富士県立山川(早月川上流)域の飛騨変成岩の変成温度 について

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: jpn
	出版者:
	公開日: 2008-01-25
	キーワード (Ja):
	キーワード (En):
	作成者: 藤吉, 瞭
	メールアドレス:
	所属:
URL	https://doi.org/10.14945/00000271

富山県立山川(早月川上流)域の 飛驒変成岩の変成温度について

藤 吉 瞭*

Metamorphic Temperatures Estimated Cardierite-garnet and Garnet-biotite Geothermometry for the Hida Metamorphic Rocks along the Tateyama-gawa in the Upper Hayatsuki-gawa Area

Akira FUJIYOSHI*

The Hide metamorphic rocks along the Tateyama-gawa have undergone regional metamorphism and migmatization related to leuco-granites, and are characterized by the mineral assemblages of cordierite-garnet-biotite, orthopyroxene-biotite, spinel-corundum -biotite, and alusite-cordierite-sillimanite-orthoclase for pelitic gneisses, and of clino-pyroxene-biotite-hornblende for basic gneiss. These mineral assemblages and Ti contents of hornblende suggest that metamorphism in the area belongs to the transitional zone of the amphibolite-granulite facies.

Using the cordierite-garnet and garnet-biotite geothermometry, the matamorphic temperatures of two rock samples (cordierite-garnet-biotite gneiss and garnet-biotite gneiss) were determined.

The metamorphic temperatures of the cordierite-garnet-biotite gneiss were estimated at $610-650^{\circ}$ C by cordierite-garnet and garnet-biotite geothermometry, and those of the garnet-biotite gneiss $700-780^{\circ}$ C by garnet-biotite geothermometry.

The metamorphic temperatures of $700-780^{\circ}$ C might correspond to an earlier stage of metamorphism characterized by spinel, corundum, Mg-rich garnet and others ; the metamorphism of $610-650^{\circ}$ C might have been caused by migmatization related to leuco -granites, and is characterized by andalusite and cordierite.

1. はじめに

早月川上流地域の立山川上流に広く分布する片麻 岩類は,黒部川下流地域の ISHIOKA and SUWA (1956)によるエボシ山グループと名付けられ,その後 HIROI (1983)によって宇奈月川グループとされた 結晶片岩類の南への延長と考えられる.そこには, ざくろ石-菫青石-黒雲母,紅柱石-珪線石-菫青 石-正長石,スピネル-菫青石-黒雲母,斜方輝石-黒雲母等の特徴的鉱物組み合わせをもつ泥質片麻岩 が存在する(藤吉,1973).これらの鉱物で表わされ る当地域の変成温度を知るために,電子プローブ・ マイクロアナライザー(EPMA)により菫青石・ざく ろ石・黒雲母の分析を行ない,変成温度・圧力を菫

1987年3月23日受理

^{*} 静岡大学教育学部地学教室 Institute of Geosciences, School of Education, Shizuoka University, Shizuoka 422.

図1 早月川上流地域の地質図(FUJIYOSHI, 1970). 1: アダメロ岩, 2: 眼球片麻岩類, 3: 毛勝岳花崗岩, 4: 大熊山花崗閃緑岩, 5: 古期片麻岩

青石・ざくろ石の温度・圧力計およびざくろ石・黒 雲母の温度計から求めた。また、当地域の変成度を より明確にするため、さらに角閃石片麻岩中の角閃 石、輝石、泥質片麻岩中の輝石の分析を行なった。 以下はその報告である。

2. 地質概略

早月川上流地域の飛驒変成岩類は,古期片麻岩, 眼球片麻岩,貫入岩から成る(図1).

古期片麻岩は岩相により次のように分類される. すなわち,大理石または石灰質片麻岩,泥質片麻岩, 角閃石片麻岩,泥質・塩基性・石英長石質片麻岩の 互層,レプタイトまたはレプタイト源片麻岩.これ ら片麻岩の層序は,下部から(1)大理石または石灰質 片麻岩(I),(2)泥質片麻岩,(3)大理石または石灰質 片麻岩(II),(4)角閃石片麻岩,(5)大理石または石灰 質片麻岩(III),(6)泥質・塩基性・石英長石質片麻岩 の互層,(7)レプタイトまたはレプタイト源片麻岩, 角閃石片麻岩(II),大理石または石灰質片麻岩(IV) である(FUJIYOSHI,1970).片麻岩には優白質花崗岩 が注入または貫入している. 優白質花崗岩は,主に石英・カリ長石・斜長石か ら成り,立山川下流では片麻岩の優白縞と密接に関 係し,片理に平行かまたはやや斜交した幅数 mm ~数 mのプール状・岩脈として多量に存在し,一部は泥 質片麻岩と漸移関係にある.片麻岩の粒度は立山川 下流から上流に向って細粒のレプタイト(片岩)か ら細粒片麻岩を経て,中・粗粒片麻岩へと漸移する. 変成度を鋭敏に示すホルンブレンドのz軸色は,同 じく立山川下流から上流へと青緑色から緑色,緑褐 色へと変化する.これらの事実は,古期片麻岩の変 成度が立山川下流から上流へと増加し,またこの変 成作用と優白質花崗岩が密接に関係することを示す.

古期片麻岩は、立山川上流では次のような特徴的 な鉱物組み合わせを含む。即ち、泥質片麻岩ではス ビネルー銅玉ー黒雲母ー斜長石、斜方輝石-黒雲 母ー斜長石、董青石-ざくろ石-黒雲母-斜長石、 珪線石-紅柱石-董青石-黒雲母-カリ長石-斜長 石-石英、石灰質片麻岩では方解石-単斜輝石-ざ くろ石-珪灰石、角閃石片麻岩では単斜輝石-緑褐 色ホルンブレンド-黒雲母-斜長石。 古期片麻岩は、東部の毛勝岳花崗岩の貫入に伴う 低変成度の後退変成作用を受けた。これは、緑れん 石、ブドウ石、珪灰石の仮晶に生成した方解石・石 英および緑褐色角閃石の緑の青緑色角閃石等によっ て特徴づけられる (FUJIYOSHI, 1970).

