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SUMMARY In this paper, we propose an interactive domain ontology
development environment called DODDLE-OWL. DODDLE-OWL refers
to existing ontologies and supports the semi-automatic construction of tax-
onomic and other relationships in domain ontologies from documents. In-
tegrating several modules, DODDLE-OWL is a practical and interactive
domain ontology development environment. In order to evaluate the ef-
ficiency of DODDLE-OWL, we compared DODDLE-OWL with popular
manual-building method. In order to evaluate the scalability of DODDLE-
OWL, we constructed a large sized ontology over 34,000 concepts in the
field of rocket operation using DODDLE-OWL. Through the above evalu-
ation, we confirmed the efficiency and the scalability of DODDLE-OWL.
Currently, DODDLE-OWL is open source software in Java and has 100
and more users from 20 and more countries.
key words: domain ontology, OWL, open software

1. Introduction

Ever since the necessity of ontologies has been acknowl-
edged to share common understandings between people and
software agents [1], ontologies have become very popular
and significant in many application areas. As the Seman-
tic Web is the most attractive application filed of ontolo-
gies, many ontologies has been represented by the ontology
description language, OWL (Web Ontology Language) [2].
However, as well as other application areas, it still takes
many costs for users to develop and maintain domain on-
tologies. Furthermore, we do not have good environment to
support users in constructing domain ontologies in Japanese.

Regarding domain ontology development support,
many studies have been done with knowledge engineering,
natural language processing and data mining techniques [3],
[4] to make possible automatic domain ontology construc-
tion from existing information resources, such as texts and
general ontologies. However, as the techniques are not yet
mature to achieve the task and domain ontology structure
depends on the aspects from human experts (users), full au-
tomatic process does not go well with the task. Instead of
developing full automatic environment, it is more impor-
tant to provide refined semi-automatic environment with in-
tegrated facilities to construct practical domain ontologies.
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Furthermore, as open software is easy to evolve developed
software, it is significant to build up interactive domain on-
tology development environment with open software.

From the above consideration, in order to build up good
interactive environment for domain ontology development
support, we should focus on the following four keywords:
standard (OWL), extension (to Japanese), open and scala-
bility and so propose an interactive domain ontology devel-
opment environment called DODDLE-OWL (a Domain On-
tology rapiD DeveLopment Environment -OWL extension).
The architecture of DODDLE-OWL is redesigned and ex-
tended with the four keywords, based on DODDLE-II [5]
that is not open software, not related with the Semantic Web,
does not have integrated facilities, and has been evaluated
just with small size of case studies.

We have developed DODDLE-OWL as open software
in Java, integrating several extended facilities, such as OWL
exporting facility and EDR [6] reference facility to construct
domain ontologies in Japanese. DODDLE-OWL has the
following six modules: Ontology Selection Module, Input
Module, Construction Module, Refinement Module, Visual-
ization Module, and Translation Module. DODDLE-OWL
refers existing ontologies such as WordNet and EDR as gen-
eral ontologies to construct taxonomic relationships (defined
as classes) and other relationships (defined as properties
and their domains and ranges) for concepts. Especially, to
realize the user-centered environment, DODDLE-OWL is
mounted with user interactive functions in each module.

In order to evaluate the efficiency of DODDLE-
OWL, we compared DODDLE-OWL with popular manual-
building method. In order to evaluate the scalability of
DODDLE-OWL, we constructed a large sized ontology
over 34,000 concepts in the field of rocket operation using
DODDLE-OWL.

Currently, DODDLE-OWL is open source software in
Java and has 100 and more users from 20 and more coun-
tries.

This paper is structured as follows. In Sect. 2, we
first present the design of DODDLE-OWL. In Sect. 3, we
show the implementation of DODDLE-OWL. In Sect. 4, we
present evaluation of DODDLE-OWL. In Sect. 5, we report
related works. Finally in Sect. 6, we conclude this paper and
point out future work.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Overview of DODDLE-OWL.

2. Design

2.1 Overview

Figure 1 shows an overview of DODDLE-OWL. DODDLE-
OWL has the following six main modules: Ontology Selec-
tion Module, Input Module, Construction Module, Refine-
ment Module, Visualization Module, and Translation Mod-
ule.

Hierarchy Construction Module and Hierarchy Refine-
ment Module were included in DODDLE-I [7] to support
the user construct taxonomic relationships. Relationship
Construction Module and Relationship Refinement Mod-
ule, both added on to DODDLE-II, support the construction
of taxonomic and other relationships. Ontology Selection
Module, Input Module, Visualization Module, and Trans-
lation Module were additionally integrated in DODDLE-
OWL to make possible an interactive domain ontology de-
velopment environment.

In the rest of this section, we describe the six main
modules in DODDLE-OWL.

2.2 Ontology Selection Module

In the Ontology Selection Module, a user selects reference
ontologies. The reference ontologies are used in the other
modules in DODDLE-OWL. WordNet [8] and EDR [6],
which are general ontologies in English and Japanese, can
be used as reference ontologies in DODDLE-OWL. Further-
more, DODDLE-OWL can use existing ontologies, which
are described in OWL, as reference ontologies. It is con-
sidered that if the ontologies for a target domain exist
on the web and can be reused, the cost of refining semi-
automatically generated ontologies will be reduced. The
ontologies constructed by DODDLE-OWL are described in
OWL. Therefore, these ontologies can be reused as refer-
ence ontologies in DODDLE-OWL.

Fig. 2 Flow of input module.

2.3 Input Module

Figure 2 shows the flow of the Input Module. In the Input
Module, a user selects input concepts which are significant
concepts in a domain. Input Module consists of the follow-
ing three sub-modules: Input Document Selection Module,
Input Term Selection Module, and Input Concept Selection
Module.

