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Abstract A matrix balancing problem and an eigenvalue problem are transformed into two minimum-
norm point problems whose difference is only a norm. The matrix balancing problem is solved by scaling
algorithms that are as simple as the power method of the eigenvalue problem. This study gives a proof of
global convergence for scaling algorithms and applies the algorithm to Analytic Hierarchy process (AHP),
which derives priority weights from pairwise comparison values by the eigenvalue method (EM) traditionally.
Scaling algorithms provide the minimum χ square estimate from pairwise comparison values. The estimate
has properties of priority weights such as right-left symmetry and robust ranking that are not guaranteed
by the EM.
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1. Introduction

A variety of biological, statistical and economical science data appear in the form of cross-
classified tables of counts, that are often briefly expressed in nonnegative matrices. In
practice, such nonnegative matrices have frequently some biased entries and missing data.
This practical problem makes the nonnegative matrix being inconsistent with theoretical
prior requirements. Then, we must adjust the nonnegative matrix to satisfy the prior
consistency requirements.

Adjustment of the entries of the nonnegative matrix is commonly known as matrix
balancing problems or matrix scaling problems, that involve both mathematically and sta-
tistically well-posed issues of practical interest. A usual way for adjustment of the matrix
is to multiply its row and columns by positive constant. A well studied instance of this
problem occurring in transportation planning and input-output analysis requires that the
matrix be adjusted so that the row and column sums equal fixed positive values. A related
problem for a square nonnegative matrix requires that the sum of entries in each of its rows
equals the sum of entries in the corresponding column.

This study considers the latter matrix balancing problem, that is applied to adjustment of
social accounting matrices, as described in [25]. The matrix balancing problem is equivalent
to minimizing the sum of linear ratios over the positive orthant. See Eaves et al. [5] for
details of the equivalence proof. This paper aims to guarantee a convergence of algorithms
for the equivalent fractional minimization problem and to establish an application of the
matrix balancing problem to Analytic Hierarchy Process (AHP).

AHP, originally developed by Saaty [22], is a widely applied multiple-criteria decision
making technique, where subjective judgments by decision makers are quantified and sum-
marized into a reciprocal matrix under each criterion. An important feature of AHP is that
priority weights are given by a principal eigenvector of the reciprocal matrix. In AHP, solv-
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ing the eigenvalue problem of a reciprocal matrix is called the eigenvalue method (EM). The
validity of the EM is discussed in Saaty [23] and Sekitani and Yamaki [26]. The applicabil-
ity and practicality of AHP can be easily confirmed in [32]. However, it is well known that
the EM has shortcomings such as rank reversal phenomena and right-left asymmetry. To
overcome this EM shortcomings, this paper applies the minimum χ square method [12, 30]
into derivation of the priority weights from the reciprocal matrix. It is expected that the
application of the minimum χ square method to AHP will open up a new evaluation method
for not only the reciprocal matrix of AHP but also nonnegative matrices corresponding to
cross-classified tables, e.g., a supermatrix of Analytic Network Process, the extension of
AHP.

This study shows that application of the minimum χ square method to AHP is reduced
to solving the matrix balancing problem, whose computation procedure are generally called
scaling algorithms [10, 25]. Scaling algorithms are as simple as the power method, which
is a well known algorithm for the eigenvalue problem. The existence of the power method
contributes AHP practicality. By using equivalence between the matrix balancing problem
and the minimum fractional problem [5], this paper also gives a transparent proof for global
convergence of scaling algorithms. Therefore, on the computational aspect, the minimum χ
square method is compatible to the EM.

For an irreducible nonnegative matrix including a reciprocal matrix, this paper intro-
duces a unified framework, a class of minimum-norm point problems [27], into the matrix
balancing problem and the eigenvalue problem. The unified framework shows that these
two problems are to find a closest point to the origin under the distinct LP norms. This
fact gives necessary and sufficient conditions of equivalence between the matrix balancing
problem and the eigenvalue problem. The equivalence conditions plays a key role of com-
parison between priority weights of the EM and that of the minimum χ square method in
Binary AHP that is simplified from AHP by Takahashi [28] and Jensen [13].

This article is organized as follows: Section 2 shows necessary and sufficient conditions
of equivalence between the matrix balancing problem and the eigenvalue problem. Section 3
gives a convergence proof of scaling algorithms for the matrix balancing problem. Section 4
introduces the minimum χ square method of AHP and shows properties of the minimum χ
square estimate. Section 5 compares the minimum χ square method with the EM in Binary
AHP. The numerical experiments report that the minimum χ square method has the less
frequency of rank reversal than the EM. Conclusion and future extensions are documented
in Section 6.

2. Matrix Balancing Problem and Eigenvalue Problem

Before discussing priority weights deriving from a pairwise matrix in AHP, we show more
general results for nonnegative matrices. For an n × n nonnegative matrix A, we introduce
three definitions ”sum-symmetry”, ”reducible” and ”irreducible”. The matrix A is called
sum-symmetry if

n∑
k=1

alk =
n∑

k=1

akl for all l = 1, . . . , n. (2.1)

The matrix A is said to be reducible, either if A is the 1×1 zero matrix or if n ≥ 2 and there

exists a permutation matrix P such that PAP� =

[
B O
C D

]
where B and D are square

matrices and O is a zero matrix. The matrix A is irreducile if it is not reducible.
Suppose that an n × n matrix A is irreducible, then a matrix balancing problem for A

c© Operations Research Society of Japan JORSJ (2007) 50-4



Matrix Balancing Problem and Binary AHP 517

is defined as a problem of finding a positive vector x∗ such that
(
aij

x∗
j

x∗
i

)
is sum-symmetry.

Hereafter, we assume that the matrix A is irreducible. For a positive vector x, we define

f(x) ≡
n∑

i=1

n∑
j=1

aij
xj

xi

. (2.2)

The following lemma shows that the matrix balancing problem is equivalent to minimize
f(x) of (2.2) over the positive orthant.
Lemma 2.1 There exists an optimal solution of

min
x>0

f(x), (2.3)

whose optimal solution is unique up to a positive scalar multiple. Furthermore, x∗ is an

optimal solution of (2.3) if and only if the n × n matrix
(
aij

x∗
j

x∗
i

)
is sum-symmetry.

Proof: See Theorem 3.4.4 of [2] for the existence of optimal solutions of (2.3). The equiv-
alence between a solution of the matrix balancing problem for A and an optimal solution of
(2.3) is shown in Theorem 3 of [5].

For a positive vector x, we define

r(x) ≡
⎛
⎝ n∑

j=1

a1j
xj

x1

, · · · ,
n∑

j=1

anj
xj

xn

⎞
⎠ and (2.4)

c(x) ≡
(

n∑
i=1

ai1
x1

xi

, · · · ,
n∑

i=1

ain
xn

xi

)
. (2.5)

By using (2.4) and (2.5), Lemma 2.1 is represented alternatively by the following manner:
Lemma 2.2 Let e be an n-dimensional vector whose entries are all one, then any positive
vector x satisfies

f(x) = c(x)e = r(x)e. (2.6)

A positive vector x∗ satisfies
c(x∗) = r(x∗) (2.7)

if and only if x∗ is an optimal solution of (2.3).
Proof: The proof is directly from definitions of r(·) and c(·) and Lemma 2.1.

A well known theorem of a principal eigenvector for an irreducible matrix, Perron-
Frobenius Theorem, is a key way of transforming an eigenvalue problem into an optimization
problem:
Lemma 2.3 Finding the principal eigenvalue of A is to solve

min
x>0

max

⎧⎨
⎩

n∑
j=1

a1j
xj

x1

, · · · ,
n∑

j=1

anj
xj

xn

⎫⎬
⎭ , (2.8)

whose optimal solution is unique up to a positive scalar multiple.
Proof: The proof is directly proved by Perron-Frobenius Theorem. See chapter 4 of [29]
for Perron-Frobenius Theorem.

Two optimization problems (2.3) and (2.8) are reduced to minimum-norm point prob-
lems, respectively, whose norms are dual:
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Lemma 2.4 Problem (2.3) and a principal eigenvalue problem are equivalent to

min
x>0

‖r(x)‖1 and (2.9)

min
x>0

‖r(x)‖∞ , (2.10)

respectively, where ‖x‖1 =
∑n

i=1 |xi| and ‖x‖∞ = max {|x1|, · · · , |xn|}.
Proof: Choose a positive vector x. Since ri(x) > 0 for all i = 1, . . . , n, ‖r(x)‖1 = r(x)�e
and ‖r(x)‖∞ = max {r1(x), · · · , rn(x)}. The proof is complete from lemmas 2.2 and 2.3.

Kalantari et al. [16] also generally consider the matrix balancing problem (2.3) in a frame-
work of Lp-norm minimization problem, however, whose norm is measured for an n × n
vector (a11, a12x2/x1, · · · , a1nxn/x1, · · · , an1x1/xn, · · · , ann)�. The matrix balancing prob-
lem is equivalent to (2.3) and the principal eigenvalue problem is (2.8). From Lemma 2.4,
the matrix balancing problem (2.3) and the eigenvalue problem (2.8) implicitly have the
dual norms for a common positive vector as their corresponding objective functions. This
is summarized into the following relations between the matrix balancing problem and the
eigenvalue problem:

Theorem 2.1 Let x∗ be an optimal solution of (2.3) and let x# be a right principal eigen-
vector of A, then we have

r(x#) = λe and (2.11)∥∥∥r(x#)
∥∥∥∞ =

1

n

∥∥∥∥ r(x#)
∥∥∥∥
1
≥ 1

n

∥∥∥∥ r(x∗)
∥∥∥∥
1
, (2.12)

where λ is the principal eigenvalue of A and e is an n-dimensional row vector whose entries
are all 1. Moreover, x# is equal to a positive scalar multiple of x∗ if and only if

∥∥∥r(x#)
∥∥∥∞ =

1
n

∥∥∥ r(x∗)
∥∥∥
1
.

Proof: Since Ax# = λx#, we have

r(x#) =

⎛
⎝∑n

j=1 a1jx
#
j

x#
1

, . . . ,

∑n
j=1 anjx

#
j

x#
n

⎞
⎠ =

(
λx#

1

x#
1

, . . . ,
λx#

n

x#
n

)
= λ (1, . . . , 1) = λe, (2.13)

implying from Lemma 2.4 that

∥∥∥r(x#)
∥∥∥∞ = λ =

1

n

∥∥∥r(x#)
∥∥∥
1
≥ 1

n
min
x>0

∥∥∥∥ r(x)
∥∥∥∥
1

=
1

n

∥∥∥∥ r(x∗)
∥∥∥∥
1
. (2.14)

Suppose that
∥∥∥r(x#)

∥∥∥∞ = 1
n

∥∥∥ r(x∗)
∥∥∥
1
, then it follows from (2.14) that

∥∥∥r(x#)
∥∥∥
1

=∥∥∥ r(x∗)
∥∥∥
1
. Therefore, x# is also an optimal solution of (2.9), that is equivalent to (2.3), by

Lemma 2.4. Thus, Lemma 2.1 implies that x# is equal to a positive scalar multiple of x∗.
Conversely, suppose that x# is equal to a positive scalar multiple of x∗, then x∗ is also

a right principal eigenvector of A and hence, it follows from (2.13) that

1

n
‖r(x∗)‖1 =

1

n
‖λe‖1 =

λ

n
‖e‖1 =

λ

n
n = λ = λ ‖e‖∞ = ‖λe‖∞ =

∥∥∥r(x#)
∥∥∥∞ .