古期片麻岩は、立山川下流域では、アダメロ岩体 貫入に密接に関係するカリ交代作用によって眼球片 麻岩に変化している (FUJIYOSHI, 1970). 片麻岩類は 当地域では三つの花崗岩-大熊山花崗閃緑岩,毛勝 岳花崗岩,アダメロ岩体に貫入されている(図1).

3. 分析岩石の記載

分析岩石は、下部の泥質片麻岩(2)と上部の互層(6) 中の泥質片麻岩から多くの岩石を採取し、顕微鏡下 で董青石・ざくろ石・黒雲母またはざくろ石・黒雲 母が共存し、しかも後の後退変成作用をあまり受け ていない部分の存在する岩石をさがした。分析した 岩石は下部泥質片麻岩からのもので、一つは、董青 石・ざくろ石・黒雲母の共存する岩石 (2909A) であり、 もう一つは、ざくろ石・黒雲母の共存する岩石 (2903C) である。

2909A は主に斜長石,黒雲母,石英,不透明鉱物 から成り,後の後退作用の影響は部分により異なる。 後の後退変成作用を受けた部分では,董青石はピナ イト化し,黒雲母は緑泥石化している。2903C は斜長 石,黒雲母,ざくろ石,不透明鉱物から成り,同じ く後の後退変成作用を受けた部分は黒雲母は緑泥石 化し,また一部斜長石はソーシュール石化している。 これらの試料に対して,ほとんどピナイト化してい ない董青石および緑泥石化していない黒雲母が存在 する部分で,しかも董青石・ざくろ石・黒雲母また は黒雲母・ざくろ石が共存する部分で各結晶につい て EPMA 分析を行なった。

大理石または石灰質片麻岩(II)中に存在する斜 方輝石を含む泥質片麻岩(0517)は二つの異なる部 分から成っている。一つは斜方輝石・黒雲母・斜長 石から成る比較的粗粒な部分であり、もう一つはス ピネルまたはコランダム・黒雲母・斜長石から成る 細粒の部分である。スピネルまたはコランダムは非 常に細粒の集合体として存在する。

角閃石片麻岩層(4)からの角閃石片麻岩(476)はマ

グネタイト・黒雲母・単斜輝石・ホルンブレンド・ 斜長石から成り,ホルンブレンドの z 軸色は緑褐色 を示し,部分的に周縁部は青緑色を示す.

0517および476の岩石については黒雲母・輝石・角 閃石の EPMA 分析を行なった。

4. 結果と考察

ざくろ石, 菫青石, 黒雲母, 輝石, 角閃石の EPMA 分析の結果はそれぞれ表 1-5に示した. ざくろ石 は累帯構造を示し,核は Mg 成分および Mg/Mg+Fe が増加し, Mn 成分が減少する. 逆に周縁部は Mn 成 分が増加し, Mg 成分および Mg/Mg+Fe は減少す る. この累帯構造は, 岩石 2903C のざくろ石で顕著 にみられ, その 6 個のざくろ石の27個の分析の結果 については, Mg/Mg+Fe 値は三つに別かれて分布 する. 即ち, 4 個の高い値のもの (0.176-0.181), 19個の中間のもの (0.136-0.162) そして低い値の もの (0.125-0.129) である. さらに中間の値のも のの内, 11個は0.149-0.158である.

董青石は顕著な累帯構造を示さないが,周縁部は, ASHWORTH and CHINNER (1978)に指摘されたよ うに, Mg/Feが大きくなる. 黒雲母については,結 晶により少し異なる Mg/Fe 値を示す.また泥質片麻 岩中では輝石と共存する黒雲母が最も高い Ti 値を示 す. 泥質片麻岩 (0517)の斜方輝石は表4に示すよ うに, Ferrohypersthene (En36.0 Fs62.8 Wo1.2)の 組成を示し,角閃石片麻岩(476)の単斜輝石は Salite (En26.5 Fs24.9 Wo48.6)の組成を示す. 角閃石片麻 岩 (476)中の角閃石については,緑褐色の部分は高 い Ti 値 (0.198-0.204)を示し,周縁部のものは低 い Ti 値 (0.115-0.147)を示す.

共存する菫青石・ざくろ石・黒雲母 (2903C) とざく ろ石・黒雲母 (2909A) から変成温度の見積りを試みた. 当地域の変成岩は最初高温の変成作用を受け、後に 毛勝岳花崗岩の貫入に伴う後退変成作用を受けてい る (FUJIYOSHI, 1970) ため,温度推定に用いた鉱物分 析値は次のようである. ざくろ石に関しては、核の Mg/Mg+Fe 値の高いものの平均値を用いた.また, 2903C 中のざくろ石については11個の Mg/Mg+Fe 値 (0.149-0.158) の平均値についても比較のため 用いた. 菫青石に関しては、周縁部の Mg/Fe 値の高