2.3.1 Input Document Selection Module

First, in the Input Document Selection Module, the user
selects domain specific documents described in English or
Japanese. At this step, the user can select part of speech
(POS) for extraction of words from the documents. Input
Document Selection Module automatically distinguishes
one sentence from another referring to the period punctu-
ation. However, when the input document consists of sen-
tences with no period punctuation marks, Input Document
Selection Module cannot distinguish where to punctuate the
sentence. These input documents cause the decrease in the
accuracy of other relationships constructed by using asso-
ciation rule learner in the Relationship Construction Mod-
ule. Considering such a case, the user can edit manually the
punctuation of one sentence in the documents using Input
Document Selection Module.

2.3.2 Input Term Selection Module

Second, the Input Term Selection Module shows a list of
extracted terms including compound words, POS, Term Fre-
quency (TF), Inverse Document Frequency (IDF), and TF-
IDF in the documents. Domain specific documents contain
many significant compound words. Therefore, accurate ex-
traction of compound words is necessary to construct do-
main ontologies. At this step, while considering POS, TF,
and so on, the user selects input terms which are significant
terms for the domain. For certain domains, important terms
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do not occur in the documents. In such a case, Input Term
Selection Module has a function allowing the manual addi-
tion of important terms as input terms by the user. In order
to prevent the leakage of the selection of input terms from
the documents, Input Term Selection Module maintains the
relationships between the extracted terms and the terms in
the documents.

2.3.3 Input Concept Selection Module

Finally, in the Input Concept Selection Module, the user
identifies the word sense of input terms to map those terms
to the concepts in the reference ontologies selected with the
Ontology Selection Module. A particular single term may
have many word senses. Therefore, there may be many con-
cepts that correspond to the word. Input Concept Selection
Module shows the input terms and the concepts that corre-
spond to the input terms. While considering the domain, the
user selects the most appropriate concept for the term from
the list of concepts. In order to decrease the cost for in-
put concepts selection, Input Concept Selection Module has
a function enabling automatic word disambiguation (input
concept selection). This function shows the list of concepts,
which is ordered by some criteria, corresponding to the se-
lected input term.

Input Concept Selection Module uses perfectly
matching and partially matching to disambiguate in-
put terms. Though, labels of most concepts do not con-
tain compound words. Therefore, it is difficult to select
the appropriate concept for compound words. To deal with
this, partially matching is used to disambiguate most
of the compound words of the input terms. Perfectly
matching and partially matchingmeans an input term
perfectly or partially corresponds to labels of a concept.
The priority of perfectly matching is higher than that
of partially matching. If an input term does not corre-
spond perfectly to any labels of concepts in the reference on-
tologies, Input Concept Selection Module analyzes the mor-
phemes of the input term. The input term can be considered
to be a list of the morphemes. Input Concept Selection Mod-
ule tries to correspond the sub lists (example shown below)
to the concepts of the reference ontologies. Of the matched
concepts corresponding to the sub lists, the longest concept
is selected as the concept of the input term, and the input
term becomes the sub concept of the concept.

For example, the input term “rocket delivery system”
does not perfectly correspond to the labels of concepts in the
reference ontologies. Input Concept Selection Module ana-
lyzes morphemes of “rocket delivery system”. “Rocket de-
livery system” is resolved to “rocket”, “delivery”, and “sys-
tem”. The sub lists for this input term becomes “delivery
system” and “system”. First, Input Concept Selection Mod-
ule disambiguates “delivery system.” Then, Input Concept
Selection Module disambiguates “system.” In this example,
“delivery system” does not correspond to the labels of con-
cepts in the reference ontologies. On the other hand, “sys-
tem” corresponds to the labels of concepts in the reference

ontologies. Consequently, in order to disambiguate “rocket
delivery system”, Input Concept Selection Module shows
the concepts which have “system” as their label.

Input terms which do not correspond to the labels
of concepts in the reference ontologies are undefined
terms. The input terms are also undefined terms if the
concept exists but there are no appropriate concepts in the
reference ontologies. The user defines the undefined terms
manually in the Refinement Module.

2.4 Construction Module

The Construction Module automatically generates the ba-
sis of an ontology, an initial concept hierarchy and set of
concept pairs, by referring to reference ontologies and doc-
uments. An initial concept hierarchy is constructed as tax-
onomic relationships. Set of concept pairs are extracted by
using co-occurrency based statistic methods. These pairs are
considered to be closely related and that they will be used as
candidates to refine and add other relations. The user iden-
tifies some relationships between concepts in the pairs. The
methods for generating an initial concept hierarchy and sets
of concept pairs are described in our former study [5].

2.5 Refinement Module

In the Refinement Module, the initial ontology generated by
Construction Module is refined by the user through interac-
tive support of Visualization Module. In order to refine the
initial ontology, we manage concept drifts and evaluate
the sets of concept pairs.

If the initial concept hierarchy is constructed from a
general ontology, adjustment of the initial concept hier-
archy to the specific domain considering an issue called
concept drift is required. Concept drift implies
that the positions of particular concepts may change de-
pending on the domain. For concept drift management,
DODDLE-OWL applies two strategies: matched result
analysis and trimmed result analysis. In matched
result analysis, DODDLE-OWL divides the taxonomy
into PABs (PAths including only Best-matched concepts)
and STMs (SubTrees that includes best-matched concepts
and other concepts and so can be Moved) and indicates on
the screen. PABs are paths that include only best-matched
concepts that have senses suitable for the given domain.
Best-matched concepts means the input concepts. STMs are
subtrees of which root is an internal concept of the reference
ontology and its subordinates are all best-matched concepts.
Since the sense of an internal concept has not been identified
by a user yet, STMs may be moved to other places for the
concept adjustment to the domain. In addition, for Trimmed
Result Analysis, DODDLE-OWL counts the number of in-
ternal concepts when the part was trimmed. By considering
this number as the original distance between those two con-
cepts, DODDLE-OWL indicates to move the lower concept
to other places. The detail of these strategies are described
in our former study [5].
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At the phase of concept specification template con-
struction, criteria to evaluate significant concept pairs are
necessary; the significant concept pairs are from the sets
of concept pairs generated by the Construction Module.
In [5], two statistics based methods are investigated: the
value of context similarity by the WordSpace method [9] and
the value of confidence by the association rule learner [10].
These methods and values based on co-occurrency of con-
cepts work well in terms of wide use (do not depend on some
particular domains).