A pair of a left and a right eigenvector of A characterizes an equivalence relation between
the matrix balancing problem and the eigenvalue problem as follows:
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Corollary 2.1 Suppose that x∗ is an optimal solution of (2.3) and that x# is a right prin-

cipal eigenvector of A. If
(
1/x#

1 , · · · , 1/x#
n

)
is a left principal eigenvector of A, then

∥∥∥r(x#)
∥∥∥∞ =

1

n

∥∥∥∥ r(x∗)
∥∥∥∥
1

(2.15)

and vice versa.
Proof: Let λ be the principal eigenvalue of A and let e be an n-dimensional row vector
whose entries are all 1. Since x# is a right principal eigenvector of A, it follows from (2.11)
of Theorem 2.1 that

r(x#) = λe. (2.16)

Suppose that
(
1/x#

1 , · · · , 1/x#
n

)
is a left principal eigenvector of A, then it follows that

c(x#) =

(
n∑

i=1

ai1

x#
i

x#
1 , . . . ,

n∑
i=1

ain

x#
i

x#
n

)
=

(
λ

x#
1

x#
1 , . . . ,

λ

x#
n

x#
n

)
= (λ, . . . , λ) = λe,

implying from (2.16) that λe = c(x#) = r(x#). Therefore, it follows from Lemma 2.1

that x# is an optimal solution of (2.3) and ‖r(x#)‖1 = ‖r(x∗)‖1. Since λ =
∥∥∥r(x#)

∥∥∥∞ =
1
n

∥∥∥ r(x#)
∥∥∥
1
, an optimal solution of (2.3) and a right principal eigenvector of A satisfy (2.15).

Conversely, suppose that an optimal solution x∗ of (2.3) and a right principal eigenvector

of A satisfy (2.15), then we have
∥∥∥r(x#)

∥∥∥∞ = 1
n

∥∥∥r(x#)
∥∥∥
1

= 1
n

∥∥∥ r(x∗)
∥∥∥
1

and it follows from

Lemma 2.4 that x# is also an optimal solution of (2.3). By Lemma 2.1 and (2.16) we have

λe = r(x#) = c(x#) =

(
n∑

i=1

ai1

x#
i

x#
1 , . . . ,

n∑
i=1

ain

x#
i

x#
n

)
,

implying that

λ

(
1

x#
1

, . . . ,
1

x#
n

)
=

(
n∑

i=1

ai1

x#
i

, . . . ,
n∑

i=1

ain

x#
i

)
.

Consequently,
(
1/x#

1 , · · · , 1/x#
n

)
is a left principal eigenvector of A.

Corollary 2.1 is an evidence that a principal eigenvector of a pairwise comparison matrix
has a right-left asymmetry [8, 14]. (Right-left symmetry will be discussed in Theorem 4.2 of
section 4)

The following examples illustrate the existence of equivalence between the matrix prob-
lem and the eigenvalue problem:

Example 2.1 Consider a doubly stochastic matrix A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0 0.5 0.0 0.5 0.0
0.8 0.0 0.0 0.2 0.0
0.0 0.5 0.2 0.0 0.3
0.2 0.0 0.3 0.0 0.5
0.0 0.0 0.5 0.3 0.2

⎤
⎥⎥⎥⎥⎥⎥⎦
, then

A has a left principal eigenvector [1, 1, 1, 1, 1] and a right principal eigenvector [1, 1, 1, 1, 1]�

that is also an optimal solution of (2.3).

Consider a reciprocal matrix A =

⎡
⎢⎢⎢⎣

1 1/2 1/3 1/4
2 1 2/3 1/2
3 3/2 1 3/4
4 2 4/3 1

⎤
⎥⎥⎥⎦ then, A has a right principal

eigenvector [1, 2, 3, 4]� and a left principal eigenvector [1, 1/2, 1/3, 1/4] that is also an opti-
mal solution of (2.3).
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3. Scaling Algorithms for the Matrix Balancing Problem

Algorithms for a class of matrix balancing problems are classified into two classes, scaling
algorithms and optimization algorithms, which are compared with respect to various view-
points including quality of solutions and ease of implement and use [25]. Schneider et
al. [25] conclude that practitioners is easy to implement and use scaling algorithms rather
than optimization algorithms. Scaling algorithms for (2.3) is called the diagonal similarity
scaling (DSS) algorithms by Schneider et al. [25]. Recently, Huang et al. [10] proposes
one of the DSS algorithms, but they do not complete a proof of global convergence of the
algorithm.

The RAS algorithm, developed by [1, 17, 21], is a generalization of the DSS algorithms
that can solve (2.3) under constraints of row and column sums being equal to prespecified
values. A matrix balancing problem with such equalities constraints is not necessarily
feasible under an assumption of irreducibility of a matrix A. A convergence of the RAS
algorithms is proved under a stronger assumption of a matrix A than irreducibility that is
only our assumption. For instance, see [21] for the stronger assumption.

This section gives a transparent proof of global convergence of the DSS algorithms for
solving the matrix balancing problem (2.3) under only an assumption of irreducibility of the
matrix. We describe a DSS algorithm consisting of three steps, the second step of which is
slightly different from that of existing DSS algorithms by [10] and [25]. (The difference is
independent of global convergence of DSS algorithms.)

Algorithm for solving (2.3)

Step1 Choose an initial positive vector x0 such that
∑n

i=1 x0
i = 1 and let t := 0.

Step2 Let r := r(xt) − (a11, · · · , ann) and c := c(xt) − (a11, · · · , ann). Let

|rp − cp|/xp := max
k=1,...,n

|rk − ck|/xk. (3.1)

If |rp − cp| ≤ ε, then x is an optimal solution of (2.3) and stop.

Step3 Let μ :=
√

rp/cp and

x(μ)i :=

{
μxt

i i = p
xt

i i �= p
(3.2)

Set xt+1 := x(μ)/
∑

i x(μ)i and t := t + 1, and go to Step 2.

A proof of global convergence of the above algorithm consists of four lemmas and one
theorem. As a corollary of the theorem, we guarantee global convergence of existing two
DSS algorithms. The following lemma corresponds to the termination criterion of Step 2:
Lemma 3.1 Let r = r(x)− (a11, · · · , ann) and c = c(x)− (a11, · · · , ann). A positive vector
x is not an optimal solution of (2.3) if and only if r �= c.
Proof: Since r �= c is equivalent to r(x) �= c(x), this assertion is directly followed from
Lemma 2.2.

The following lemma indicates that the update process (3.2) of xt is a certain type of
an exact line search of the step size in a descent method of nonlinear programming [33]:
Lemma 3.2 Choose a positive vector x, arbitrarily, and let r = r(x) − (a11, . . . , ann) and
c = c(x) − (a11, . . . , ann). Suppose that cp �= rp and let

x(μ)i :=

{
μxi i = p
xi i �= p

, (3.3)

c© Operations Research Society of Japan JORSJ (2007) 50-4
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then problem
min
μ>0

f(x(μ)) − f(x) (3.4)

has a unique optimal solution
√

rp/cp and its optimal objective function value is −
(√

rp −√
cp

)2
.

Proof: It follows from the definition (3.3) of x(μ) that

f (x(μ)) − f (x) =
∑
i�=p

∑
j �=p

aij
xj

xi

+
∑
j �=p

apj
xj

μxp

+
∑
i�=p

aip
μxp

xi

+ app
μxp

μxp

−
⎛
⎝∑

i�=p

∑
j �=p

aij
xj

xi

+
∑
j �=p

apj
xj

xp

+
∑
i�=p

aip
xp

xi

+ app
xp

xp

⎞
⎠

=
∑
i�=p

∑
j �=p

aij
xj

xi

+
1

μ
rp + μcp + app −

⎛
⎝∑

i�=p

∑
j �=p

aij
xj

xi

+ rp + cp + app

⎞
⎠

= μcp +
1

μ
rp − rp − cp.

Let g(μ) = μcp + 1
μ
rp − rp − cp, then it follows from cp > 0 and rp > 0 that g(μ) is a strictly

convex function over {μ|μ > 0}. Since μ∗ =
√

rp

cp
satisfies dg

dμ
= cp − 1

μ2 rp = 0, (3.4) has a

unique optimal solution μ∗ =
√

rp

cp
, and hence,

g(μ∗) = μ∗cp +
1

μ∗ rp − rp − cp =

√
rp

cp

cp +

√
cp

rp

rp − rp − cp =
√

rpcp +
√

rpcp − rp − cp

= 2
√

rpcp − rp − cp = −
(
rp − 2

√
rpcp + cp

)
= −(

√
rp −√

cp)
2.

The update process (3.2) of xt reduces strictly the objective function value f(x) of (2.2).
Therefore, the sequence {f(x0), f(x1), · · ·} generated by the algorithm is strictly decreasing.
This is summarized into the following lemma:
Lemma 3.3 Let p be an index satisfying (3.1), then

−(
√

rp −√
cp)

2 = f(xt+1) − f(xt). (3.5)

Therefore, f(xt) > f(xt+1) t = 0, 1, 2, . . . .

Proof: Since xt+1 is equal to a positive scalar multiple of x
(√

rp

cp

)
in Step 3, it follows

from f (xt+1) = f
(
x

(√
rp

cp

))
and Lemma 3.2 that

0 > −(
√

rp −√
cp)

2 = min
μ>0

f(x(μ)) − f(xt) = f

(
x

(√
rp

cp

))
− f(xt) = f(xt+1) − f(xt).

