,29.0(\mathrm{C} \times 2), 29.2,33.6,34.0,36.7,51.4$, 76.0, 120.0, 125.9, 132.5, 132.7, 174.2, 210.1. MS (ESI ${ }^{+} m / z 325[\mathrm{M}+\mathrm{H}]^{+}$.
4.9. Synthesis of (12Z,15Z)-9,10-dihydroxyoctadeca-12,15-dienoate (12)

A solution of $3(3 \mathrm{mg}, 9.7 \mu \mathrm{~mol})$ and $\mathrm{NaBH}_{4}(1 \mathrm{mg}, 24.6 \mu \mathrm{~mol})$ in EtOH $(300 \mu \mathrm{~L})$ was stirred for 30 min at rt . The reaction was quenched with water $(1.5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 2 \mathrm{~mL}$). The EtOAc layer was washed with 1 M HCl and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, $\mathbf{1 2}$ was obtained quantitatively as white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.33(8 \mathrm{H}, \mathrm{m}), 1.45$ $(2 \mathrm{H}, \mathrm{m}), 1.59(2 \mathrm{H}, \mathrm{m}), 2.10(2 \mathrm{H}, \mathrm{m}), 2.14(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}$, $\mathrm{m}), 2.81(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{m}), 5.37(1 \mathrm{H}, \mathrm{m})$, $5.43(1 \mathrm{H}, \mathrm{m}), 5.49(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.6,21.5,26.6,27.0,27.8$,
$30.6,30.7,30.8,32.1,34.2,39.3,74.6,75.2,127.3,128.3,130.9,132.7,177.8$. MS $\left(\mathrm{ESI}^{+}\right) m / z 312[\mathrm{M}+\mathrm{H}]^{+}$.

4.10. Cycloaddition of fatty acid with NE/Epi

To a solution of fatty acids 3-12 (5 mg) in water (5 mL), NE/Epi (10 mM in water; 1.5 mL) and Tris- HCl buffer ($1 \mathrm{M}, \mathrm{pH} 8.0,7.5 \mathrm{~mL}$) were added. The reaction was carried out at $25^{\circ} \mathrm{C}$ for 15 h under O_{2} atmosphere. After acidification of reaction mixture with 1% aq. HCOOH , the products were extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. EtOAc layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. LC-PDA/MS analysis of the products was performed with following conditions: column, CAPCELL PAK UG120 $2 \times 75 \mathrm{~mm}$; flow rate, $200 \mu \mathrm{~L} / \mathrm{min}$; solvent, $10-90 \% \mathrm{~A} /(\mathrm{A}+\mathrm{C})$ for 15 min and thereafter 90% $\mathrm{A} /(\mathrm{A}+\mathrm{C})$ within 5 min ; temperature, $40^{\circ} \mathrm{C}$; MS, positive ion mode.

4.11. Flower induction assay

The flower inducing activity was measured according to the method described previously with some modifications. ${ }^{4}$ All samples were dried and stored at $-30^{\circ} \mathrm{C}$ under N_{2}, and dissolved in EtOH immediately before use. All experiments were conducted with negative and positive controls. Positive control experiments were performed in the presence of $1 \mu \mathrm{M}$ 6-benzylaminopurine. The final concentration of EtOH in bioassays was $\leq 0.03 \%$. A three-frond colony of L. paucicostata 151 (P151, a gift from Professor O. Tanaka) was planted on E medium containing a test sample, and incubated on for 10 days at $25^{\circ} \mathrm{C}$ under continuous light. The percentage of fronds with flowers was determined. All experiments were performed with three replicates and reproducibility
was checked on different days.

Acknowledgments

We thank Professor O. Tanaka for providing the plants of L. paucicostata. This work was supported by a grand-in-aid from the Research and Development Program for New Bio-industry Initiatives.