2.6 Visualization Module

In order to visually support the refinement of the semi-
automatically constructed domain ontology, DODDLE-
OWL is integrated with the Visualization Module.
DODDLE-OWL uses MR3 : Meta-Model Management
based on RDFs Revision Reflection [11] as the Visualiza-
tion Module. MR3 is a graphical RDF and RDFS editor for
managing relationships between RDF and RDFS descrip-
tions. DODDLE-OWL can interchange an OWL ontology
with MR3 using a plug-in function of MR3 .

Visualization Module has two main roles for support-
ing domain ontology construction. One is the visualization
function for concept drift management in the Refinement
Module. Visualization Module displays the initial concept
hierarchy generated in the Construction Module. Then, the
user can visually refine candidates of concept drifts which
are suggested by the Refinement Module. The other role is
the externalization of the domain ontology. The external-
ization of the domain ontology means visualizing the whole
taxonomic relationships and other relationships in the do-
main ontology. Taxonomic relationships and other relation-
ships are constructed separately in the Hierarchy Construc-
tion Module and the Relationship Construction Module. By
the externalization of the domain ontology, the user can re-
fine the domain ontology while regarding the balance of the
taxonomic relationships and other relationships.

2.7 Translation Module

Translation Module exports the taxonomic relationships
and other relationships described in OWL. Taxonomic
relationships are defined using owl:Class class and
rdfs:subClassOf property†. Other relationships are de-
fined using owl:ObjectProperty class, rdfs:domain
property, and rdfs:range property.

Figure 3 shows an example of exporting taxonomic re-
lationships and other relationships in OWL. The upper part
of Fig. 3 shows that goods class is a subclass of artifact
class. The lower part of Fig. 3 shows that attribute re-
lationships is defined between an individual of goods class
and an individual of quality class.

Fig. 3 An example of exporting taxonomic relationships and other rela-
tionships in OWL.

Fig. 4 Implementation architecture of DODDLE-OWL.

3. Implementation

3.1 Implementation Architecture

Figure 4 shows the implementation architecture of
DODDLE-OWL. DODDLE-OWL is implemented in Java
language. Input Module, Construction Module, and Refine-
ment Module use Java WordNet Library (JWNL) [12] to ac-
cess WordNet. Input Module uses Gensen [13], Sen [14],
and SS-Tagger [15]. Gensen is used for extracting Japanese
and English compound words. Sen is a Japanese morpho-
logical analyzer implemented in Java language. Sen is used
for extracting Japanese words and its POS from documents.
SS-Tagger is an English POS tagger. SS-Tagger is used
for extracting English words and its POS from documents.
MR3 [11] is used as the Visualization Module. MR3 is an
RDF(S) graphical editor with meta-model management fa-
cilities such as the consistency checking of the set of classes
and a model, in which the classes are used as the type of
instances in the model. Translation Module uses Jena: a Se-
mantic Web framework for Java [16] to export constructed
domain ontology described in OWL.

3.2 Typical Usage

Figure 5 shows a typical usage of DODDLE-OWL.
DODDLE-OWL’s user interface consists of “Ontology Se-
lection Panel”, “Document Selection Panel”, “Input Term
Selection Panel”, “Input Concept Selection Panel”, “Con-
struction and Refinement for Classes Panel”, “Construc-
tion and Refinement for Properties Panel”, “Visualization
Panel”, and “Construction and Refinement for Relationships

†owl is a prefix of http://www.w3.org/2002/07/owl#
rdfs is a prefix of http://www.w3.org/2000/01/rdf-schema#.
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Fig. 5 A typical usage of DODDLE-OWL.
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Panel”. First, the user selects reference ontologies from
WordNet, EDR, and existing OWL ontologies in the “Ontol-
ogy Selection Panel ((1) in Fig. 5)”. Second, in the “Docu-
ment Selection Panel ((2) in Fig. 5)”, the user opens domain
specific documents. In this “Document Selection Panel”,
words in the documents are extracted. Third, in the “Input
Term Selection Panel ((3) in Fig. 5)”, the user selects in-
put terms which are significant terms for the domain. The
user can sort the extracted terms based on POS, TF, IDF,
and TF-IDF in this panel. Fourth, in the “Input Concept Se-
lection Panel ((4) in Fig. 5)”, the user associates the input
terms with concepts by referring to the reference ontologies
which were selected in the “Ontology Selection Panel”. Af-
ter mapping input terms to corresponding concepts, an ini-
tial class and property hierarchy are generated. Also set of
concept pairs are extracted by co-occurrency based statistic
methods such as WordSpace method and the association rule
learner by default parameters. (5) and (6) of Fig. 5 shows the
“Construction and Refinement for Classes Panel” and the
“Construction and Refinement for Properties Panel”. These
panels indicate some groups of concepts in the taxonomy
that might cause concept drifts, so that the user can decide
which group to refine. (7) of Fig. 5 shows the display of
concept drift management in the “Visualization Module”.
(8) of Fig. 5 shows the “Construction and Refinement Panel
for Relationships”. This panel is used for setting parame-
ters used in the WordSpace method and the association rule
learner to apply these to the documents in order to generate
significantly related concept pairs. In WordSpace method,
there are parameters such as the gram number, minimum
N-gram count, front scope, and behind scope in the docu-
ments. In the association rule learner, minimum confidence
and minimum support are set by the user. Finally, the user
can export through the Translation Module a constructed do-
main ontology described in OWL.