藤 吉 瞭

Sample No.					2909A						
	A-1	A-2	A-3	A-4	A-5	B-1	B-2	B-3	B-4	B-5	A-1
SiO ₂	36.13	36.20	36.16	35.90	36.12	35.85	36.40	36.02	36.12	36.10	36.19
TiO2		0.02	0.01	0.02		0.01					
Al_2O_3	20.20	20.29	20.24	20.15	20.22	20.29	20.23	20.26	19.78	20.22	20.20
FeO*	32.81	32.19	32.59	32.36	32.97	33.28	32.95	32.73	32.78	32.66	33.01
MnO MgO	0.33	0.08	5.93 2 34	0.13	0.17	0.17 2 27	0.09	0.71	0.27	0.37 2.07	4.07
	1.19	1 79	1.82	1.55	2.30	1.84	1.92	1.30	1.58	2.07	00.90
Na ₂ O		1.75	1.02		1	1.04	1.52				
K ₂ O											
Total	99.22	98.97	99.09	98.05	99.29	99.61	99.96	99.07	98.60	99.19	98.21
Number of cations $(0 = 12)$											
Si	2.975	2.978	2.975	2.986	2.975	2.951	2.974	2.974	2.995	2.974	2.986
Al	1.961	1.968	1.963	1.976	1.961	1.949	1.949	1.972	1.934	1.964	1.963
Ti		0.001	0.001	0.001		0.001					
Fe	2.260	2.215	2.243	2.251	2.268	2.291	2.251	2.260	2.995	2.250	2.278
Mn	0.442	0.424	0.413	0.432	0.430	0.430	0.421	0.469	0.440	0.445	0.326
Mg	0.269	0.294	0.287	0.242	0.282	0.291	0.289	0.241	0.251	0.254	0.398
	0.138	0.158	0.160	0.137	0.130	0.162	0.108	0.123	0.140	0.150	0.080
Mg/Mg+Fe	0.106	0.117	0.113	0.097	0.111	0.113	0.114	0.096	0.077	0.101	0.149
$100 X_{\text{Fe}}$	72.7	71.1	72.3	73.5	72.9	72.2	71.9	73.1	78.3	72.5	73.9
$100 X_{Mn}$		113.7	13.3	14.1	13.8	13.5	13.5	15.2	11.5	14.3	10.6
100 X _{Mg}	8.7	9.5	9.2 5.2	7.9	9.1	9.2	9.Z	(.8	6.6 2.7	8.Z	12.9
100 A _{Ca}	4.4	5.1	5.2	4.5	4.2	5.1	5.4	4.0	3.7	5.0	2.0
Sample No.	2903C										
	A-2	A-3	A-4	B-1	B-2	C-1	C-2	C-3	D-1	D-2	D-3
SiO ₂	A-2 36.37	A-3 A-3	A-4 36.44	B-1 36.57	B-2 36.72	C-1 36.46	C-2 36.71	C-3 36.62	D-1 36.61	D-2 36.24	D-3 36.31
SiO ₂ TiO ₂	A-2 36.37	A-3 A-3	A-4 36.44	B-1 36.57	B-2 36.72	C-1 36.46	C-2 36.71	C-3 36.62	D-1 36.61	D-2 36.24	D-3 36.31
SiO ₂ TiO ₂ Al ₂ O ₃	A-2 36.37 20.52	A-3 A-3 20.70	A-4 36.44 20.70	B-1 36.57 21.09	B-2 36.72 20.62	C-1 36.46 20.42	C-2 36.71 20.35	C-3 36.62 20.72	D-1 36.61 20.61	D-2 36.24 20.13	D-3 36.31 20.38
$ \begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO^* \end{array} $	A-2 36.37 20.52 32.69	A-3 A-3 20.70 32.79	A-4 36.44 20.70 32.79	B-1 36.57 21.09 32.46	B-2 36.72 20.62 32.29	C-1 36.46 20.42 33.54	C-2 36.71 20.35 32.62	C-3 36.62 20.72 32.72	D-1 36.61 20.61 32.62	D-2 36.24 20.13 31.50	D-3 36.31 20.38 32.36
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO	A-2 36.37 20.52 32.69 4.05	A-3 A-3 20.70 32.79 3.96	A-4 36.44 20.70 32.79 4.42	B-1 36.57 21.09 32.46 4.33	B-2 36.72 20.62 32.29 4.39	C-1 36.46 20.42 33.54 4.95	C-2 36.71 20.35 32.62 4.17	C-3 36.62 20.72 32.72 4.24	D-1 36.61 20.61 32.62 5.07	D-2 36.24 20.13 31.50 6.09	D-3 36.31 20.38 32.36 5.76
$ \begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO^* \\ MnO \\ MgO \\ CO \end{array} $	A-2 36.37 20.52 32.69 4.05 3.44	A-3 A-3 20.70 32.79 3.96 3.92	A-4 36.44 20.70 32.79 4.42 3.33 0.02	B-1 36.57 21.09 32.46 4.33 3.87	B-2 36.72 20.62 32.29 4.39 3.49	C-1 36.46 20.42 33.54 4.95 3.08	C-2 36.71 20.35 32.62 4.17 3.50	C-3 36.62 20.72 32.72 4.24 3.32	D-1 36.61 20.61 32.62 5.07 3.31	D-2 36.24 20.13 31.50 6.09 2.97	D-3 36.31 20.38 32.36 5.76 3.40
$\begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO^* \\ MnO \\ MgO \\ CaO \\ Na \\ O \end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89	A-3 A-3 20.70 32.79 3.96 3.92 0.93	A-4 36.44 20.70 32.79 4.42 3.33 0.93	B-1 36.57 21.09 32.46 4.33 3.87 0.90	B-2 36.72 20.62 32.29 4.39 3.49 1.36	C-1 36.46 20.42 33.54 4.95 3.08 0.88	C-2 36.71 20.35 32.62 4.17 3.50 0.93	C-3 36.62 20.72 32.72 4.24 3.32 1.52	D-1 36.61 20.61 32.62 5.07 3.31 0.99	D-2 36.24 20.13 31.50 6.09 2.97 2.03	D-3 36.31 20.38 32.36 5.76 3.40 1.00
$ \begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO^* \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \end{array} $	A-2 36.37 20.52 32.69 4.05 3.44 0.89	A-3 A-3 20.70 32.79 3.96 3.92 0.93	A-4 36.44 20.70 32.79 4.42 3.33 0.93	B-1 36.57 21.09 32.46 4.33 3.87 0.90	B-2 36.72 20.62 32.29 4.39 3.49 1.36	C-1 36.46 20.42 33.54 4.95 3.08 0.88	C-2 36.71 20.35 32.62 4.17 3.50 0.93	C-3 36.62 20.72 32.72 4.24 3.32 1.52	D-1 36.61 20.61 32.62 5.07 3.31 0.99	D-2 36.24 20.13 31.50 6.09 2.97 2.03	D-3 36.31 20.38 32.36 5.76 3.40 1.00
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\FeO^*\\MnO\\MgO\\CaO\\Na_2O\\K_2O\\Total\end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96	A-3 A-3 20.70 32.79 3.96 3.92 0.93 98.74	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14	D-1 36.61 32.62 5.07 3.31 0.99 99.21	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total Number of	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations	A-3 A-3 20.70 32.79 3.96 3.92 0.93 98.74 (0 = 12)	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14	D-1 36.61 20.61 32.62 5.07 3.31 0.99 99.21	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\FeO^*\\MnO\\MgO\\CaO\\Na_2O\\K_2O\\Total\\Number of\\Si\end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992	A-3 A-3 20.70 32.79 3.96 3.92 0.93 98.74 (0 = 12) 2.973	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14	D-1 36.61 20.61 32.62 5.07 3.31 0.99 99.21	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total Number of Si Al	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951	A-3 A-3 20.70 32.79 3.96 3.92 0.93 98.74 (0 = 12) 2.973 1.991	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 99.21 2.969 1.965
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total Number of Si Al Ti	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951	$\begin{array}{c} A-3 \\ A-3 \\ 20.70 \\ 32.79 \\ 3.96 \\ 3.92 \\ 0.93 \\ \hline \\ 98.74 \\ (0 = 12) \\ 2.973 \\ 1.991 \\ \hline \end{array}$	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total Number of Si Al Ti Fe	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249	$\begin{array}{c} A-3 \\ A-3 \\ 20.70 \\ 32.79 \\ 3.96 \\ 3.92 \\ 0.93 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974 2.183	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total Number of Si Al Ti Fe Mn	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282	$\begin{array}{c} A-3 \\ A-3 \\ \hline \\ 20.70 \\ 32.79 \\ 3.96 \\ 3.92 \\ 0.93 \\ \hline \\ 98.74 \\ \hline \\ (0 = 12) \\ 2.973 \\ 1.991 \\ \hline \\ 2.237 \\ 0.274 \\ \end{array}$	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 98.77 2.982 1.974 2.183 0.300	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303	C-1 36.46 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293 0.343	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236 0.289	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228 0.292	D-1 36.61 20.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223 0.350	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213 0.399