The following lemma guarantees that there exists a compact set in the positive orthant such
that the compact set contains {x0, x1, · · ·}:
Lemma 3.4 Let e be an n-dimensional row vector whose entries are all 1. Let Ω =
{x |ex = 1 and x > 0} and δ = min {aij | aij > 0}. Choose x0 ∈ Ω arbitrarily, then, the
iterate xt of the algorithm satisfies

xt ∈
{

x

∣∣∣∣∣ ex = 1 and x ≥ δn

nf(x0)n
e�

}
(3.6)

for all t = 0, 1, . . . .

c© Operations Research Society of Japan JORSJ (2007) 50-4
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Proof: Since xt ∈ Ω, there exists an index pair (k, l) such that xt
k = mini=1,...,n xt

i, xt
l =

maxi=1,...,n xt
i and xt

l ≥ 1/n. Since the matrix A is irreducible, there exist distinct indices
i0, i1, · · · , iq such that i0 = k, iq = l and aijij+1

> 0 for all j = 0, . . . , q − 1. By Lemma 3.3
and the arithmetic mean–the geometric mean inequality, we have

f(x0) ≥ f(xt) ≥ 1

q
f(xt)

≥ 1

q

n∑
i=1

∑
j=1

aij

xt
j

xt
i

≥ 1

q

q−1∑
j=0

aijij+1

xt
ij+1

xt
ij

≥
⎛
⎝q−1∏

j=0

aijij+1

xt
ij+1

xt
ij

⎞
⎠

1/q

≥
⎛
⎝q−1∏

j=0

δ
xt

ij+1

xt
ij

⎞
⎠

1/q

= δ

⎛
⎝q−1∏

j=0

xt
ij+1

xt
ij

⎞
⎠

1/q

= δ

(
xt

i1

xt
i0

· xt
i2

xt
i1

· · · xt
iq−1

xt
iq−2

· xt
iq

xt
iq−1

)1/q

= δ

(
xt

iq

xt
i0

)1/q

= δ

(
xt

l

xt
k

)1/q

≥ δ

(
xt

l

xt
k

)1/n

≥ δ

(
1

nxt
k

)1/n

.

Therefore, it follows from the definition of the index k that

1

n

(
δ

f(x0)

)n

≤ xt
k ≤ xt

i for all i = 1, 2, . . . , n.

The above proof is based on (a) of Lemma 2 of Eaves et al. [5]. Lemma 3.4 means that the

set
{

x
∣∣∣ ex = 1 and x ≥ n−1 (δ/f(x0))

n
e�

}
of (3.6) is compact and it is a proper subset

of Ω. Therefore, accumulation points of {x0, x1, · · ·} exists and all the functions f(·), r(·)
and c(·) are well defined at any accumulation points. We can show global convergence of
the algorithm as follows:

Theorem 3.1 Let ε = 0 in Step 2 and suppose that the algorithm provides an infinite
sequence {x0, x1, · · ·}, then any accumulation point of {x0, x1, · · ·} is an optimal solution
of (2.3). Moreover, the algorithm converges globally.

Proof: Since {f(x0), f(x1), · · ·} is monotonically decreasing and f(xt) > 0 for all t =
0, 1, 2, . . ., the sequence converges to a finite value, say f̄ .

Let δ = min{aij | aij > 0} and let

Ωδ =

{
x

∣∣∣∣∣ e�x = 1 and x ≥ 1

n

(
δ

f(x0)

)n

e

}
,

where e is an n-dimensional row vector whose entries are all 1. By Lemma 3.4, the compact
set Ωδ contains {x0, x1, · · ·}, which has an accumulation point x̄ ∈ Ωδ. Therefore, all
functions f(), c() and r() are well defined at x̄.

Let {xt | t ∈ T} be a subsequence converging to x̄. Let r̄(x) = r(x)− (a11, · · · , ann) and
c̄(x) = c(x)− (a11, · · · , ann), then the function maxk=1,...,n |r̄k(x) − c̄k(x)| /xk is continuous
over {x | ex = 1 and x > 0} and the right-hand of (3.1) is maxk=1,...,n |r̄k(x

t) −c̄k(x
t)|/xt

k.
Let pt be an index satisfying (3.1) at the tth iteration, then it follows from the continuity

of maxk=1,...,n |r̄k(x) − c̄k(x)| /xk that there exists an index p̄ satisfying (3.1) at x̄ such that
{xt| t ∈ Tand pt = p̄} is an infinite sequence. Let T̄ = {t ∈ T | pt = p̄}, then it follows from
limt→∞ f(xt) = f̄ that

lim
t∈T̄

t→∞

f(xt) = lim
t∈T̄

t→∞

f(xt+1) = f̄ .
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Therefore, it follows from (3.5) that

0 = lim
t∈T̄

t→∞

f(xt) − f(xt+1) = lim
t∈T̄

t→∞

(
√

rpt −√
cpt)2

= lim
t∈T̄

t→∞

(√
rp̄(xt) − ap̄p̄ −

√
cp̄(xt) − ap̄p̄

)2

=
(√

rp̄(x̄) − ap̄p̄ −
√

cp̄(x̄) − ap̄p̄

)2

.

Thus, we have rp̄(x̄) = cp̄(x̄) and it follows from the definition of p̄ that r(x̄) = c(x̄).
Lemma 2.2 implies that x̄ is an optimal solution x∗ of (2.3), and hence, f̄ = f(x̄) = f(x∗).

Since an optimal solution x∗ of (2.3) is unique in {x | ex = 1 and x > 0}, any convergent
subsequence of {x0, x1, · · ·} has the same limit point x∗. Therefore, the algorithm converges
globally.

For any index p satisfying rp(x
t) �= cp(x

t), even if it is not maximal of (3.1), all lemmas
in this section holds. The p selection (3.1) of the second step corresponds to a function
max1≤k≤n |rk(x) −ck(x)|/xk at a positive vector x. As stated in the proof of Theorem 3.1,
the continuity of the corresponding function over the positive orthant plays a key role
of global convergence of the algorithm. Therefore, we may have a globally convergent
algorithm by replacing (3.1) with an alternative way of the p selection. In fact, existing two
DSS algorithms adopt p selections other than (3.1). This is summarized into the following
corollary:
Corollary 3.1 Consider the algorithm replacing (3.1) with

|rp − cp| := max
k=1,...,n

|rk − ck| or (3.7)

|√rp −√
cp| := max

k=1,...,n
|√rk −√

ck| (3.8)

and let {xt | t = 0, 1, 2, . . .} be an infinite sequence of the modified algorithm, then modified
algorithm has global convergence and its limit point of {xt | t = 0, 1, 2, . . .} is an optimal
solution of (2.3).
Proof: Let Ω = {x ∈ Rn | ∑n

i=1 xi = 1 and x > 0}. Let r̄(x) = r(x) − (a11, · · · , ann) and
c̄(x) = c(x)−(a11, · · · , ann), then the function maxk=1,...,n |r̄k(x) − c̄k(x)| is continuous over
Ω. The right-hand of (3.7) is maxk=1,...,n |r̄k(x

t) −c̄k(x
t)|. Therefore, we can prove global

convergence of the modified algorithm replacing (3.1) with (3.7) in the same manner as the
proof of Theorem 3.1.

In the similar way to the above argument, we can also prove global convergence of the
modified algorithm replacing (3.1) with (3.8).

Huang et al. adopt (3.7) as the p selection criteria. The selection criteria of (3.8) is in
[25]. The Zangwill global convergence theory [33] may also show another proof of global
convergence of these DSS algorithms.

Optimization algorithms for (2.3) are recently studied [15, 16]. Kalantari et al. [16] shows
the polynomial-time solvalitity of (2.3) to any prescribed accuracy by using interior-point
Newton methods. Johnson et al. [15] develop the DomEig algorithm by reducing (2.3) to
the minimum dominant eigenvalue problem.

4. A χ-square Estimation Model for AHP and Binary AHP

AHP, first proposed by Saaty [22], is a decision making approach in which a decision maker’s
preferences are elicited through pairwise comparison of n(≥ 2) alternatives on a ratio scale.
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The comparison of alternative i with alternative j is quantified into pairwise comparison
value aij, whose meaning is that alternative i is aij times as important as alternative j. Let
aii = 1 for all i = 1, . . . , n, then all pairwise comparison values are stored in a reciprocal
matrix A = [aij], that is, aij = 1/aji and aij > 0 for all i, j = 1, . . . , n. We often assume
that a priority vector x, whose ith entry is an ideal importance xi of alternative i, satisfies

aij ≈ xi

xj

i, j = 1, . . . , n. (4.1)

Saaty recommends eigenvalue method (EM) to deriving a priority vector from a recip-
rocal matrix A. Therefore, a priority vector of Saaty’s AHP is a principal eigenvector of A,
that is, an optimal solution of (2.3). However, the EM is criticized both from prioritization
and consistency points of view and several new techniques are developed on the statistical
model (4.1), e.g., the geometric means of the row entries of A and an optimal solution of

min . Q(x) =
n∑

i=1

n∑
j=1

(aij − xi/xj)
2

xi/xj

(4.2)

that is called the minimum χ square method by Jensen [12]. (Strictly speaking, Q(x) is not
an index of Pearson’s χ2 goodness-of-fit because aij is not an observed frequency and xi/xj

is not an expected (theoretical) frequency.)
The minimum χ square method for the matrix A is to minimize the sum of linear ratios

over the positive orthant. This minimization fractional problem is reduced into a matrix
balancing problem (2.3) for

[
a2

ij + 1
]

by the following two lemmas:
Lemma 4.1 For every matrix A and every positive vector x,

Q(x) =
n∑

i=1

n∑
j=1

xj

xi

(
aij − xi

xj

)2

=
n∑

i=1

n∑
j=1

(
a2

ij + 1
) xj

xi

− 2
n∑

i=1

n∑
j=1

aij. (4.3)

Proof: Since
∑n

i=1

∑n
j=1 xi/xj =

∑n
i=1

∑n
j=1 xj/xi, it follows that

n∑
i=1

n∑
j=1

xj

xi

(
aij − xi

xj

)2

=
n∑

i=1

n∑
j=1

xj

xi

⎛
⎝a2

ij − 2aij
xi

xj

+

(
xi

xj

)2
⎞
⎠

=
n∑

i=1

n∑
j=1

(
a2

ij

xj

xi

− 2aij +
xi

xj

)
=

n∑
i=1

n∑
j=1

(
a2

ij + 1
) xj

xi

− 2
n∑

i=1

n∑
j=1

aij.

Lemma 4.2 Suppose that A is an n× n matrix, then the optimization problem (4.2) has a
unique optimal solution up to a positive scalar multiple, that is equal to an optimal solution
of minx>0

∑n
j=1

∑n
i=1

(
a2

ij + 1
)

xj

xi
. If the optimal value of (4.2) is 0, then aij = xi/xj for all

i, j = 1, . . . , n.
Proof: Lemma 4.1 implies that (4.2) is equivalent to minx>0

∑n
j=1

∑n
i=1

(
a2

ij + 1
)

xj

xi
.

Let x be a positive vector, then we have (xj/xi)(aij − xi/xj)
2 ≥ 0, where the equality

is valid if and only if aij = xi/xj. Therefore, Q(x) = 0 is equivalent to aij = xi/xj for all
i, j = 1, . . . , n.