3.3 DODDLE-OWL as an Open Source

In order to open our technology to communities concerning
ontology construction such as knowledge system, Semantic
Web, and so on, DODDLE-OWL and its source code are
provided via our Web site (Fig. 6). Currently, DODDLE-
OWL is open source software in Java and has 100 and more
users from 20 and more countries. Some users have pro-
vided comments about DODDLE-OWL. We would like to
reflect these comments in our future work.

4. Evaluation

4.1 Comparison between DODDLE-OWL and Manual-
Building Method

4.1.1 Conditions and Process of Experiment

In order to evaluate the efficiency of DODDLE-OWL,
we compared the results for constructing ontologies using

Fig. 6 Web site of DODDLE-OWL.
(URL: http://www.yamaguti.comp.ae.keio.ac.jp/mmm/doddle/)

DODDLE-OWL with the results of the popular manual-
building method. In this experiment, manual-building
method indicates the method for constructing ontologies
using the currently most popular ontology editor, Protégé.
During the experiment, when the users constructed ontolo-
gies with the manual-building method, we permitted them
to refer to general ontologies such as WordNet and EDR. In
this experiment, ontology points is-a relationships (taxon-
omy).

Users A and B, each with some experience in ontology-
construction, are the experimental subjects for this experi-
ment. The target domains are financial accounting (FA) and
human affairs (HA). The users are not domain experts but
have abilities to read domain specific documents and under-
stand the contents. In this experiment, the domain specific
documents are written in Japanese, which is the users’ na-
tive language. For this reason, DODDLE-OWL referred to
EDR, a Japanese general ontology, as a reference ontology
in this experiment.

Figure 7 shows the ontology construction process using
the manual-building method in the experiment. First, a user
selects input terms from the input document set. Then, the
user constructs is-a relationships (taxonomy) from the input
terms using Protégé referring to EDR.

Figure 8 shows the ontology construction process us-
ing DODDLE-OWL in the experiment. This process con-
sists of the following five sub processes. First, a user ex-
tracts terms from the input document set using the Input
Document Selection Module. Second, in order to select in-
put terms, the user removes unnecessary terms from the ex-
tracted terms and adds input terms from the input document
set which were not automatically extracted using the Input
Term Selection Module. Third, the user selects input con-
cepts from the input terms using the Input Concept Selec-
tion Module. Fourth, an initial taxonomy is automatically
constructed from the input concepts by the Hierarchy Con-



MORITA et al.: DODDLE-OWL: INTERACTIVE DOMAIN ONTOLOGY DEVELOPMENT WITH OPEN SOURCE SOFTWARE IN JAVA
951

struction Module. Fifth, the user refines the initial taxonomy
using the Hierarchy Refinement Module.

The following two methods are viewed as the main
methods to compare DODDLE-OWL with the manual-
building method. In method 1, each user constructs both
FA and HA domain ontologies with DODDLE-OWL and
the manual-building method as shown in Table 1, and the
construction times are compared. In method 2, one user
constructs a FA domain ontology with DODDLE-OWL and
the other user constructs a HA domain ontology with the
manual-building method, and vice versa, as shown in Ta-
ble 2, and the construction times are compared.

In method 1, the same user constructs four ontologies
with DODDLE-OWL and the manual-building method from
the same document sets of the same domains. When the in-
fluence of the proficiency in ontology construction of a par-
ticular domain is small, method 1 can be used to perform
an accurate evaluation. However, when the influence is big,
the experience of the first ontology construction leads to the
speed-up of the next ontology construction. For this rea-
son, depending on the order of ontology construction with
DODDLE-OWL and the manual-building method, each on-
tology construction’s time will not be reliable if used as it is.
Therefore, in order to use method 1, it is required to exam-

Fig. 7 Ontology construction process using the manual-building method
in the experiment.

Fig. 8 Ontology construction process using DODDLE-OWL in the ex-
periment.

Table 1 Domains of the ontologies constructed by each user in method
1.

DODDLE-OWL Manual-Building Method

User A FA FA
HA HA

User B FA FA
HA HA

Table 2 Domains of the ontologies constructed by each user in method
2.

DODDLE-OWL Manual-Building Method

User A FA HA
User B HA FA

ine beforehand the influence of each user’s proficiency on
the ontology construction time of each domain.

In method 2, each user constructs ontologies from the
document set of each domain by using DODDLE-OWL or
the manual-building method. This way, the time result in
method 2 will not be influenced by the proficiency in the
ontology construction of a particular domain as in method
1. However, if the knowledge levels of users A and B for
domain ontology construction are not at the same level, it
is not clear whether the difference in the ontology construc-
tion time is due to DODDLE-OWL or because of the dif-
ference in the knowledge level between the 2 users. Here
the difference in the knowledge level indicates the difference
in the ontology construction time coming from the domain
knowledge level, the experience of ontology construction,
the proficiency of tools, and etc. Therefore, it is difficult
to directly compare the ontology construction times where
one user uses DODDLE-OWL and the other user uses the
manual-building method. In order to use method 2, it is
required to examine the difference in the knowledge level
between users A and B in the ontology construction of each
domain beforehand. When the difference in the knowledge
levels between the two users is examined, the expected on-
tology construction time of the manual-building method by
the user using DODDLE-OWL can be obtained from the
ontology construction time of the manual-building method
by the other user. Note that since the ontology construction
time might change depending on the content of the docu-
ment set even if the ontology is constructed from the docu-
ment set of the same domain and the same size, the expected
ontology construction time of the manual-building method
cannot be accurately measured. However, the expected time
will become a guide. If the ontology construction time of
DODDLE-OWL by one user is greatly shortened compared
with the time of the manual-building method by the other
user, it can be said that DODDLE-OWL has efficiency.