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O Total Number of Si Al Ti Fe Mn Mg	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282 0.422	$\begin{array}{c} A-3 \\ A-3 \\ 20.70 \\ 32.79 \\ 3.96 \\ 3.92 \\ 0.93 \\ \\ \hline \\ 98.74 \\ \hline \\ (0 = 12) \\ 2.973 \\ 1.991 \\ \\ \hline \\ 2.237 \\ 0.274 \\ 0.477 \\ \end{array}$	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305 0.404	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 98.77 2.982 1.974 2.183 0.300 0.472	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303 0.424	C-1 36.46 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293 0.343 0.375	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236 0.289 0.427	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228 0.292 0.403	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223 0.350 0.402	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423 0.363	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213 0.399 0.414
$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{FeO}^*\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{Total}\\ \hline \\ \mathrm{Number \ of}\\ \mathrm{Si}\\ \mathrm{Al}\\ \mathrm{Ti}\\ \mathrm{Fe}\\ \mathrm{Mn}\\ \mathrm{Mg}\\ \mathrm{Ca}\\ \end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282 0.422 0.078	$\begin{array}{c} A-3\\ A-3\\ \hline \\ 20.70\\ 32.79\\ 3.96\\ 3.92\\ 0.93\\ \hline \\ \\ 98.74\\ \hline \\ (0=12)\\ 2.973\\ 1.991\\ \hline \\ 2.237\\ 0.274\\ 0.477\\ 0.081\\ \hline \end{array}$	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305 0.404 0.079	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974 2.183 0.300 0.472 0.120	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303 0.424 0.119	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293 0.343 0.375 0.077	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 0.289 0.427 0.082	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 0.292 0.403 0.133	D-1 36.61 20.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223 0.350 0.402 0.086	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423 0.363 0.179	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213 0.399 0.414 0.088
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\FeO^*\\MnO\\MgO\\CaO\\Na_2O\\K_2O\\Total\\\hline Total\\\hline Si\\Al\\Ti\\Fe\\Mn\\Mg\\Ca\\\hline Mg/Mg+Fe\\\end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282 0.422 0.078 0.158	$\begin{array}{c} A-3\\ A-3\\ 20.70\\ 32.79\\ 3.96\\ 3.92\\ 0.93\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305 0.404 0.079 0.154	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974 2.183 0.300 0.472 0.120 0.178	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303 0.424 0.119 0.162	C-1 36.46 33.54 4.95 3.08 0.88 99.33 99.33 2.980 1.968 2.293 0.343 0.375 0.077 0.141	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236 0.289 0.427 0.082 0.160	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228 0.292 0.403 0.133 0.153	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223 0.350 0.402 0.086 0.153	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423 0.363 0.179 0.144	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 99.21 2.969 1.965 2.213 0.399 0.414 0.088 0.158
$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{FeO}^*\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{Total}\\ \hline \\ \mathrm{Number of}\\ \mathrm{Si}\\ \mathrm{Al}\\ \mathrm{Ti}\\ \mathrm{Fe}\\ \mathrm{Mn}\\ \mathrm{Mg}\\ \mathrm{Ca}\\ \hline \\ \mathrm{Mg/Mg+Fe}\\ \hline \\ 100 \ \mathrm{X_{Fe}}\\ \end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282 0.422 0.078 0.158 74.2	$\begin{array}{c} A-3\\ A-3\\ 20.70\\ 32.79\\ 3.96\\ 3.92\\ 0.93\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305 0.404 0.079 0.154 73.7	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974 2.183 0.300 0.472 0.120 0.178 71.0	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303 0.424 0.119 0.162 72.2	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293 0.343 0.375 0.077 0.141 74.3	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236 0.289 0.427 0.082 0.160 73.7	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228 0.292 0.403 0.133 0.153 72.9	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223 0.350 0.402 0.086 0.153 72.6	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423 0.363 0.179 0.144 69.1	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213 0.399 0.414 0.088 0.158 71.1
$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{FeO}^*\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{Total}\\ \hline \\ \mathrm{Number of}\\ \mathrm{Si}\\ \mathrm{Al}\\ \mathrm{Ti}\\ \mathrm{Fe}\\ \mathrm{Mn}\\ \mathrm{Mg}\\ \mathrm{Ca}\\ \hline \\ \mathrm{Mg/Mg+Fe}\\ 100 \ \mathrm{X_{Fe}}\\ 100 \ \mathrm{X_{Mn}}\\ \end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282 0.422 0.078 0.158 74.2 9.3	$\begin{array}{c} A-3\\ A-3\\ 20.70\\ 32.79\\ 3.96\\ 3.92\\ 0.93\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305 0.404 0.079 0.154 73.7 10.2	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974 2.183 0.300 0.472 0.120 0.178 71.0 9.8	B-2 36.72 20.62 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303 0.424 0.119 0.162 72.2 9.9	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293 0.343 0.375 0.077 0.141 74.3 11.1	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236 0.289 0.427 0.082 0.160 73.7 9.5	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228 0.292 0.403 0.133 0.153 72.9 9.6	D-1 36.61 20.61 32.62 5.07 3.31 0.99 99.21 99.21 2.984 1.980 2.223 0.350 0.402 0.086 0.153 72.6 11.4	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423 0.363 0.179 0.144 69.1 13.5	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213 0.399 0.414 0.088 0.158 71.1 12.8
$\begin{array}{c} \mathrm{SiO_2} \\ \mathrm{TiO_2} \\ \mathrm{Al_2O_3} \\ \mathrm{FeO^*} \\ \mathrm{MnO} \\ \mathrm{MgO} \\ \mathrm{CaO} \\ \mathrm{Na_2O} \\ \mathrm{K_2O} \\ \mathrm{Total} \\ \end{array}$ $\begin{array}{c} \mathrm{Number \ of} \\ \mathrm{Si} \\ \mathrm{Al} \\ \mathrm{Ti} \\ \mathrm{Fe} \\ \mathrm{Mn} \\ \mathrm{Mg} \\ \mathrm{Ca} \\ \end{array}$ $\begin{array}{c} \mathrm{Mg/Mg + Fe} \\ \mathrm{100 \ X_{Fe}} \\ \mathrm{100 \ X_{Mg}} \\ \mathrm{100 \ X_{Mg}} \\ \end{array}$	A-2 36.37 20.52 32.69 4.05 3.44 0.89 97.96 cations 2.992 1.951 2.249 0.282 0.422 0.422 0.078 0.158 74.2 9.3 13.9	$\begin{array}{c} A-3 \\ A-3 \\ 20.70 \\ 32.79 \\ 3.96 \\ 3.92 \\ 0.93 \\ \\ \hline \end{array}$	A-4 36.44 20.70 32.79 4.42 3.33 0.93 98.74 2.980 2.024 2.212 0.305 0.404 0.079 0.154 73.7 10.2 13.5	B-1 36.57 21.09 32.46 4.33 3.87 0.90 98.77 2.982 1.974 2.183 0.300 0.472 0.120 0.178 71.0 9.8 15.3	B-2 36.72 32.29 4.39 3.49 1.36 98.87 2.992 1.981 2.200 0.303 0.424 0.119 0.162 72.2 9.9 13.9	C-1 36.46 20.42 33.54 4.95 3.08 0.88 99.33 2.980 1.968 2.293 0.343 0.375 0.077 0.141 74.3 11.1 12.1	C-2 36.71 20.35 32.62 4.17 3.50 0.93 98.28 3.008 1.966 2.236 0.289 0.427 0.082 0.160 73.7 9.5 14.1	C-3 36.62 20.72 32.72 4.24 3.32 1.52 99.14 2.981 1.988 2.228 0.292 0.403 0.133 0.153 72.9 9.6 13.2	D-1 36.61 32.62 5.07 3.31 0.99 99.21 2.984 1.980 2.223 0.350 0.402 0.086 0.153 72.6 11.4 13.1	D-2 36.24 20.13 31.50 6.09 2.97 2.03 98.96 2.975 1.948 2.163 0.423 0.363 0.179 0.144 69.1 13.5 11.6	D-3 36.31 20.38 32.36 5.76 3.40 1.00 99.21 2.969 1.965 2.213 0.399 0.414 0.088 0.158 71.1 12.8 13.3