References and notes

1. Corbesier, L.; Coupland, G. J. Exp. Bot. 2006, 57, 3395.
2. Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; Coupland, G. Science 2007, 316, 1030.
3. Tamaki, S.; Matsuo, S.; Wong, H. L.; Yokoi, S.; Shimamoto, K. Science 2007, 316, 1033.
4. Yokoyama, M.; Yamaguchi, S.; Inomata, S.; Komatsu, K.; Yoshida, S.; Iida, T.; Yokokawa, Y.; Yamaguchi, M.; Kaihara, S.; Takimoto, A. Plant Cell Physiol. 2000, 41, 110.
5. Yamaguchi, S.; Yokoyama, M.; Iida, T.; Okai, M.; Tanaka, O.; Takimoto, A. Plant Cell Physiol. 2001, 42, 1201.
6. Yokokawa, Y.; Kobayashi, K.; Yokoyama, M.; Yamamura, S. Chem. Lett. 2003, 32, 844.
7. Nakanishi, A.; Mori, K. Biosci. Biotechnol. Biochem. 2005, 69, 1007.
8. Yamaguchi et al. ${ }^{5}$ reported that the strong flowering induction was observe only when 1, but not its C-9 epimer 2, was assayed. However, we could not observe such
a difference between these isomers with respect to biological activity. Compounds $\mathbf{1}$ and $\mathbf{2}$ purified by HPLC showed identical activity within a concentration tested. Therefore, we determined that $\mathbf{2}$ is also active to induce flowering in L. paucicostata.

Figure and scheme legends

Figure 1. Structures of $\mathbf{1 - 3}$.

Figure 2. Structures of analogs 4-12.

Figure 3. HPLC chromatogram of the EtOAc extract of the reaction mixture of 3 and NE. FNs were detected in a peak at $t_{\mathrm{R}}=7.26 \mathrm{~min}$.

Figure 4. Structures of cycloadducts 54-60.

Figure 5. Flower-inducing activity of fatty acids 3-12 after reacting with NE/Epi. The error bars indicate the standard deviations of three replicates.

Scheme 1.

Scheme 2. Synthesis of epoxide 15.
Reagents and conditions: (a) $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF},-18^{\circ} \mathrm{C}$ to rt; (b) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt ; (c) vinylmagnesium bromide, THF, $-78^{\circ} \mathrm{C}$ to rt; (d) m - CPBA , saturated aq. NaHCO_{3},
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (e) TBDMS-Cl, imidazole, DMF, $0^{\circ} \mathrm{C}$ to rt.

Scheme 3. Synthesis of epoxide 16.
Reagents and conditions: (a) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.; (b) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, rt; (c) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (d) vinylmagnesium bromide, THF, $-78^{\circ} \mathrm{C}$ to rt; (e) m-CPBA, saturated aq. $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (f) TBDMS-Cl, imidazole, DMF, $0^{\circ} \mathrm{C}$ to rt.

Scheme 4. Synthesis of epoxides 17 and 18.
Reagents and conditions: (a) $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF},-18^{\circ} \mathrm{C}$ to rt; (b) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (c) vinylmagnesium bromide, THF, $-78^{\circ} \mathrm{C}$ to rt; (d) m - CPBA , saturated aq. NaHCO_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (e) TBDMS-Cl, imidazole, DMF, $0^{\circ} \mathrm{C}$ to rt.

Scheme 5. Synthesis of 4-6.
Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, n$ - BuLi , THF, $-78^{\circ} \mathrm{C}$; (b) H_{2}, Lindlar's cat., toluene, rt; (c) (1) DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$, (2) $\mathrm{Et}_{3} \mathrm{~N},-60$ to $-45^{\circ} \mathrm{C}$; (d) 46% aq. HF, MeCN, rt; (e) lipase PS, 0.1 M phosphate buffer (pH 7)-acetone (1:1), rt.

Scheme 6. Synthesis of 7-9.
Reagents and conditions: (a) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, n$ - BuLi , THF, $-70^{\circ} \mathrm{C}$; (b) H_{2}, Lindlar's cat., toluene, rt; (c) (1) DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$, (2) $\mathrm{Et}_{3} \mathrm{~N},-60$ to $-45^{\circ} \mathrm{C}$; (d) lipase PS, 0.1 M phosphate buffer (pH 7)-acetone (1:1), rt; (e) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, n$-BuLi, THF, $-70^{\circ} \mathrm{C}$; (f) H_{2}, Lindlar's cat., toluene, rt; (g) (1) DMSO, $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}$, (2) $\mathrm{Et}_{3} \mathrm{~N},-60$ to $-45^{\circ} \mathrm{C}$; (h) lipase PS, 0.1 M phosphate buffer (pH 7)-acetone (1:1), rt.

Scheme 7. Proposed reaction scheme for cycloaddition of 3 and NE.

Table 1. LC-PDA/MS and HR-MS analyses of the cycloadducts in the reaction mixtures of fatty acids 3-12 and NE/Epi.