In order to resolve the above issues, we first performed
a preliminary experiment, and then performed the main ex-
periment regarding the results of the preliminary experi-
ment. For the preliminary experiment, we prepared docu-
ment sets of FA and HA domains which are different from
the document set used in the main experiment but having
almost the same size of the document sets used in the main
experiment. Table 3 shows the number of documents and
the number of words in each document sets of FA and HA

Table 3 # of documents and # of words in each document sets of FA and
HA domains using the preliminary experiment and the main experiment.

Domain # of Documents # of Words

FA
Preliminary (Procurement) 19 20,041
Experiment HA

(Acceptance) 25 20,035
FA

Main (Payment) 19 20,388
Experiment HA

(Payroll) 29 20,286
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Table 4 Preliminary Experiment: construction times for the 2 times FA (procurement) domain ontol-
ogy was constructed with the manual-building method by user A and B.

User A User B
1st time 2nd time 1st time 2nd time

Time for Input Term Extraction (min) 65 43 42 34
Time for is-a Relationship Construction (min) 116 76 104 75

Total Time (min) 181 119 146 109

Table 5 Preliminary Experiment: # of input terms and # of concepts of
the FA domain ontologies described in Table 4.

User A User B
1st time 2nd time 1st time 2nd time

# of Input Terms 210 208 207 173
# of Concepts 258 256 235 232

domains used in the preliminary experiment and the main
experiment.

In the preliminary experiment, users A and B con-
structed ontologies by the manual-building method twice in
each domain. There are two reasons to perform the prelimi-
nary experiment.

The first reason is to examine the difference in the
knowledge level between users A and B in the FA and HA
domain ontologies construction. Since the difference of the
knowledge level between users A and B may differ from
domain to domain, the users constructed the ontologies for
each domain.

The second reason is to examine the influence of each
user’s proficiency in the FA and HA domain ontologies con-
struction. In order to examine this influence, the users con-
structed the ontologies twice in each domain.

We decided to select whether to use method 1 or
method 2 for the main experiment regarding the result of the
preliminary experiment. If the influence of the proficiency
in the ontology construction is small, we would use method
1 for the main experiment. On the other hand, if the influ-
ence of the proficiency is big, it is difficult to use method 1 to
compare DODDLE-OWL and the manual-building method.
In such case, we use method 2 referring to the difference in
the knowledge level between user A and B obtained from
the preliminary experiment.

4.1.2 Results of Preliminary Experiment

Table 4 and Table 5 show the results of the preliminary ex-
periment for FA (procurement) domain. Table 4 shows the
construction times for the 2 times FA (procurement) domain
ontology was constructed with the manual-building method
by users A and B. Table 5 shows the number of input terms
and the number of concepts of the FA domain ontologies
described in Table 4.

Table 6 and Table 7 show the results of the preliminary
experiment for HA (acceptance) domain. Table 6 shows the
construction times for the 2 times HA (acceptance) domain
ontology was constructed with the manual-building method
by users A and B. Table 7 shows the number of input terms
and the number of concepts of the HA domain ontologies

described in Table 6.

4.1.3 Discussion on Preliminary Experiment

According to Table 4 and Table 6, the times for the second
ontology construction using the manual-building method by
users A and B were approximately 25 minutes to 60 minutes
shorter than the first ontology construction. Since the influ-
ence of the proficiency largely reduced the ontology con-
struction time, we selected method 2, shown in Table 2, as
the method for the main experiment.

According to Table 5 and Table 7, when users A and B
constructed FA (procurement) and HA (acceptance) domain
ontologies with the manual-building method, the size of the
ontologies (the number of input terms and concepts) were
approximately the same. Therefore, the difference in the
knowledge level between users A and B in each domain is
able to be roughly measured by the ratio of the first ontology
construction time of both users. Table 8 and Table 9 show
the ratio in the knowledge level between users A and B in
each domain.

4.1.4 Results of Main Experiment

In the main experiment, user A constructed the FA (pay-
ment) domain ontology with DODDLE-OWL and the
HA (payroll) domain ontology with the manual-building
method. User B constructed the FA (payment) domain on-
tology with the manual-building method and the HA (pay-
roll) domain ontology with DODDLE-OWL.

We evaluated the main experiment by the following
procedures. First, referring to the knowledge level between
the users shown in Table 8 and Table 9, we calculated for a
particular domain the estimated ontology construction time
of the manual-building method for a user which performed
ontology construction using DODDLE-OWL for the do-
main, from the ontology construction time of the manual-
building method by the other user. Second, we compared
each user’s estimated ontology construction time for the
manual-building method to the actual ontology construction
time for DODDLE-OWL.

Table 10 and Table 11 show the results of the main
experiment for the FA (payment) domain. Table 10 shows
user A’s FA (payment) domain ontology construction times
for DODDLE-OWL and the manual-building method (es-
timate), and user B’s FA (payment) domain ontology con-
struction time for the manual-building method. Table 11
shows the number of input terms and the number of con-
cepts in the FA (payment) domain ontologies constructed by
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Table 6 Preliminary Experiment: construction times for the 2 times for HA (acceptance) domain
ontology was constructed with the manual-building method by user A and B.

User A User B
1st time 2nd time 1st time 2nd time

Time for Input Term Extraction (min) 50 34 41 39
Time for is-a Relationship Construction (min) 87 70 108 84

Total Time (min) 137 104 149 123

Table 7 Preliminary Experiment: # of input terms and # of concepts of
the HA domain ontologies described in Table 6.

User A User B
1st time 2nd time 1st time 2nd time

# of input Terms 191 205 198 205
# of Concepts 228 252 245 235

Table 8 Preliminary Experiment: the ratio in the knowledge level be-
tween user A and B for FA domain ontology construction.