表1 ざくろ石の EPMA 分析値

FeO*: 全 Fe 量を FeO として計算した. A, B, C, D, E, F はそれぞれ異なる結晶を示し, A-1, A-2, A-3……は 同一結晶中の異なる位置の測定を示す.

					2903C					
D-4	D-5	D-6	D-7	D-8	E-1	E-2	E-3	E-4	F-1	F-2
36.19	36.42	36.65	36.55	36.39	36.75	36.26	36.10	35.51	35.56	36.56
									0.03	、 -
20.46	20.64	20.56	20.69	21.21	21.12	20.69	20.55	20.93	21.06	20.85
31.24	30.92	30.84	32.41	32.25	32.65	32.62	31.98	33.41	33.99	33.88
5.39	6.59	6.77	4.81	4.68	4.38	4.82	5.94	4.35	4.11	3.86
3.10	2.56	2.73	2.91	3.30	3.41	3.20	2.89	3.28	4.19	3.34
2.10	2.00	2.20	1.00	1.01	0.91	0.99	1.70	0.90	0.91	1.50
								•••••		
98.48	99.13	99.75	98.37	98.84	99.29	98.58	99.16	98.38	99.93	99.99
2.972	2.978	2.980	2.998	2.966	2.980	2.972	2.958	2.928	2.891	2.961
1.981	1.990	1.971	2.019	2.038	2.019	2.001	1.985	2.035	2.019	1.991
									0.002	
2.146	2.115	2.099	2.224	2.198	2.214	2.238	2.192	2.304	2.311	2.295
0.375	0.456	0.466	0.334	0.323	0.301	0.335	0.412	0.304	0.283	0.265
0.379	0.312	0.331	0.356	0.401	0.412	0.391	0.353	0.403	0.508	0.403
0.185	0.175	0.192	0.088	0.088	0.085	0.087	0.149	0.080	0.079	0.130
0.150	0.129	0.136	0.138	0.154	0.157	0.149	0.139	0.149	0.180	0.149
69.6	69.2	68.0	74.1	73.0	73.5	73.4	70.6	74.5	72.7	74.2
12.2	14.9	15.1	11.1	10.7	10.0	11.0	13.3	9.8	8.9	8.6
12.3	10.2	10.7	11.9	13.3	13.7	12.8	11.4	13.0	16.0	13.0
6.0	5.7	6.2	2.9	2.9	2.8	2.9	4.8	2.6	2.5	4.2