Lemma 4.2 implies that the minimum χ square estimate for the reciprocal matrix A is
unique up to a scalar multiple and it is completely solved by applying the scaling algorithms
to the matrix

[
a2

ij + 1
]
. Furthermore, the minimum χ square estimate derived from (4.2)

guarantees following two properties that are desirable from the prioritization point of view:
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Theorem 4.1 (Row dominance) Suppose that A is a nonnegative matrix and that there
is a pair of (l, k) such that alj ≥ akj and ajl ≤ ajk for all j = 1, . . . , n, then an optimal
solution x∗ of (4.2) satisfies x∗

l ≥ x∗
k. Moreover, if there is an index h such that alh > akh

or ahl < ahk, then x∗
l > x∗

k.
Proof: Let bij = a2

ij + 1 for all i, j = 1, . . . , n. Without loss of generality, suppose that
a1j ≥ a2j for all j = 1, . . . , n and ai1 ≤ ai2 for all i = 1, . . . , n, then we have

b1j ≥ b2j for all j = 1, . . . , n and bi1 ≤ bi2 for all i = 1, . . . , n. (4.4)

Let x∗ be an optimal solution of (4.2), then it follows from Lemma 4.2 and Lemma 2.1 that

n∑
j=1

b1j

x∗
j

x∗
1

=
n∑

i=1

bi1
x∗

1

x∗
i

and
n∑

j=1

b2j

x∗
j

x∗
2

=
n∑

i=1

bi2
x∗

2

x∗
i

. (4.5)

It follows from (4.5), (4.4) and x∗ > 0 that

(x∗
1)

2

(x∗
2)

2 =

(∑n
j=1 b1jx

∗
j∑n

i=1 bi1x∗
i

)
(∑n

j=1 b2jx
∗
j∑n

i=1 bi2x∗
i

) =

(∑n
j=1 b1jx

∗
j

)
·
( ∑n

i=1 bi2x
∗
i

)
(∑n

j=1 b2jx∗
j

)
·
( ∑n

i=1 bi1x∗
i

) ≥ 1 · 1 = 1, (4.6)

implying that x∗
1 ≥ x∗

2.
If a1h > a2h then, we have b1h > b2h and hence,

∑n
j=1 b1jx

∗
j >

∑n
j=1 b2jx

∗
j . This means

from (4.6) that x∗
1 > x∗

2.

Both the minimum χ square method and the EM satisfy row dominance, (this result
is also proved in [12] by using the fact that A is reciprocal), however the EM does not
satisfy the right-left symmetry that is also desirable on psychological grounds [8, 14]. The
minimum χ square method satisfies right-left symmetry as follows:
Theorem 4.2 (Right-Left Symmetry) Suppose that A is an n×n matrix. Let x∗ be an
optimal solution of (4.2) and let y∗ be an optimal solution of

min
y>0

n∑
i=1

n∑
j=1

(
aji − yi

yj

)2
yj

yi

, (4.7)

then there exists a constant c > 0 such that x∗
i = c/y∗

i for all i = 1, 2, . . . , n.
Proof: It follows from Lemma 4.2 that (4.7) is equivalent to

min
y>0

n∑
i=1

n∑
j=1

(
a2

ji + 1
) yj

yi

. (4.8)

Let bij = a2
ij + 1 and xi = 1/yi, then we have

min
y>0

n∑
i=1

n∑
j=1

(
a2

ji + 1
) yj

yi

= min
y>0

n∑
i=1

n∑
j=1

bji
yj

yi

= min
y>0

n∑
j=1

n∑
i=1

bji
yj

yi

= min
y>0

n∑
i=1

n∑
j=1

bij
yi

yj

= min
x>0

n∑
i=1

n∑
j=1

bij
xj

xi

= min
x>0

n∑
i=1

n∑
j=1

(
a2

ij + 1
) xj

xi

.

Therefore, it follows from Lemma 4.2 that there exists a positive number c such that x∗
i =

c/y∗
i for all i = 1, . . . , n.
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Positivity of all entries of the matrix B is a key premise for both two proofs of Theo-
rem 4.1 and Theorem 4.2. In fact, Theorem 4.1 holds for any positive matrix B satisfying
(4.4) and b1h > b2h for some h ∈ {1, . . . , n}. Theorem 4.2 holds for any positive matrix B.
Therefore, both theorems do not request an assumption of reciprocity of the given matrix A.

Saaty recommends that pairwise comparison value aij is chosen among {1/9, 1/7, 1/5, 1/3,
1, 3, 5, 7, 9}, that is called the scale 1-9. Takahashi [28] and Jensen [13] independently sim-
plify the scale 1-9 into {1/α, α}. Here, α is a coding parameter which is greater than 1. The
simplest AHP, say Binary AHP, has any pairwise comparison value aij ∈ {1/α, α}, whose
simplification leads to an analytical priority weights [7, 28]. See Nishizawa [19, 20] for recent
extensions of Binary AHP.

For the given coding parameter α, the pairwise comparison matrix of Binary AHP is
denoted by A(α), whose off-diagonal element is α or 1/α. The matrix A(α) is also reciprocal.
In AHP with the 1-9 scale, the minimum χ square estimate for the pairwise comparison
matrix A is a solution of the matrix balancing problem for the matrix

[
a2

ij + 1
]
(�= A).

However, the minimum χ square estimate for A(α) in Binary AHP is also a solution of the
matrix balancing problem for A(α) as follows:

Theorem 4.3 Choose any α ≥ 1 and let A = A(α), then an optimal solution x∗ of (4.2)
coincides with that of (2.3) and Q(x∗) = (α + 1/α) (f(x∗) − n2) .

Proof: Let K+ = {(i, j) | aij = α} and K− = {(i, j) | aij = 1/α}, then (i, j) ∈ K+ if and
only if (j, i) ∈ K−. Therefore,

n∑
i=1

n∑
j=1

aij
xj

xi

=
∑

(i,j)∈K+

aij
xj

xi

+
∑

(i,j)∈K−
aij

xj

xi

+
n∑

i=1

aii
xi

xi

=
∑

(i,j)∈K+

α
xj

xi

+
∑

(i,j)∈K−

1

α

xj

xi

+ n

=
∑

(i,j)∈K+

α
xj

xi

+
∑

(i,j)∈K+

1

α

xi

xj

+ n

=
∑

(i,j)∈K+

(
α

xj

xi

+
1

α

xi

xj

)
+ n =

∑
(i,j)∈K+

α2x2
j + x2

i

αxixj

+ n. (4.9)

In the same fashion, we have

n∑
i=1

n∑
j=1

(
a2

ij + 1
) xj

xi

=
∑

(i,j)∈K+

(
α2 + 1

) xj

xi

+
∑

(i,j)∈K−

(
1

α2
+ 1

)
xj

xi

+ 2n

=
∑

(i,j)∈K+

(
α2 + 1

) xj

xi

+
∑

(i,j)∈K+

(
α2 + 1

α2

)
xi

xj

+ 2n

=
(
α2 + 1

) ∑
(i,j)∈K+

(
xj

xi

+
1

α2

xi

xj

)
+ 2n

=
(
α2 + 1

) ∑
(i,j)∈K+

α2x2
j + x2

i

α2xixj

+ 2n

=
(α2 + 1)

α

∑
(i,j)∈K+

α2x2
j + x2

i

αxixj

+ 2n. (4.10)

It follows from Lemma 4.2, (4.9) and (4.10) that both optimization problems (4.2) and (2.3)

are reduced to minx>0
∑

(i,j)∈K+

(
α2x2

j + x2
i

)
/ (αxixj). Since

∑
(i,j)∈K+

(
α2x2

j + x2
i

)
/ (αxixj)

=
∑n

i=1

∑
j �=i aijxj/xi, it follows from Lemma 2.1 that both optimization problems (4.2) and
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(2.3) have the same optimal solution as minx>0
∑n

i=1

∑
j �=i aijxj/xi. Let x∗ be an optimal

solution of (4.2), then it follows from
∑n

i=1

∑n
j=1 aij = (α + 1/α) (n − 1)n/2 + n that

Q(x∗) = (α + 1/α) (f(x∗) − n) + 2n − 2
n∑

i=1

n∑
j=1

aij

= (α + 1/α) (f(x∗) − n) + 2n − 2 {(α + 1/α) (n − 1)n/2 + n}
= (α + 1/α) (f(x∗) − n) − (α + 1/α) (n − 1)n = (α + 1/α)

(
f(x∗) − n2

)
.

Sekitani and Yamaki [26] has an interpretation of the EM in AHP with the scale 1-9 by
using the ith entry of r(x), i.e.,

n∑
j=1

aij
xj

xi

=
∑
j �=i

aij
xj

xi

+ aii =
∑
j �=i

aij
xj

xi

+ 1. (4.11)

In (4.11), xi is called the self-evaluation value of alternative i and
∑n

j �=i aijxj is called the
external evaluation value of alternative i. Then,

∑
j �=i aijxj/xi means the gap between

the self-evaluation value and the external evaluation value with respect to alternative i,
which is called the over-estimation ratio of alternative i. Therefore, each entry of r(x)
is the corresponding over-estimation ratio plus 1. From Lemma 2.4, the EM is to solve
minx>0 ‖r(x)‖∞. Let e be all one vector, then each entry of r(x) − e is the corresponding
over-estimation ratio. Since minx>0 ‖r(x) − e‖∞ is equivalent to minx>0 ‖r(x)‖∞, the EM
is to minimize the largest over-estimation ratio [26]. Theorem 4.3 implies that the minimum
χ square method is equivalent to minx>0 ‖r(x)‖1. Since minx>0 ‖r(x)‖1 is equivalent to
minx>0 ‖r(x) − e‖1, the minimum χ square method for A(α) in Binary AHP is to minimize
the sum of over-estimation ratio.

Binary AHP has the following relation between the EM and the minimum χ square
method:
Corollary 4.1 Choose any α ≥ 1. Let A = A(α) and let λmax be the principal eigenvalue
of A(α), then n (α + 1/α) (λmax − n) ≥ Q(x∗), where x∗ is an optimal solution of (4.2).
Proof: Let x∗ be an optimal solution of (4.2), then it follows from Theorem 4.3 and (2.12)
that

Q(x∗) = (α + 1/α)
(
‖r(x∗)‖1 − n2

)
≤ n (α + 1/α) (λmax − n).

5. Comparisons with Eigenvalue Method on Binary AHP

Takahashi [28] and Genest et al. [7] independently show surprisingly elegant properties of
priority weights of a pairwise matrix A(α) by the EM. By introducing such their properties of
priority weights, this section shows sufficient conditions of equivalence between the minimum
χ square method and the EM.