User A User B

Input Term Extraction 1.548 1.000
is-a Relationship Construction 1.115 1.000

Table 9 Preliminary Experiment: the ratio in the knowledge level be-
tween user A and B for HA domain ontology construction.

User A User B

Input Term Extraction 1.000 0.820
is-a Relationship Construction 1.000 1.241

user A with DODDLE-OWL and user B with the manual-
building method. Table 12 shows the number of extracted
terms by DODDLE-OWL, the number of input terms added
by user A, the number of input terms, precision, and re-
call in the FA (payment) domain ontologies by user A with
DODDLE-OWL.

Table 13 and Table 14 show the results of the main
experiment for the HA (payroll) domain. Table 13 shows
user B’s HA (payroll) domain ontology construction time
for DODDLE-OWL and the manual-building method (esti-
mate), and user A’s HA (payroll) domain ontology construc-
tion time for the manual-building method. Table 14 shows
the number of input terms and the number of concepts in
the HA (payroll) domain ontologies constructed by user B
with DODDLE-OWL and user A with the manual-building
method. Table 15 shows the number of extracted terms by
DODDLE-OWL, the number of input terms added by user
B, the number of input terms, precision, and recall in the
HA (payroll) domain ontologies by user B with DODDLE-
OWL.

S I = I − UI (1)

Precision =
S I
S T

(2)

Recall =
S I
I

(3)

The precision and the recall in Table 12 and Table 15
were calculated using Formula 1 to 3. In Formula 1 to 3, S I
is the number of extracted input terms by DODDLE-OWL,

I is the number of input terms, UI is the number of input
terms added by a user, and S T is the number of extracted
terms by DODDLE-OWL.

4.1.5 Discussion on Main Experiment

According to Table 10 and Table 13, the times for the ontol-
ogy construction by both users A and B using DODDLE-
OWL were approximately 1 hour shorter than the es-
timated ontology construction times using the manual-
building method. From these results cannot be shown the
correlation between the size of the ontology and the ontol-
ogy construction time able to be shortened by DODDLE-
OWL. However, it can be said that the construction cost for
the is-a relationships including hundreds of concepts con-
struction cost can be reduced by using DODDLE-OWL.

We analyzed where DODDLE-OWL was effective in
the ontology construction processes.

In the input term extraction, the extraction time by user
A using DODDLE-OWL was shorter than the estimated ex-
traction time for the manual-building method for user A.
However, the extraction time by user B using DODDLE-
OWL was longer than the estimated extraction time for the
manual-building method for user B. According to Table 3,
the number of words in the document set of FA (payment)
domain is approximately the same as the number of words
in the document set of HA (payroll) domain. However,
the precision and the recall of input term extraction using
DODDLE-OWL in each domain were different. Accord-
ing to Table 12 and Table 15, the precision and the recall
of input term extraction using DODDLE-OWL by user A
in FA (payment) domain were higher than the precision and
the recall of input term extraction using DODDLE-OWL by
user B in HA (payroll) domain. Therefore, the time for
the removal of unnecessary terms from the automatically
extracted terms and the addition of input terms from the
input document set, which could not be automatically ex-
tracted, by user B using DODDLE-OWL took longer than
user A doing the same work using DODDLE-OWL. From
the above results, it can be said that the input term ex-
traction time might not be able to be shortened by using
DODDLE-OWL when the precision and recall of input term
extraction using DODDLE-OWL were low depending on
domains, documents, and etc. However, according to Ta-
ble 11 and Table 14, a user using DODDLE-OWL could ex-
tract input terms more than the other user using the manual-
building method. One of the reasons is that when the users
extract input terms with the manual-building method, they
often overlook input terms that look alike. For this reason, it
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Table 10 Main Experiment: user A’s FA (payment) domain ontology construction times for
DODDLE-OWL and the manual-building method (estimate), and user B’s FA (payment) domain on-
tology construction time for the manual-building method.

User A User A User B
DODDLE-OWL Manual-Building Method (Estimate) Manual-Building Method

Time for Input Term Extraction (min) 22 63 41
Time for Concept Selection (min) 8 0 0

Time for is-a Relationship Construction (min) 35 91 82
Total Time (min) 65 154 123

Table 11 Main Experiment: # of input terms and # of concepts in the FA
(payment) domain ontologies constructed by user A with DODDLE-OWL
and user B with the manual-building method.

User A User B
DODDLE-OWL Manual-Building Method

# of Input Terms 275 177
# of Concepts 326 215

Table 12 Main Experiment: # of extracted terms by DODDLE-OWL, #
of input terms added by user A, # of input terms, precision, and recall in
the FA (payment) domain ontologies by user A with DODDLE-OWL.

# of Extracted Terms by DODDLE-OWL 537
# of Input Terms Added by User A 18
# of Input Terms 275
Precision 0.48
Recall 0.93

is considered that DODDLE-OWL prevents the leakage of
the selection of input terms from the documents. This ex-
plains the fact that the number of concepts in the ontologies
constructed by DODDLE-OWL was larger than the num-
ber of concepts in the ontologies constructed by the manual-
building method.

Since the times for concept selection using DODDLE-
OWL for both users were both approximately 8 minutes, it
can be said that this cost is not so high when looking at the
entire ontology construction time.

Since the times for the is-a relationships construc-
tion using DODDLE-OWL for both users were both ap-
proximately 1 hour shorter than the estimated times of the
manual-building method, it can be said that DODDLE-
OWL was effective for is-a relationships construction.

The users had an impression that when they con-
structed ontologies using the manual-building method, they
took much time for the nonessential parts of ontology con-
struction such as extracting input terms from the input
documents and inputting the input terms as classes into
Protégé. On the other hand, the users had an impres-
sion that when they constructed ontologies using DODDLE-
OWL, they were able to concentrate on essential parts of the
ontology construction such as refining the ontology since
the nonessential parts were supported by DODDLE-OWL.
From these impressions of the users, it may be said that high
quality ontologies could be constructed by using DODDLE-
OWL.