Substrates	Cycloadduct	$\lambda_{\text {max }}(\mathrm{nm})$	MS (m / z)	HR-MS (m/z)	Molecular formula (calc. mass)	Yield (\%) ${ }^{\text {a }}$
3/NE	1/2	294, 336, 347	$516[\mathrm{M}+\mathrm{Na}]^{+}, 494[\mathrm{M}+\mathrm{H}]^{+}$,	$516.2573[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NNaO}_{8}(516.2573)$	13
			$476\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			
4/NE	54	236, 295, 336	$518[\mathrm{M}+\mathrm{Na}]^{+}, 496[\mathrm{M}+\mathrm{H}]^{+}$,	$518.2728[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{NNaO}_{8}(518.2730)$	18
			$478\left[\mathrm{M}+\mathrm{H}^{-} \mathrm{H}_{2} \mathrm{O}\right]^{+}$			
5/NE	55	240, 295, 343	$488[\mathrm{M}+\mathrm{Na}]^{+}, 466[\mathrm{M}+\mathrm{H}]^{+},$	$488.2267[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NNaO}_{8}(488.2260)$	18
			$448\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			
6/NE	56	237, 296, 336	$460[\mathrm{M}+\mathrm{Na}]^{+}, 438[\mathrm{M}+\mathrm{H}]^{+}$,	$460.1852[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NNaO}_{8}(460.1947)$	9.0
			$420\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			
7/NE	57	293, 336, 347	$502[\mathrm{M}+\mathrm{Na}]^{+}, 480[\mathrm{M}+\mathrm{H}]^{+},$	$502.2783[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{NNaO}_{7}(502.2781)$	8.8
			$462\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			
8/NE	- b	-	-	-	-	0
9/NE	58	293, 336, 344	$500[\mathrm{M}+\mathrm{Na}]^{+}, 478[\mathrm{M}+\mathrm{H}]^{+}$,	$500.2624[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NNaO}_{7}(500.2624)$	6.0
			$460\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			
10/NE	-	-	-	-	-	0
11/NE	59	249, 293, 332	$530[\mathrm{M}+\mathrm{Na}]^{+}, 508[\mathrm{M}+\mathrm{H}]^{+}$,		$\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NNaO}_{8}(530.2730)$	15
			$490\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			
12/NE	-	-	-	-	-	0
3/Epi	60	193, 232, 301	$530[\mathrm{M}+\mathrm{Na}]^{+}, 508[\mathrm{M}+\mathrm{H}]^{+}$,	$530.2732[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NNaO}_{8}(530.2730)$	20
			$490\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$			

[^0]

Figure 1. Kai et al.

7

5

8

9

10

11

12

Figure 2. Kai et al.

Figure 3. Kai et al.

54

58

55: $\mathrm{n}=3$
56: $n=1$

59

57

60

Figure 4. Kai et al.

Figure 5. Kai et al.

13: $\mathrm{R}^{1}=n-\mathrm{C}_{4} \mathrm{H}_{9}$
14: $\mathrm{R}^{1}=\mathrm{C}=\mathrm{CC}_{2} \mathrm{H}_{5}$
15: $\mathrm{R}^{2}=$ OTBDMS, $\mathrm{n}=5$
16: $R^{2}=$ OTBDMS, $n=3$
17: $R^{2}=$ OTBDMS, $n=1$
18: $R^{2}=H, n=5$

36: $\mathrm{R}^{1}=n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{R}^{2}=$ OTBDMS, $\mathrm{n}=5$
40: $\mathrm{R}^{1}=\mathrm{C} \equiv \mathrm{CC}_{2} \mathrm{H}_{5}, \mathrm{R}^{2}=$ OTBDMS, $\mathrm{n}=3$
44: $\mathrm{R}^{1}=\mathrm{C} \equiv \mathrm{CC}_{2} \mathrm{H}_{5}, \mathrm{R}^{2}=$ OTBDMS, $\mathrm{n}=1$
48: $\mathrm{R}^{1}=n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{n}=5$
51: $R^{1}=C \equiv C_{2} H_{5}, R^{2}=H, n=5$

Scheme 2. Kai et al.

Scheme 3. Kai et al.

Scheme 4. Kai et al.

$$
13+15 \xrightarrow[77 \%]{\mathrm{a}}
$$

Scheme 5. Kai et al.

[^0]: a, yield was calculated by standard curve; b, not detected/determined.