Genest et al. [7] define two classes of A(α) as follows: A(α) is called maximally intran-
sitive if

∑n
j=1 a1j = · · · =

∑n
j=1 anj. A(α) is called ordinally transitive if aij > 1 and ajk > 1

imply aik > 1. A pairwise matrix A(α) is ordinally transitive if and only if there is a per-
mutation matrix P such that any upper off-diagonal entry of P�A(α)P is α (see, e.g., [28]).
Hereafter, without loss of generality, we assume that an ordinally transitive matrix A(α)
satisfies aij = α for all i < j.

The following lemmas shows that a pairwise comparison matrix A(α) has a left principal
eigenvector and a right one that are equivalent up to a positive scalar multiple if A(α) is
ordinally transitive or maximally intransitive.
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Lemma 5.1 Suppose that A(α) is ordinally transitive, then A(α) has a right principal eigen-

vector
(
α−1/n, α−3/n, · · · , α−(2n−1)/n

)�
and a left one

(
α1/n, α3/n, · · · , α(2n−1)/n

)
.

Proof: See Theorem 4 of [28] and Proposition 4.3 of [7].

Lemma 5.2 Suppose that A(α) is maximally intransitive, then A(α) has a right principal
eigenvector (1, 1, · · · , 1)� and a left principal eigenvector (1, 1, · · · , 1).

Proof: Suppose that A(α) is maximally intransitive, then A has a right principal eigen-
vector (1, 1, · · · , 1)�. Since A(α) is reciprocal, we have {j | aij = α} = {j | aji = 1/α} and
{j | aij = 1/α} = {j | aji = α}. This means that

∑n
i=1 ai1 = · · · =

∑n
i=1 ain and hence, A has

a left principal eigenvector (1, 1, · · · , 1).

The equivalence between a left and a right eigenvectors implies that the minimum χ
square method is equivalent to the EM as follows:

Lemma 5.3 Suppose that A(α) is ordinally transitive, then an optimal solution of (4.2) for

A = A(α) is equal to a positive scalar multiple of
(
α−1/n, α−3/n, · · · , α−(2n−1)/n

)�
.

Proof: Let x# be a right principal eigenvector of A(α) that is ordinally transitive, then
Lemma 5.1 and Corollary 2.1 imply that x# is an optimal solution of (4.2). Therefore, it
follows from Theorem 4.3 that x# is also an optimal solution of (2.3).

Lemma 5.4 Suppose that A(α) is maximally intransitive, then an optimal solution of (4.2)
is equal to a positive scalar multiple of (1, 1, · · · , 1)�.

Proof: In the same way as the proof of Lemma 5.3, we can prove it.

When a pairwise comparison matrix A(α) is of size n ≤ 3, the minimum χ square method
coincides with the EM as follows:

Lemma 5.5 Suppose that a pairwise comparison matrix A(α) is of size n ≤ 3, then a right
principal eigenvector of A(α) and an optimal solution of (4.2) coincide for all α ≥ 1.

Proof: If A(α) is of size n = 2, then it suffices to consider A(α) =

[
1 α

1/α 1

]
. A left

principal eigenvector of A(α) is equal to a positive scalar multiple of [1/α, 1] and a right
principal eigenvector of A(α) is [α, 1]�. Therefore, a right principal eigenvector of A(α) and
an optimal solution of (4.2) coincide for all α ≥ 1.

The matrix A(α) with size n = 3 is ordinally transitive or maximally intransitive. Hence,
it follows from Lemma 5.3 and Lemma 5.4 that a right principal eigenvector of A(α) with
size n = 3 and an optimal solution of (4.2) coincide for all α ≥ 1.

For a general size n of A(α), we have sufficient conditions of equivalence between the
minimum χ square method and the EM as follows:

Theorem 5.1 A principal right eigenvector of A(α) and an optimal solution of (4.2) coin-
cide for all α ≥ 1 whenever

1. A(α) is ordinally transitive;
2. A(α) is maximally intransitive; or
3. A(α) is of size n ≤ 3.

Proof: This immediately follows from Lemma 5.3, Lemma 5.4 and Lemma 5.5.

Hereafter, we compare the ranking from priority weights by the minimum χ square
method with the ranking from priority weights by the EM. All priority weights (x1, · · · , wn)
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is ordered according each value. That is, the rank of i is higher than that of j if xi > xj,
and i and j have the same rank if xi = xj.
Corollary 5.1 Two rankings deriving from a principal right eigenvector of A(α) and an
optimal solution of (4.2) coincide for all α > 1 whenever
1. A(α) is ordinally transitive;
2. A(α) is maximally intransitive; or
3. A(α) is of size n ≤ 4 and there is no permutation matrix P such that P�A(α)P =⎡

⎢⎢⎢⎣
1 α α 1/α

1/α 1 α α
1/α 1/α 1 α
α 1/α 1/α 1

⎤
⎥⎥⎥⎦ . (5.1)

Proof: Let x∗ be priority weights by the minimum χ square method and let x# be priority
weights by the EM. If A(α) is of size n ≤ 3, ordinally transitive, or maximally intransitive,
then it follows from Theorem 5.1 that the ranking from x∗ is equal to that from x#.

For any 4× 4 matrix A(α)n there is a permutation matrix P such that P�A(α)P is one
among the following four different matrices:

A0 =

⎡
⎢⎢⎢⎣

1 α α α
1/α 1 α α
1/α 1/α 1 α
1/α 1/α 1/α 1

⎤
⎥⎥⎥⎦ , A1 =

⎡
⎢⎢⎢⎣

1 α α α
1/α 1 α 1/α
1/α 1/α 1 α
1/α α 1/α 1

⎤
⎥⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎢⎣

1 1/α 1/α 1/α
α 1 1/α α
α α 1 1/α
α 1/α α 1

⎤
⎥⎥⎥⎦ and A3 =

⎡
⎢⎢⎢⎣

1 α α 1/α
1/α 1 α α
1/α 1/α 1 α
α 1/α 1/α 1

⎤
⎥⎥⎥⎦ .

Note that every permutation matrix P satisfies P�AiP �= Ak for all k �= i. Since A3 is
the matrix (5.1), the proof for A(α) of size n = 4 is sufficient to discuss rankings for three
matrices A0, A1 and A2.

Consider the case where A(α) is reduced to A0. The matrix A0 is ordinally transitive
and it follows from Theorem 5.1 that x# and x∗ provide the same ranking.

Consider that A(α) is reduced to A1. Genest [7] shows that the matrix A1 has a right

principal eigenvector x# = (3αβ, 1, 1, 1)�, where β =
[
(α + 1/α)/2 +

√
(α + 1/α)2/4 + 3

]−1
.

Since 3αβ > 1 for all α > 1, the ranking from the right principal eigenvector x# is given as

x#
1 > 1 = x#

2 = x#
3 = x#

4 . (5.2)

The matrix balancing problem (2.3) for A1 has an optimal solution x∗ = (α, 1, 1, 1)�. In
fact, the optimal solution x∗ = (α, 1, 1, 1)� satisfies⎡

⎢⎢⎢⎢⎢⎣

1
x∗
1

0 0 0

0 1
x∗
2

0 0

0 0 1
x∗
3

0

0 0 0 1
x∗
4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 α α α
1
α

1 α 1
α

1
α

1
α

1 α
1
α

α 1
α

1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x∗
1 0 0 0
0 x∗

2 0 0
0 0 x∗

3 0
0 0 0 x∗

4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 α 1

α

1 1
α

1 α
1 α 1

α
1

⎤
⎥⎥⎥⎦ , (5.3)

that is sum-symmetry. It follows from Theorem 4.3 that x∗ is also an optimal solution of
(4.2) for A1. Therefore, the ranking from x∗ is given as

x∗
1 = α > 1 = x∗

2 = x∗
3 = x∗

4, (5.4)
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for all α > 1. The ranking (5.4) from the optimal solution x∗ of (4.2) coincides with (5.2)
from the right principal eigenvector x# of A1.

Consider the case of A2, then (A1)
�

= A2 and a right principal eigenvector of A2 is a posi-

tive scalar multiple of x# = (3β/α, 1, 1, 1)�, where β =
[
(α + 1/α)/2 +

√
(α + 1/α)2/4 + 3

]−1
.

Genest et al. [7] shows that the principal eigenvalue λmax of A2 is β−1+1. Since Q(x) ≥ 0 for
any positive vector x, it follows from Corollary 4.1 that 4 = n ≤ λmax = β−1 + 1, implying
that 3β ≤ 1 and 3β/α < 1 for all α > 1. The ranking from x# is given as

x#
1 < 1 = x#

2 = x#
3 = x#

4 . (5.5)

Let x∗ be an optimal solution of (4.2) for A2, then it follows from (A1)
�

= A2 and Theo-
rem 4.2 that x∗ = (1/α, 1, 1, 1)� for all α > 1. The ranking from x∗ is

x∗
1 < 1 = x∗

2 = x∗
3 = x∗

4, (5.6)

which is the same order as that from (5.5).

As stated above, by using a permutation of a pairwise comparison matrix A(α), A(α)
with n = 4 is classified into four equivalent classes. Whenever A(α) with n = 4 is not
equivalent to (5.1), the minimum χ square method provides the same ranking as the EM.
For the equivalent class to (5.1), the ranking by the minimum χ square method is different
from the ranking by the EM as follows:
Corollary 5.2 Suppose that A(α) is (5.1). Let x# be a right principal eigenvector of A(α)
and let x∗ be an optimal solution of (4.2). For any α > 1 we have

x#
1 > x#

2 > x#
4 > x#

3 and (5.7)

x∗
2 > x∗

1 > x∗
4 > x∗

3. (5.8)

Proof: See Proposition 4.4 of [8] for the proof of (5.7). The proof of (5.8) is given in
Appendix.

Consider a 5 × 5 matrix similar to (5.1) as follows[7]:⎡
⎢⎢⎢⎢⎢⎢⎣

1 α α α 1/α
1/α 1 α α α
1/α 1/α 1 α α
1/α 1/α 1/α 1 α
α 1/α 1/α 1/α 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.9)

Genest et al. [7] report from some numerical experiments that a ranking by the EM for (5.9)
depends on choice of coding parameter of α. For a small values of α > 1, a right principal
eigenvector x# of (5.9) satisfies

x#
1 > x#

2 > x#
3 > x#

5 > x#
4 . (5.10)

For any α > 3.7, a right principal eigenvector of (5.9) usually satisfies

x#
1 > x#

2 > x#
5 > x#

3 > x#
4 . (5.11)

Checking rankings from the minimum χ estimate of the matrix (5.9) with α = 2, 3, . . . , 100,
we confirm numerically that an optimal solution x∗ of (4.2) satisfies

x∗
2 > x∗

1 > x∗
3 > x∗

5 > x∗
4 (5.12)
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Table 1: Comparison of the EM with minimum χ square method on Rank reversal

Number of Eigenvector method χ square method
n equivalent

classes
number of
rank reversals

percentage of
rank reversals

number of
rank reversals

percentage of
rank reversals

1 1 0 0% 0 0%
2 1 0 0% 0 0%
3 2 0 0% 0 0%
4 4 0 0% 0 0%
5 12 1 8.3% 0 0%
6 56 10 17.9% 2 3.8%
7 456 113 24.8% 20 4.4%
8 6880 2425 35.2% 524 7.6%
9 191536 85805 44.8% 21218 11.1%

for all α = 2, 3, . . . , 100 and hence, the ranking from x∗ of (5.9) may be independent of the
choice of coding parameter of α. Genest et al. [7] document that such rank reversibility by
the EM increases dramatically with size n = 6, 7, 8, 9 of A(α).