4.2 Case Studies

4.2.1 Specification of Case Studies

In order to evaluate the scalability of DODDLE-OWL, we
constructed a large sized ontology over 34,000 concepts in
the field of rocket operation using DODDLE-OWL. Since
ontologies used for searching documents usually includes
enormous concepts to cover the documents, we constructed
an ontology usable for searching documents. In these case
studies, we show that DODDLE-OWL can reduce the cost
for construction of a large sized ontology.

In order to evaluate the large sized ontology, we in-
stalled the ontology to a search engine and performed docu-
ment retrieval with the cooperation of Galaxy Express Cor-
poration (GALEX). We used GXFinder [17] developed by
GALEX for the search engine. GXFinder is able to install a
domain ontology described in OWL and perform ontology
based search using concept hierarchy in the domain ontol-
ogy. A rocket operation expert evaluated the top 10 and
20 search results. Since it was difficult for the expert to
make test collection (pairs of keywords and documents cor-
responding to these keywords) without assuming the search
context, we showed the expert the concept hierarchy of the
rocket operation ontology to have the expert makes the test
collection. Then, the expert performed keyword search and
ontology based search.

In the followings, we describe ontology based
search, construction of the rocket operation ontology using
DODDLE-OWL, comparison between keyword search and
ontology based search, and discussion on these case studies.

4.2.2 Ontology Based Search

The ontology based search consists of specialized
search and generalized search.

When there are huge amounts of search results (more
than 50 for these case studies), specialized search
helps the user to find appropriate documents. The proce-
dures for the specialized search are as follows. First, the user
inputs search keywords to GXFinder. Second, GXFinder
finds from the installed domain ontology the concepts hav-
ing the search keywords as their labels. Third, GXFinder ex-
tracts the labels of sub concepts of the concepts extracted in
the second step. Finally, GXFinder finds documents which
include the labels extracted in the third step.
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Table 13 Main Experiment: user B’s HA (payroll) domain ontology construction time for DODDLE-
OWL and the manual-building method (estimate), and user A’s HA (payroll) domain ontology construc-
tion time for the manual-building method.

User B User B User A
DODDLE-OWL Manual-Building Method (Estimate) Manual-Building Method

Time for Input Term Extraction (min) 40 35 43
Time for Concept Selection (min) 8 0 0

Time for is-a Relationship Construction (min) 38 109 88
Total Time (min) 86 144 131

Table 14 Main Experiment: # of input terms and # of concepts in the HA
(payroll) domain ontologies constructed by user B with DODDLE-OWL
and user A with the manual-building method.

User B User A
DODDLE-OWL Manual-Building Method

# of Input Terms 300 212
# of Concepts 393 272

Table 15 Main Experiment: # of extracted terms by DODDLE-OWL, #
of input terms added by user B, # of input terms, precision, and recall in
the HA (payroll) domain ontologies by user B with DODDLE-OWL.

# of Extracted Terms by DODDLE-OWL 783
# of Input Terms added by User B 63
# of Input Terms 300
Precision 0.38
Recall 0.79

When there are few or no search results (less than 10
for these case studies), generalized search helps the
user to find appropriate documents. The procedures for the
generalized search are as follows. The first two steps are
the same as the first two steps in the specialized search pro-
cedures. In the third step, GXFinder extracts labels of the
sibling concepts and the super-concepts of the concepts ex-
tracted in the second step. Finally, GXFinder finds docu-
ments which include the labels extracted in the third step.

4.2.3 Constructing a Rocket Operation Ontology

A user who is not a domain expert constructed the rocket
operation ontology using DODDLE-OWL spending about
30 hours. The user constructed the ontology following the
procedures. 2,484 Japanese documents made by GALEX
Toyosu Branch were used as input documents. First, nouns,
verbs, and compound words were automatically extracted
from the input documents by the Input Document Selection
Module. Second, the user removed unnecessary terms and
selected input terms using the Input Term Selection Mod-
ule. Third, the user selected input concepts using the Input
Concept Selection Module. Finally, DODDLE-OWL auto-
matically constructed taxonomic relationships.

Table 16 shows the number of automatically ex-
tracted terms, input terms, perfectly matched terms, partially
matched terms, undefined terms, and total concepts of the
rocket operation ontology.

In a typical situation, a semi-automatically constructed
taxonomy should be refined using the two strategies men-
tioned in Sect. 2. However, in the case studies, the user could

Table 16 # of automatically extracted terms, # of Input terms, # of per-
fectly matched terms, # of partially matched terms, # of undefined terms,
and # of total concepts about rocket operation ontology.

# of Automatically Extracted Terms 41,806
# of Input Terms 32,814
# of Perfectly Matched Terms 4,982
# of Partially Matched Terms 26,835
# of Undefined Terms 997
# of Total Concepts 34,451

not refine the taxonomy because of the enormous amount
of concepts (about 34,000) causing the amount of concepts
(about 2,000) to be refined by the refinement strategies to
be enormous too. Therefore, the above-mentioned ontology
construction time (about 30 hours) mainly includes the input
term selection time and the concept selection time, and does
not include the ontology refinement time.

In the experiments in Sect. 4.1, the users with some
experiences in ontology-construction took about 2 hours to
construct ontologies including about 200 concepts with the
manual-building method. Although it is difficult to esti-
mate the construction time of the ontology including about
34,000, we can say that it will take at least hundreds of hours
with the manual-building method. Therefore, it can be said
that about 30 hours for constructing the ontology including
about 34,000 concepts is extremely fast.