	2903C		
F-3	F -4	F-5	F-6
36.26	35.36	35.81	35.97
		0.02	
20.82	20.85	20.57	20.64
33.69	32.32	32.14	33.23
4.41	4.67	5.95	5.78
3.14	3.05	2.58	2.75
1.64	2.19	2.09	1.96
			·
99.96	98.38	99.16	100.33
	· · · · · · · · · · · · · · · · · · ·		
2.964	2.914	2.943	2.930
1.994	2.029	1.993	1.982
	•••••	0.001	
2.289	2.232	2.209	2.264
0.304	0.327	0.414	0.399
0.380	0.375	0.316	0.334
0.143	0.194	0.184	0.171
0.142	0.144	0.125	0.129
73.5	71.4	70.7	71.5
9.8	10.5	13.3	12.6
12.2	12.0	10.1	10.5
4.6	6.2	5.9	5.4

膫

Sample No.		2909A				
	1	2	3	4	5	6
SiÔ ₂	46.72	46.32	46.49	47.11	46.36	45.97
TiO2						
Al_2O_3	32.5	32.35	31.83	32.49	32.61	32.41
FeO*	10.61	10.69	10.61	10.26	10.37	10.42
MnO	0.49	0.62	0.56	0.54	0.58	0.56
MgO	6.68	6.52	6.71	6.75	6.70	6.55
CaO	0.03	0.07	0.05	0.03	0.06	0.07
Na₂O	0.21	0.18	0.14	0.18	0.13	0.21
K ₂ O	0.01					
Total	96.80	96.75	96.39	97.36	96.81	96.19
Number of	cations	(O = 18)				
Si	4.958	4.925	4.957	4.960	4.917	4.909
Al	4.010	4.055	4.011	4.032	4.077	4.080
Ti						
Fe	0.942	0.951	0.946	0.903	0.920	0.931
Mn	0.044	0.056	0.051	0.054	0.052	0.051
Mg	1.057	1.033	1.066	1.059	1.059	1.052
Ca	0.003	0.008	0.006	0.003	0.007	0.008
Na	0.043	0.037	0.029	0.018	0.027	0.043
K	0.001					
Mg/Mg+Fe	0.529	0.528	0.530	0.540	0.535	0.531

表2 董青石 EPMA 分析值

FeO*: 全Fe量をFeOとして計算した。

いものを除いた Mg/Mg+Fe 値の平均を用いた.黒 雲母に関しては, 岩石中で共存していると思われる 黒雲母の平均値を用いた。これらの分析値をもちい て, THOMPSON (1976), FERRY and SPEAR (1978) の方法を用いて変成温度を求めた。結果は表6のよ うである。表6に示すように、菫青石・ざくろ石・ 黒雲母の共存する岩石 (2909A) については THOMP-SON (1976) による菫青石・ざくろ石、ざくろ石・黒 雲母に関してそれぞれ 622℃, 613℃ を示し, ざくろ 石・黒雲母に関する FERRY and SPEAR (1978)の 方法は高い値を示す. THOMPSON の方法で董青石 ・ざくろ石とざくろ石・黒雲母で非常によく一致 した値を示すことはこの温度でこの岩石が一つの平 衡状態になったことを示すのかも知れない. 一方, ざくろ石・黒雲母の共存するもう一つの岩石 (2903C) においては、THOMPSON および FERRY and SPEAR の各方法において 2909A に比べて約 100℃ 位の高温 を示す. このことは, 2909A から求められた変成温 度は後の後退変成作用の影響の結果を示し,2903Cか らの変成温度がこの地域の広域変成作用の温度を示 すのかも知れない。2903Cの岩石のざくろ石は累帯構

造が顕著で, Mg/Mg+Fe値に関して三つに別かれ て分布し,その内多くが集中する0.149-0.158の値の 平均値は0.153である.この値を用いて THOMPSON の方法で求められたざくろ石・黒雲母からの変成温 度(640°C)は、2909A(620°C)のものと類似の値を示 す.このことに加えて,前に述べたように2909Aの 岩石の変成温度が董青石・ざくろ石,ざくろ石・黒 雲母の両方で非常によく一致することを考えると、 この温度は単なる後の毛勝岳花崗岩の貫入に伴う後 退変成作用の影響による中間値ではなくて,もう一 つの変成作用の時期の変成温度を示すのかも知れな い.

当地域の変成圧力の推定は、ONO (1977)の方法に 従って求めた. 2903Cの共存する董青石・ざくろ石の 分析値を用い、温度 622°C における圧力を求めた.結 果は $P_{H_{2}Q} = 1/2 P_{S}$ とした時 4.8Kb である.