Comparing rank reversibility by the EM with that by the minimum χ square method,
we carry out numerical experiments to measure the rank reversals frequency generated by
the two methods. For α = 2, 3, 5, 7, 9, let x∗(α) be an optimal solution of (4.2) and let
x#(α) be an right principal eigenvector of A(α). For a sufficiently small positive number
ε > 0, we define

K∗
ε =

{
(i, j)

∣∣∣ ∣∣∣x∗
i (2) − x∗

j(2)
∣∣∣ ≥ ε

}
. (5.13)

We say that the rank reversal occurs by the minimum χ square method, if and only if there
exists an α ∈ {2, 3, 5, 7, 9} such that an optimal solution x(α)∗ of (4.2) violates at least one
of ∣∣∣x∗

i (α) − x∗
j(α)

∣∣∣ ≥ ε and
(
x∗

i (2) − x∗
j(2)

) (
x∗

i (α) − x∗
j(α)

)
> 0 for all (i, j) ∈ K∗

ε ,∣∣∣x∗
i (α) − x∗

j(α)
∣∣∣ < ε for all (i, j) /∈ K∗

ε .

(5.14)
In the similar way to (5.13) of the minimum χ square estimate, we define K#

ε for a right
principal eigenvector of x#(2) and consider two conditions for x#(α) that are similar to
(5.14). Then we say that the rank reversal occurs by the EM, if and only if there exists an
α ∈ {2, 3, 5, 7, 9} such that x#(α) violates at least one of two conditions for x#(α).

As stated in the proof of Corollary 5.1, a set of A(α) with size n = 4 is classified into
four equivalent classes. The size n of A(α) and the number of the equivalent classes on the
whole set of A(α) with the corresponding size n are listed in the first and second column of
Table 1, respectively.

Let ε = 10−7 of K∗
ε and K#

ε and choose one matrix A(α) from each equivalent class, we
check rank reversals occurrence for the minimum χ square method and the EM. The third
column of Table 1 indicates the number of the equivalent classes where rank reversals occurs
by the EM. The forth column is given the proportion of the equivalence classes including
rank reversals by the EM. In the same manner, the resulting rank reversals occurrence by
the minimum χ square method are listed in the fifth and sixth columns of Table 1.

For the EM and the minimum χ square method, the two proportions of the equivalent
classes including the rank reversals increase with size n. Especially, the rank reversals with
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size n = 9 occurs by the EM at the almost 50% probability. The rank reversals occurrence
by the EM is at least 4 times as much as that by the minimum χ square method.

It is well known in regression analysis [9] that the L1-norm estimation is robust for
outliers on the comparison with L2-norm and L∞-norm. The minimum χ square method is
the minimum-norm point problem (2.9) whose norm is L1 norm (‖ · ‖1) and the EM is the
minimum-norm point problem (2.10) whose norm is L∞-norm (‖ · ‖∞). By analogy with the
regression analysis, it is natural that rank preservation of the minimum χ square method is
superior to that of the EM.

6. Conclusion

This research shows necessary and sufficient conditions (Theorem 2.1) of equivalence be-
tween the eigenvalue problem and the matrix balancing problem for a nonnegative matrix,
by using a unified framework, the minimum-norm point problem, for the two problems. Fur-
thermore, Theorem 3.1 shows global convergence of scaling algorithms for solving the matrix
balancing problem. A variety of nonnegative matrix analyses appear frequently in social
sciences, e.g., economics, management science and operations research, where Theorem 2.1
and Theorem 3.1 may be useful for modeling and simulation.

This study also illustrates a contribution of Theorem 2.1 and Theorem 3.1 by applying
the minimum χ square method to AHP. Lemma 4.2 shows that the minimum χ square
method (4.2) is to solve the matrix balancing problem. The minimum χ square method has
the desirable properties of Theorem 4.1 and Theorem4.2, that is not satisfied with the EM.
Furthermore, Theorem 4.1 and Theorem4.2 do not request a usual assumption of AHP that
is reciprocal of a pairwise comparison matrix.

The simplest AHP, Binary AHP, can compare directly the EM with the minimum χ
square method, by virtue of Theorem 4.3. Consequently, Theorem 5.1, Corollary 5.1, and
Corollary 5.2 show how pairwise comparison matrix A(α) of Binary AHP is when the priority
weights of the EM coincide with ones of the minimum χ square method. In the other case,
i.e., when the priority weights of the EM and the minimum χ square method are not
equivalent , dual norms incorporated into each method make a remarkable gap between
their frequencies of rank reversals occurrence. The numerical experiments indicate that the
rank reversals frequency of the EM is at least 4 times as much as that of the the minimum
χ square method.

The minimum χ square method of AHP has a potential merit that is to incorporate a
data reliability βij(= βji) for a pairwise comparison value aij into (4.2) as follows:

min
x>0

n∑
i=1

n∑
j=1

βij
xj

xi

(
aij − xi

xj

)2

. (6.1)

This optimization problem (6.1) is reduced to

min
x>0

n∑
i=1

n∑
j=1

(
a2

ij + 1
)
βij

xj

xi

, (6.2)

which is equivalent to the matrix balancing problem for
[(

a2
ij + 1

)
βij

]
. By using βij, the

minimum χ square method is directly available to incomplete information case, where all
pairwise comparisons are not carried out. Let C = {(i, j) | (i, j) are not compared} and
D = {(i, j) | (i, j) are compared} and set βij = 1 for all (i, j) ∈ D and βij = 0 for all
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(i, j) ∈ C, then the minimum χ square method under the incomplete information is to solve
the matrix balancing problem as follows:

min
x>0

∑
(i,j)∈D

(
a2

ij + 1
) xj

xi

.

AHP including multiple decision makers, group AHP, can be applied by the minimum χ
square method. Suppose that L decision makers individually provide L pairwise comparison
matrices [al

ij] (l = 1, . . . , L), then the minimum χ square method (4.2) is straightly modified
as follows:

min
x>0

L∑
l=1

n∑
i=1

n∑
j=1

xj

xi

(
al

ij −
xi

xj

)2

. (6.3)

The modified problem (6.3) is equivalent to

min
x>0

n∑
i=1

n∑
j=1

(
L∑

l=1

(
al

ij

)2
+ L

)
xj

xi

. (6.4)

Therefore, the minimum χ square method for group AHP is to solve the matrix balancing

problem for
[∑L

l=1

(
al

ij

)2
+ L

]
.

One of future investigations in this study is to apply the minimum χ square method
to real-world decision making problems such as merit-based personnel systems [31] and
strategic decision of supply chain management [18]. Another of future investigations is to
apply the minimum χ square method into parameter estimation of stochastic models, e.g.,
Bradley-Terry model [3], Huff model [11] and contingency analysis [6]. Their models often
use maximum likelihood estimation, whose validity of the model is checked by a likelihood
ratio test. The minimum χ square estimate gives the minimum χ square value that is
immediately used in Pearson’s χ square test of goodness of fit.
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Appendix

Proof of Corollary 5.2
Since x∗ is an optimal solution of (4.2), it follows from Theorem 4.3 that x∗ is also an
optimal solution of the problem (2.3) whose A is replaced with the matrix (5.1). Hence, it
follows from Lemma 2.1 that the matrix⎡

⎢⎢⎢⎢⎢⎢⎣

1 α
x∗
2

x∗
1

α
x∗
3

x∗
1

(1/α)
x∗
4

x∗
1

(1/α)
x∗
1

x∗
2

1 α
x∗
3

x∗
2

α
x∗
4

x∗
2

(1/α)
x∗
1

x∗
3

(1/α)
x∗
2

x∗
3

1 α
x∗
4

x∗
3

α
x∗
1

x∗
4

(1/α)
x∗
2

x∗
4

(1/α)
x∗
3

x∗
4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.5)

is sum-symmetry. The sum-symmetry of (6.5) is equivalent to the following four equations:

(x∗
1)

2 =
αx∗

2 + αx∗
3 + x∗

4/α

1/(αx∗
2) + 1/(αx∗

3) + α/x∗
4

, (6.6)

(x∗
2)

2 =
x∗

1/α + αx∗
3 + αx∗

4

α/x∗
1 + 1/(αx∗

3) + 1/(αx∗
4)

, (6.7)

(x∗
3)

2 =
x∗

1/α + x∗
2/α + αx∗

4

α/x∗
1 + α/x∗

2 + 1/(αx∗
4)

, (6.8)

(x∗
4)

2 =
αx∗

1 + x∗
2/α + x∗

3/α

1/(αx∗
1) + α/x∗

2 + α/x∗
3

. (6.9)

We will show x∗
1 > x∗

4. The proof is by contradiction. Assume x∗
4 ≥ x∗

1, then we have

1 ≤
(

x∗
4

x∗
1

)2

=
x∗

1/x
∗
2 + 2/α2 + x∗

3/(α
2x∗

2) + x∗
1/x

∗
3 + x∗

2/(α
2x∗

3) + +α2x∗
1/x

∗
4 + x∗

2/x
∗
4 + x∗

3/x
∗
4

x∗
2/x

∗
1 + x∗

3/x
∗
1 + x∗

4/(α
2x∗

1) + α2 + α2x∗
3/x

∗
2 + x∗

4/x
∗
2 + α2x∗

2/x
∗
3 + α2 + x∗

4/x
∗
3

.