4.2.4 Results of Case Studies

In order to evaluate the large sized ontology, we show two
case studies as follows. Each describe a case in which a
user wants to search documents concerning a specific key-
word, but was not able to come up with the appropriate
search keyword. Case study 1 show a case in which the
user wants to find documents on “launching control table”,
but the search was performed with the keyword “control ta-
ble”. Case study 2 show the case in which the user wants
to find documents on “terminal countdown sequence”, but
the search was performs with the keyword “countdown se-
quence”. Figure 9 shows the concept hierarchy for “con-
trol table” and “countdown sequence”. Table 17 shows the
search result results for case studies 1 and 2. Table 18 and
Table 19 show the recall, precision, and f-measure in each
case studies.

4.2.5 Discussion on Case Studies

According to Table 18 and Table 19, specialized search had
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Fig. 9 Concept hierarchy for “control table” and “countdown sequence”.

Table 17 Search results in case study 1 and 2.

Case Study 1 Case Study 2

# of total positive documents 4 22
# of hit of keyword search 86 82
# of positive documents in top 10 keyword search results 1 3
# of positive documents in top 20 keyword search results 3 3
# of hit of specialized search 44 46
# of positive documents in top 10 specialized search results 3 8
# of positive documents in top 20 specialized search results 4 11

Table 18 Recall, Precision, and F-Measure in case study 1.

Search Type Recall Precision F-Measure

top 10 keyword search 0.250 0.100 0.143
top 10 specialized search 0.750 0.300 0.429
top 20 keyword search 0.750 0.150 0.250

top 20 specialized search 1.000 0.200 0.333

Table 19 Recall, Precision, and F-Measure in case study 2.

Search Type Recall Precision F-Measure

top 10 keyword search 0.136 0.300 0.188
top 10 specialized search 0.364 0.800 0.500
top 20 keyword search 0.136 0.150 0.143

top 20 specialized search 0.500 0.550 0.524

better search results than keyword search. It is considered
that specialized search works well when the user cannot
imagine clearly the search keywords. In the case studies,
generalized search did not work well. One of the reasons
was that there were many sibling concepts of the concepts
which had the keyword as their labels. Therefore, there were
too many search results with generalized search. In order
to utilize the generalized search, domain ontology refine-
ment (especially sibling concepts reduction) is necessary.
Although DODDLE-OWL has the functions to refine do-
main ontologies, the functions did not work well in the case
studies because of the enormous amount of concepts in the
domain ontology. The development of a new ontology re-
finement function dealing with the great number of concepts
is for future works.

When the domain expert checked the rocket operation
ontology, the domain expert indicated some incorrect parts
of the ontology. If the initial domain ontology was not con-
structed, we could not have such discussion with the domain
expert.

Though the initial rocket operation ontology has sev-
eral issues mentioned above, these case studies show us that
DODDLE-OWL deals well with developing large sized on-
tology.

5. Related Work

Navigli, et al. proposed OntoLearn [18] which supports do-
main ontology construction by using existing ontologies and
natural language processing techniques. In their approach,
existing concepts from WordNet are enriched and pruned
to fit the domain concepts by using NLP (Natural Lan-
guage Processing) techniques. They argue that the automat-
ically constructed ontologies are practically usable in the
case study of a terminology translation application. How-
ever, they did not show any evaluations of the generated
ontologies themselves that might be done by domain ex-
perts. Although much useful information is in the MRDs
(Machine Readable Dictionaries) and documents in the ap-
plication domain, some essential concepts and knowledge
are still in the minds of domain experts. In our study, the
ontologies were not generated automatically, but we sug-
gest relevant alternatives to the human experts interactively
while the experts construct domain ontologies. In our pre-
vious work [19], it was shown that even if the concepts are
in the MRD, they may not be sufficient for use. In the case
study, “concept drifts”, in which some parts of hierarchical
relations are counterchanged between the generic ontology
(WordNet) and the domain ontology, were seen. Present-
ing an automatically generated ontology containing concept
drifts may cause confusion in domain experts. To deal with
this, it was argued that the initiative should be kept not on
the machine, but on the hand of the domain experts at the do-
main ontology construction phase. This is the difference be-
tween our approach and Navigli’s; our human-centered ap-
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proach enabled tight cooperation between DODDLE-OWL
and human experts.

6. Conclusion

In this paper, we proposed an interactive domain ontology
development environment called DODDLE-OWL. In order
to build up good interactive environment for domain ontol-
ogy development support, we focused on the following four
keywords: standard (OWL), extension (to Japanese), open
and scalability. By integrating several modules, DODDLE-
OWL became a practical and interactive domain ontology
development environment. Currently, DODDLE-OWL is
open source software in Java and has 100 and more users
from 20 and more countries.

In order to evaluate the efficiency of DODDLE-OWL,
we compared DODDLE-OWL with the popular manual-
building method. The times for the ontology construction
by both users A and B using DODDLE-OWL were approxi-
mately 1 hour shorter than the estimated ontology construc-
tion times using the manual-building method. From these
results cannot be shown the correlation between the size of
the ontology and the ontology construction time able to be
shortened by DODDLE-OWL. However, it can be said that
the construction cost for the is-a relationships including hun-
dreds of concepts construction cost can be reduced by using
DODDLE-OWL.

In order to evaluate the scalability of DODDLE-OWL,
we constructed a large sized ontology over 34,000 concepts
in the field of rocket operation using DODDLE-OWL. In
order to evaluate the large sized ontology, we installed the
ontology to a search engine and performed document re-
trieval with the cooperation of Galaxy Express Corporation
(GALEX). Through the case studies, DODDLE-OWL deals
well with developing large sized ontologies.

Through the above evaluation, we confirmed the effi-
ciency and the scalability of DODDLE-OWL.

As future work, we will try to develop a new ontology
refinement function to deal with the case in which there is an
enormous amount of concepts and is intractable. In order to
construct domain ontologies using existing domain ontolo-
gies described in OWL, we will try to integrate DODDOE-
OWL and an ontology search engine such as Swoogle [20].
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