低圧型の角閃岩相からグラニュライト相への漸移 帯は、塩基性岩での豊富な単斜輝石(ディオプサイ ド)の出現、泥質岩での白雲母の消失と珪線石・菫 青石・カリ長石の組み合わせによって特徴付けられ、 グラニュライト相は角閃石・単斜輝石・斜方輝石・

Sample No.		2909A				2903	BC				0517	,	
	1	2	3	4	1	2	3	4	5	1	2	3	4
SiO ₂	33.74	34.31	34.66	34.34	34.20	34.65	34.56	34.17	34.01	35.33	35.62	35.12	35.37
TiO ₂	3.46	2.82	3.30	3.41	3.40	1 .34	3.15	3.34	3.28	4.26	4.41	3.22	3.52
Al ₂ O ₃	16.74	18.15	17.77	17.94	16.30	16.51	16.49	16.01	15.37	15.07	15.07	15.93	15.85
FeO*	23.57	23.36	23.09	22.82	21.80	21.59	22.00	21.97	22.26	22.57	22.06	22.58	22.31
MnO	0.15	0.09	0.15	0.10	0.12	0.10	0.16	0.15	0.16	0.14	0.15	0.13	0.10
MgO	7.52	7.89	7.40	7.45	9.13	9.27	9.16	8.90	8.93	9.35	9.50	9.28	9.30
CaO	0.02	0.03	0.07	0.07	0.06	0.02	0.08	0.04	0.09	0.15	0.08	0.10	0.09
Na ₂ O	0.05	0.14	0.16	0:19	0.16	0.21	0.19	0.21	0.16	0.16	0.12	0.09	0.14
K ₂ O	9.08	9.03	9.04	8.78	8.91	8.97	8.96	8.75	8.91	9.12	9.56	9.55	9.47
Total	94.33	95.82	95.64	95.10	94.08	94.66	94.74	93.54	93.17	96.15	96.57	96.00	96.15
Number of	cations	(0 = 22)											
Si	5.333	5.308	5.363	5.333	5.367	5.390	5.385	5.398	5.417	5.444	5.459	5.427	5.443
Al	3.119	3.310	3.242	3.284	3.016	3.028	3.028	2.982	2.886	2.738	2.723	2.902	2.876
Ti	0.411	0.328	0.384	0.398	0.401	0.391	0.369	0.397	0.393	0.494	0.508	0.374	0.409
Fe	3.116	3.023	2.988	2.969	2.861	2.809	2.867	2.903	2.965	2.908	2.827	2.918	2.871
Mn	0.020	0.012	0.020	0.013	0.016	0.013	0.021	0.020	0.022	0.018	0.019	0.017	0.013
Mg	1.771	1.810	1.707	1.724	2.135	2.148	2.127	2.095	2.120	2.147	2.170	2.137	2.133
Ca	0.003	0.005	0.012	0.012	0.010	0.003	0.013	0.007	0.015	0.025	0.013	0.017	0.015
Na	0.015	0.042	0.048	0.057	0.049	0.063	0.057	0.064	0.049	0.048	0.036	0.027	0.042
K	1.831	1.782	1.785	1.740	1.784	1.780	1.781	1.763	1.810	1.793	1.869	1.883	1.859
Mg/Mg+Fe	0.362	0.375	0.364	0.367	0.427	0.433	0.426	0.419	0.417	0.425	0.434	0.423	0.423

表3 黒雲母の EPMA 分析値

FeO*: 全 Fe 量を FeO として計算した.

表4 輝石の EPMA 分析値

Sample No.				5	17					476		
	1	2	3	4	5	6	7	8	1	2	3	4
SiO ₂	48.12	48.70	48.83	48.73	48.36	48.85	48.34	48.63	52.29	51.28	52.62	52.14
TiO ₂	0.09	0.12	0.12	0.12	0.12	0.14	0.10	0.16	0.10	-0.07	0.08	0.01
Al ₂ O ₃	0.42	0.35	0.31	0.28	0.28	0.19	0.50	0.48	0.83	0.42	0.64	0.55
FeO	36.19	36.61	37.00	36.79	36.14	37.51	36.54	35.58	14.92	14.69	15.67	15.17
MnO	1.10	1.23	1.07	1.11	1.16	1.30	1.22	1.24	0.57	0.60	0.63	0.63
MgO	11.40	11.84	11.78	12.08	12.12	10.59	11.85	12.13	8.88	9.24	8.85	9.22
CaO	0.54	0.60	0.49	0.47	0.55	0.55	0.55	0.64	22.72	23.40	22.98	23.07
Na₂O		0.02	0.02		0.02	0.02	0.04	0.95	0.25	0.18	0.25	0.23
K ₂ O		0.01		0.01		0.01	0.01	0.02	0.08		0.02	0.01
Total	97.86	99.48	99.62	99.59	98.75	99.16	99.15	99.83	100.64	99.88	101.74	101.12
Number of	cations	(0 = 6)										
Si	1.980	1.972	1.975	1.971	1.970	1.992	1.965	1.960	1.998	1.982	1.996	1.988
Al	0.020	0.017	0.015	0.013	0.013	0.009	0.024	0.023	0.037	0.019	0.029	0.025
Ti	0.003	0.004	0.004	0.004	0.004	0.004	0.03	0.005	0.003	0.002	0.002	0.003
Fe	1.244	1.240	1.252	1.244	1.231	1.279	1.242	1.199	0.477	0.475	0.497	0.484
Mn	0.038	0.042	0.037	0.038	0.040	0.045	0.042	0.042	0.018	0.020	0.020	0.020
Mg	0.698	0.715	0.710	0.728	0.736	0.644	0.718	0.729	0.506	0.532	0.500	0.524
Ca	0.024	0.026	0.021	0.020	0.024	0.024	0.024	0.028	0.930	0.969	0.934	0.943
Na		0.002	0.002	•••••	0.002	0.002	0.003	0.074	0.019	0.013	0.018	0.017
К		0.001		0.001		0.001	0.001	0.001	0.004		0.001	
100 X _{Fe}	63.3	62.6	63.1	62.4	61.8	65.7	62.6	61.3	24.9	24.0	25.7	24.8
100 X _{Mg}	35.5	36.1	35.8	36.5	37.0	33.1	36.2	37.3	26.5	26.9	25.9	26.9
100 X _{ca}	1.2	1.3	1.1	1.0	1.2	1.2	1.2	1.4	48.6	49.0	48.4	48.3

FeO*: 全 Fe 量を FeO として計算した.