This implies from x∗
4/x

∗
1 ≥ 1 and α > 1 that

0 ≥ x∗
2/x

∗
1 + x∗

3/x
∗
1 + x∗

4/(α
2x∗

1) + α2 + α2x∗
3/x

∗
2 + x∗

4/x
∗
2 + α2x∗

2/x
∗
3 + α2 + x∗

4/x
∗
3

−
(
x∗

1/x
∗
2 + 1/α2 + x∗

3/(α
2x∗

2) + x∗
1/x

∗
3 + x∗

2/(α
2x∗

3) + 1/α2 + α2x∗
1/x

∗
4 + x∗

2/x
∗
4 + x∗

3/x
∗
4

)
= (x∗

2 + x∗
3) (1/x∗

1 − 1/x∗
4) + x∗

4/(α
2x∗

1) + 1/α2x∗
4/x

∗
1 − α2x∗

1/x
∗
4 + 2α2 − 2/α2
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+α2 (x∗
3/x

∗
2 + x∗

2/x
∗
3) − 1/α2 (x∗

3/x
∗
2 + x∗

2/x
∗
3) + x∗

4 (1/x∗
2 + 1/x∗

3) − x∗
1 (1/x∗

2 + 1/x∗
3)

= (x∗
2 + x∗

3) (1/x∗
1 − 1/x∗

4) + (x∗
4 − x∗

1) (1/x∗
2 + 1/x∗

3) + x∗
4/(α

2x∗
1) − α2x∗

1/x
∗
4

+2
(
α2 − 1/α2

)
+

(
α2 − 1/α2

)
(x∗

3/x
∗
2 + x∗

2/x
∗
3)

≥ (x∗
2 + x∗

3) (1/x∗
1 − 1/x∗

4) + (x∗
4 − x∗

1) (1/x∗
2 + 1/x∗

3) + 1/α2 − α2 + 2
(
α2 − 1/α2

)
+

(
α2 − 1/α2

)
(x∗

3/x
∗
2 + x∗

2/x
∗
3)

= (x∗
2 + x∗

3) (1/x∗
1 − 1/x∗

4) + (x∗
4 − x∗

1) (1/x∗
2 + 1/x∗

3) + α2 − 1/α2

+
(
α2 − 1/α2

)
(x∗

3/x
∗
2 + x∗

2/x
∗
3)

> 0,

which is contradiction. Hence, we have x∗
1 > x∗

4.
Suppose that x∗

3/x
∗
1 ≥ 1, then we have

1 ≥
(

x∗
1

x∗
3

)2

=
(αx∗

2 + αx∗
3 + x∗

4/α) · (α/x∗
1 + α/x∗

2 + 1/(αx∗
4))

(1/(αx∗
2) + 1/(αx∗

3) + α/x∗
4) · (x∗

1/α + x∗
2/α + αx∗

4)

=
α2x∗

2/x
∗
1 + α2x∗

3/x
∗
1 + x∗

4/x
∗
1 + α2 + α2x∗

3/x
∗
2 + x∗

4/x
∗
2 + x∗

2/x
∗
4 + x∗

3/x
∗
4 + 1/α2

x∗
1/(α

2x∗
2) + +x∗

4/x
∗
2 + 1/α2 + x∗

1/(α
2x∗

3) + x∗
2/(α

2x∗
3) + x∗

4/x
∗
3 + x∗

1/x
∗
4 + x∗

2/x
∗
4 + α2.

This implies that

0 ≥ α2x∗
2/x

∗
1 + α2x∗

3/x
∗
1 + x∗

4/x
∗
1 + α2 + α2x∗

3/x
∗
2 + x∗

4/x
∗
2 + x∗

2/x
∗
4 + x∗

3/x
∗
4 + 1/α2

−
(
x∗

1/(α
2x∗

3) + x∗
2/(α

2x∗
3) + x∗

4/x
∗
3 + α2 + x∗

1/(α
2x∗

2) + x∗
4/x

∗
2 + x∗

1/x
∗
4 + x∗

2/x
∗
4 + 1/α2

)
= α2x∗

2/x
∗
1 − x∗

2/(α
2x∗

1) + α2x∗
3/x

∗
1 − x∗

1/(α
2x∗

3) + x∗
4/x

∗
1 − x∗

4/x
∗
3 + α2x∗

3/x
∗
2

−x∗
1/(α

2x∗
2) + x∗

3/x
∗
4 − x∗

1/x
∗
4

> (1 − 1/1)x∗
2/x

∗
1 + x∗

3/x
∗
1 − x∗

1/x
∗
3 + x∗

4(1/x
∗
1 − 1/x∗

3) + (1 · x∗
3 − x∗

1/1) /x∗
2 + (x∗

3 − x∗
1)/x

∗
4

= x∗
3/x

∗
1 − x∗

1/x
∗
3 + x∗

4(1/x
∗
1 − 1/x∗

3) + (x∗
3 − x∗

1) /x∗
2 + (x∗

3 − x∗
1)/x

∗
4

≥ 0,

which is contradiction. Hence, we have x∗
1 > x∗

3.
Assume that x∗

2 ≤ x∗
3, then we have

1 ≥
(

x∗
2

x∗
3

)2

=
(x∗

1/α + αx∗
3 + αx∗

4) · (α/x∗
1 + α/x∗

2 + 1/(αx∗
4))

(α/x∗
1 + 1/(αx∗

3) + 1/(αx∗
4)) · (x∗

1/α + x∗
2/α + αx∗

4)

=
1 + α2x∗

3/x
∗
1 + α2x∗

4/x
∗
1 + x∗

1/x
∗
2 + α2x∗

3/x
∗
2 + α2x∗

4/x
∗
2 + x∗

1/(α
2x∗

4) + x∗
3/x

∗
4 + 1

1 + x∗
2/x

∗
1 + α2x∗

4/x1 + x∗
1/(α

2x∗
3) + x∗

2/(α
2x∗

3) + x∗
4/x

∗
3 + x∗

1/(α
2x∗

4) + x∗
2/(α

2x∗
4) + 1

.

This means that

0 ≥ (x∗
2)

2 − (x∗
3)

2

= 1 + α2x∗
3/x

∗
1 + α2x∗

4/x
∗
1 + x∗

1/x
∗
2 + α2x∗

3/x
∗
2 + α2x∗

4/x
∗
2 + x∗

1/(α
2x∗

4) + x∗
3/x

∗
4 + 1

−
{
1 + x∗

2/x
∗
1 + α2x∗

4/x1 + x∗
1/(α

2x∗
3) + x∗

2/(α
2x∗

3) + x∗
4/x

∗
3 + x∗

1/(α
2x∗

4) + x∗
2/(α

2x∗
4) + 1

}
= α2x∗

3/x
∗
1 − x∗

2/x
∗
1 + x∗

3/x
∗
4 − x∗

2/(α
2x∗

4) + α2x∗
3/x

∗
2 + α2x∗

4/x
∗
2 − x∗

1/(α
2x∗

3) − x∗
2/(α

2x∗
3)

+x∗
1/x

∗
2 − x∗

4/x
∗
3

= α2(x∗
3 − x∗

2)/x
∗
1 + (x∗

3 − x∗
2/α

2)/x∗
4 + (1/x∗

2 − 1/(α2x∗
3))x

∗
1 + (α2/x∗

2 − 1/x∗
3)x

∗
4

+α2x∗
3/x

∗
2 − x∗

2/(α
2x∗

3)

> 0,
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which is contradiction. Hence, we have x∗
2 > x∗

3.
Suppose that x∗

2 ≤ x∗
4, then we have

1 ≥
(

x∗
2

x∗
4

)2

=
(x∗

1/α + αx∗
3 + αx∗

4) · (1/(αx∗
1) + x∗

2/α + α/x∗
3)

(α/x∗
1 + 1/(αx∗

3) + 1/(αx∗
4)) · (αx∗

1 + x∗
2/α + x∗

3/α)

=
1/α2 + x∗

3/x
∗
1 + x∗

4/x
∗
1 + x∗

1/x
∗
2 + α2x∗

3/x
∗
2α

2x∗
4/x

∗
2 + x∗

1/x
∗
3 + α2x∗

4/x
∗
3 + α2

α2 + x∗
2/x

∗
1 + x∗

3/x
∗
1 + x∗

1/x
∗
3 + x∗

2/(α
2x∗

3) + 1/α2 + x∗
1/x

∗
4 + x∗

2/(α
2x∗

4) + x∗
3/(α

2x∗
4).

This means that

0 ≥ (x∗
2)

2 − (x∗
4)

2

= 1/α2 + x∗
3/x

∗
1 + x∗

4/x
∗
1 + x∗

1/x
∗
2 + α2x∗

3/x
∗
2 + α2x∗

4/x
∗
2 + x∗

1/x
∗
3 + α2x∗

4/x
∗
3 + α2

−
{
α2 + x∗

2/x
∗
1 + x∗

3/x
∗
1 + x∗

1/x
∗
3 + x∗

2/(α
2x∗

3) + 1/α2 + x∗
1/x

∗
4 + x∗

2/(α
2x∗

4) + x3/(α
2x∗

4)
}

= (x∗
4 − x∗

2)/x
∗
1 +

(
α2x∗

4 − x∗
2/α

2
)
x∗

3 + x∗
1 (1/x∗

2 − 1/x∗
4) + x∗

3

(
α2/x∗

2 − 1/(α2x∗
4)

)
+α2x∗

4/x
∗
2 − x∗

2/(α
2x∗

4)

> 0,

which is contradiction. Hence, we have x∗
2 > x∗

4.
Since x∗

1 > x∗
3, x∗

1 > x∗
4, x∗

2 > x∗
3 and x∗

2 > x∗
4, the arithmetic mean and the harmonic

one of {αx∗
2, αx∗

3, x
∗
4/α} satisfy

max {αx∗
2, αx∗

3, x
∗
4/α} >

1

3

(
αx∗

2 + αx∗
3 +

x∗
4

α

)
> min {αx∗

2, αx∗
3, x

∗
4/α} (6.10)

max {αx∗
2, αx∗

3, x
∗
4/α} > 3

(
1

αx∗
2

+
1

αx∗
3

+
α

x∗
4

)−1

> min {αx∗
2, αx∗

3, x
∗
4/α} , (6.11)

respectively. It follows from (6.6), (6.10) and (6.11) that

max {αx∗
2, αx∗

3, x
∗
4/α} =

√
(max {αx∗

2, αx∗
3, x

∗
4/α})2

>

√√√√1

3

(
αx∗

2 + αx∗
3 +

x∗
4

α

)
3

(
1

αx∗
2

+
1

αx∗
3

+
α

x∗
4

)−1

= x∗
1 (6.12)

>
√

(min {αx∗
2, αx∗

3, x
∗
4/α})2 = min {αx∗

2, αx∗
3, x

∗
4/α} .

In the same manner as above, we have

max
{

x∗
1

α
, αx∗

3, αx∗
4

}
> x∗

2 > min
{

x∗
1

α
, αx∗

3, αx∗
4

}
, (6.13)

max
{

x∗
1

α
,
x∗

2

α
, αx∗

4

}
> x∗

3 > min
{

x∗
1

α
,
x∗

2

α
, αx∗

4

}
, (6.14)

max
{
αx∗

1,
x∗

2

α
,
x∗

3

α

}
> x∗

4 > min
{
αx∗

1,
x∗

2

α
,
x∗

3

α

}
. (6.15)

Without loss of generality, we assume x∗
1 = α, then it follows from x∗

1 > x∗
4, x∗

2 > x∗
3, α > 1

and (6.12) that x∗
4 < x∗

1 = α < max {αx∗
2, αx∗

3, x
∗
4/α} = αx∗

2. This implies that

1 < x∗
2. (6.16)
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Furthermore, it follows from (6.14) and (6.13) that

x∗
3 > min

{
x∗

1

α
,
x∗

2

α
, αx∗

4

}
≥ min

{
1,

1

α
min

{
x∗

1

α
, αx∗

3, αx∗
4

}
, αx∗

4

}

= min
{
1,

1

α
min {1, αx∗

3, αx∗
4} , αx∗

4

}
= min

{
1,

1

α
, x∗

3, x
∗
4, αx∗

4

}

= min
{

1

α
, x∗

4

}
.

Assume x∗
3 ≤ 1/α, then we have 1/α ≥ x∗

3 > x∗
4. Therefore, it follows from (6.13) that

max {x∗
1/α, αx∗

3, αx∗
4} = 1 > x∗

2. This is contradiction for (6.16). Hence, we have

αx∗
3 > 1. (6.17)

Assume that x∗
1 ≥ x∗

2, then we have

1 ≥
(

x∗
2

x∗
1

)2

=
x∗

1/α + αx∗
3 + αx∗

4

α/x∗
1 + 1/(αx∗

3) + 1/(αx∗
4)

· 1/(αx∗
2) + 1/(αx∗

3) + α/x∗
4

αx∗
2 + αx∗

3 + x∗
4/α

=
x∗

1/(α
2x∗

2) + x∗
3/x

∗
2 + x∗

4/x
∗
2 + x∗

1/(α
2x∗

3) + 1 + x∗
4/x

∗
3 + x∗

1/x
∗
4 + (α2x∗

3)/x
∗
4 + α2

α2x∗
2/x

∗
1 + αx∗

3/x
∗
1 + x∗

4/x
∗
1 + x∗

2/x
∗
3 + x∗

4/(α
2x∗

3) + 1 + x∗
2/x

∗
4 + x∗

3/x
∗
4 + 1/α2

.

Therefore, it follows that

0 ≤ (x∗
1)

2 − (x∗
2)

2 = 1/α2 − α2 + α2x∗
2/x

∗
1 − x∗

1/(α
2x∗

2) + α2x∗
3/x

∗
1 − x∗

1/(α
2x∗

3) + x∗
4/(α

2x∗
3)

−α2x∗
3/x

∗
4 + x∗

4/x
∗
1 − x∗

1/x
∗
4 + x∗

2/x
∗
3 − x∗

3/x
∗
2 + x∗

2/x
∗
4 − x∗

4/x
∗
2 + x∗

3/x
∗
4 − x∗

4/x
∗
3

=

(
1

α2
+ α2x∗

2

x∗
1

)
−

(
α2 +

x∗
1

α2x∗
2

)
+

(
α2x∗

3

x∗
1

+
x∗

3

x∗
4

)
−

(
x∗

3

x∗
2

+ α2 x∗
3

x∗
4

)

+

(
x∗

2

x∗
3

+
x∗

4

α2x∗
3

)
−

(
x∗

1

α2x∗
3

+
x∗

4

x∗
3

)
+

(
x∗

4

x∗
1

+
x∗

2

x∗
4

)
−

(
x∗

4

x∗
2

+
x∗

1

x∗
4

)

≤
(

1

α2
+ α2

)
−

(
α2 +

1

α2

)
+

(
α2 x∗

3

x∗
1

+
x∗

3

x∗
4

)
−

(
x∗

3

x∗
2

+ α2x∗
3

x∗
4

)

+

(
x∗

2

x∗
3

+
x∗

4

α2x∗
3

)
−

(
x∗

1

α2x∗
3

+
x∗

4

x∗
3

)
+

(
x∗

4

x∗
1

+
x∗

1

x∗
4

)
−

(
x∗

4

x∗
2

+
x∗

1

x∗
4

)

=

(
α2x∗

3

x∗
1

+
x∗

3

x∗
4

)
−

(
x∗

3

x∗
2

+ α2x∗
3

x∗
4

)
+

(
x∗

2

x∗
3

+
x∗

4

α2x∗
3

)
−

(
x∗

1

α2x∗
3

+
x∗

4

x∗
3

)
+ x∗

4

(
1

x∗
1

− 1

x∗
2

)

≤
(
α2x∗

3

x∗
1

+
x∗

3

x∗
4

)
−

(
x∗

3

x∗
2

+ α2x∗
3

x∗
4

)
+

(
x∗

2

x∗
3

+
x∗

4

α2x∗
3

)
−

(
x∗

1

α2x∗
3

+
x∗

4

x∗
3

)

= α2x∗
3

(
1

x∗
1

− 1

x∗
4

)
+

1

α2

(
x∗

4

x∗
3

− x∗
1

x∗
3

)
+ x∗

3

(
1

x∗
4

− 1

x∗
2

)
+

1

x∗
3

(x∗
2 − x∗

4) .

Let g(α) = α2x∗
3

(
1
x∗
1
− 1

x∗
4

)
+ 1

α2

(
x∗
4

x∗
3
− x∗

1

x∗
3

)
+x∗

3

(
1
x∗
4
− 1

x∗
2

)
+ 1

x∗
3
(x∗

2 − x∗
4), then we have g(1) =

x∗
3

(
1
x∗
1
− 1

x∗
2

)
+ 1

x∗
3
(x∗

2 − x∗
1) ≤ 0. Moreover, we have

dg(α)

dα
= 2αx∗

3

(
1

x∗
1

− 1

x∗
4

)
− 2

α3

(
x∗

4

x∗
3

− x∗
1

x∗
3

)
= 2

(
α4(x∗

3)
2 − x∗

1x
∗
4

α3x∗
1x

∗
3x

∗
4

)
(x∗

4 − x∗
1). (6.18)

It follows from (6.17) that α2x∗
3 > α = x∗

1 and α2x3 > α = x∗
1 > x∗

4, and hence, dg(α)
dα

< 0 for
all α > 1. Since g(1) ≤ 0, we have g(α) < 0 for all α > 1, implying that 0 ≤ (x∗

1)
2 − (x∗

2)
2 ≤

g(α) < 0 for all α > 1. This is contradiction. Therefore, we have x∗
2 > x∗

1.

c© Operations Research Society of Japan JORSJ (2007) 50-4



Matrix Balancing Problem and Binary AHP 539

In the similar way, we can prove x∗
4 > x∗

3. In fact, we have

(
x∗

3

x∗
4

)2

=
x∗

1/α + x∗
2/α + αx∗

4

α/x∗
1 + α/x∗

2 + 1/(αx∗
4)

· 1/(x∗
1α) + α/x∗

2 + α/x∗
3

αx∗
1 + x∗

2/α + x∗
4/α

.

Assume that x∗
4 ≤ x∗

3, then

0 ≤ (x∗
3)

2 − (x∗
4)

2 =
1

α2
− α2 + α2

(
x∗

4

x∗
2

+
x∗

4

x∗
3

− x∗
1

x∗
2

)
+

1

α2

(
x∗

2

x∗
1

− x∗
2

x∗
4

− x∗
3

x∗
4

)

+
x∗

4

x∗
1

+
x∗

1

x∗
2

+
x∗

1

x∗
3

+
x∗

2

x∗
3

− x∗
2

x∗
1

− x∗
3

x∗
1

− x∗
3

x∗
2

− x∗
1

x∗
4

= α2

(
x∗

4

x∗
2

+
x∗

4

x∗
3

− x∗
1

x∗
2

− 1

)
+

1

α2

(
1 +

x∗
2

x∗
1

− x∗
2

x∗
4

− x∗
3

x∗
4

)

+
x∗

4

x∗
1

+
x∗

1

x∗
2

+
x∗

1

x∗
3

+
x∗

2

x∗
3

− x∗
2

x∗
1

− x∗
3

x∗
1

− x∗
3

x∗
2

− x∗
1

x∗
4

≤ α2

(
x∗

4

x∗
2

− x∗
1

x∗
2

)
1

α2

(
x∗

2

x∗
1

− x∗
2

x∗
4

)
+

x∗
4

x∗
1

+
x∗

1

x∗
2

+
x∗

1

x∗
3

+
x∗

2

x∗
3

− x∗
2

x∗
1

− x∗
3

x∗
1

− x∗
3

x∗
2

− x∗
1

x∗
4

.

Let h(α) = α2
(

x∗
4

x∗
2
− x∗

1

x∗
2

)
1

α2

(
x∗
2

x∗
1
− x∗

2

x∗
4

)
+

x∗
4

x∗
1

+
x∗
1

x∗
2

+
x∗
1

x∗
3

+
x∗
2

x∗
3
− x∗

2

x∗
1
− x∗

3

x∗
1
− x∗

3

x∗
2
− x∗

1

x∗
4
, then we have

h(1) =
x∗

4

x∗
2

− x∗
1

x∗
2

+
x∗

2

x∗
1

− x∗
2

x∗
4

+
x∗

4

x∗
1

+
x∗

1

x∗
2

+
x∗

1

x∗
3

+
x∗

2

x∗
3

− x∗
2

x∗
1

− x∗
3

x∗
1

− x∗
3

x∗
2

− x∗
1

x∗
4

≤ x∗
4

x∗
2

− x∗
3

x∗
2

+
x∗

2

x∗
3

− x∗
2

x∗
4

+
x∗

4

x∗
1

− x∗
3

x∗
1

+
x∗

1

x∗
3

− x∗
1

x∗
4

=
1

x∗
2

(x∗
4 − x∗

3) + x∗
2

(
1

x∗
3

− 1

x∗
4

)
1

x∗
1

(x∗
4 − x∗

3) + x∗
1

(
1

x∗
3

− 1

x∗
4

)
≤ 0.

Moreover, it follows from αx∗
1 > αx∗

3 = max
{

x∗
1

α
, αx∗

3, αx∗
4

}
> x∗

2 that

dh(α)

dα
= 2α

(
x∗

4 − x∗
1

x∗
2

)
− 2x∗

2

α3

(
1

x∗
1

− 1

x∗
4

)
= 2(x∗

4 − x∗
1)

α4x∗
1x

∗
3 − (x∗

2)
2

α3x∗
1x

∗
2x

∗
4

< 0

for all α > 1. Since h(1) ≤ 0, we have 0 > h(α) ≥ (x∗
3)

2 − (x∗
4)

2 ≥ 0 for all α > 1. This is
contradiction. Therefore, we have x∗

4 > x∗
3.
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