斜長石の組み合わせによって特徴付けられる (TU-RNER, 1968). 当地域の泥質片麻岩については白雲母 が消失し, 珪線石・董青石・カリ長石の組み合わせ が存在し, さらに斜方輝石・黒雲母の組み合わせが 存在する. 一方, 角閃石片麻岩においては, 単斜輝 石は豊富に存在するが斜方輝石は存在しない. した がって, 当地域の変成作用の最頂点は, 角閃岩相の

表5 角閃石の EPMA 分析値

Sample No.			476		
	1	2	3	4	5**
SiO ₂	40.17	41.22	43.32	41.79	47.16
TiO₂	1.65	1.57	1.26	1.75	1.04
Al ₂ O ₃	9.78	10.22	8.65	10.17	8.97
FeO*	22.37	23.05	21.27	22.39	21.56
MnO	7.07	7.03	7.56	7.10	7.50
MgO	0.41	0.37	0.43	0.35	0.36
CaO	11.54	11.75	11.75	11.63	11.76
Na₂O	1.52	1.60	1.48	1.53	1.44
K ₂ O	1.30	1.38	1.05	1.39	1.20
Total	95.81	98.19	96.77	98.10	100.99
Number of	cations	(0 = 23)			
Si	6.399	6.407	6.735	6.467	6.952
Al	1.837	1.873	1.585	1.855	1.559
Ti	0.198	0.184	0.147	0.204	0.115
Fe	2.980	2.997	2.765	2.898	2.658
Mn	0.055	0.049	0.057	0.046	0.045
Mg	1.679	1.629	1.752	1.637	1.648
Ca	1.970	1.957	1.957	1.928	1.858
Na	0.470	0.482	0.446	0.459	0.412
K	0.264	0.274	0.208	0.274	0.226

FeO*: 全Fe量をFeOとして計算した.

** :結晶の周縁部の青緑色角閃石

瞭

高温部とグラニュライト相の漸移帯に属すると思われる. RAASE (1974)によると, Ti 含有量0.20-0.25のものはホルンブレンド・グラニュライト相に対応するとされているが,当地域のホルンブレンドの分析値の内高い Ti 値を示すものは0.198-0.204であり,これは上記の鉱物組み合わせからの結論を支持しているように思われる. PHILIPS (1980)は,角閃石-グラニュライト相の転移温度を740℃-800℃, 圧力を 4-6Kbに見積っている.これは上記岩石 2903Cのざくろ石・黒雲母から推定された温度に類似である.

顕微鏡下の観察では、スピネルは菫青石より前に 形成された組織を示し,変成作用の初期に形成され たと考えられる(藤吉, 1973). 一方当地域には, 優 白質花崗岩が岩脈状、プール状、脈状に入っている が,多くは片理を切って存在し,変成作用の末期に 貫入・注入したことを示す。また、紅柱石、および 少なくとも一部の菫青石は褶曲運動後に生成した組 織を示し(藤吉, 1973),変成作用の末期に形成され たと思われる。したがって、紅柱石、および少なく とも一部の菫青石の形成は,この優白質花崗岩によ るミグマタイト化作用の時期を示しているのかも知 れない。スピネル・コランダムは、大理石または石 灰質片麻岩中に存在するか、またはこれと密接に関 係して存在する(藤吉, 1973). このことは、これら の岩石が大理石または石灰質片麻岩によって優白質 花崗岩の貫入・注入の影響をまぬがれたことを示し, もとは当地域に豊富に存在していたのかも知れない。

表6 董青石・ざくろ石およびざくろ石・黒雲母の地質温度計による変成温度見積り

Sample No.	$\begin{array}{c} X_{Mg} \\ garnet \end{array}$	X_{Mg} cordierite	$\begin{array}{c} X_{\text{Mg}} \\ \text{biotite} \end{array}$	InK _{D1} cordierite-garnet	InK _{D2} biotite-garnet	Tı℃	Τ₂℃	T₃℃
2909A	0.115	0.529	0.367	2.156	1.495	622	613	650
2903C* 2903C**	0.179 0.153		0.424 0.424		$\begin{array}{c} 1.217\\ 1.408\end{array}$		703 639	780 690

$$K_{D1}(\text{co-ga}) = \left(\frac{X_{Mg}}{1 - X_{Mg}}\right)_{CO} / \left(\frac{X_{Mg}}{1 - X_{Mg}}\right)_{ga}$$

T₁, T₂: THOMPSON (1976); T₃: FERRY and SPEAR (1978

*: ざくろ石の X_{Mg}の高い値の平均値を用いた.

**: ざくろ石の X_{Mg} 0.149-0.158 の範囲内の平均値を用いた(詳しくは本文).

当地域で、泥質片麻岩の菫青石・ざくろ石、ざく ろ石・黒雲母から得られた二つの異なる変成温度は、 スピネル, コランダム, 斜方輝石, Mg 値の高いざく ろ石 (X_{Mg} = 0.15-0.16) 等の形成で表わされる高温の 変成作用 (700-780℃) と優白質花崗岩の貫入・注入 に伴う紅柱石, 菫青石, Mg 値のより少ないざくろ石 (2903CでX_{Mg} ≒0.13, 2909AでX_{Mg} ≒0.092)の形成で 表わされる変成作用 (610-650℃) に対応させられるの かも知れない。この問題はさらに詳しく検討する必 要があるが, HIROI (1983) は黒部川下流の宇奈月地 域からの優白質花崗岩のミグマタイト化作用の認め られない角閃岩相の Staurolito-Kyanite 帯で, ざく ろ石・黒雲母の地質温度計を用いて THOMPSON の方 法で 600-650℃ の変成温度を推定している.このデー タは、当地域の初期の変成作用が700℃以上の高温に 達したことを支持しているだろう.当地域の菫青石・ ざくろ石からの変成岩の圧力 4.8Kb は, 異なる方法 で推定されているが, HIROI (1983)による宇奈月地 域の変成岩の圧力 5-6Kb より低い. このことは、優 白質花崗岩の貫入・注入に伴う変成作用で紅柱石, 菫青石が形成されたのとよく一致して、この優白質 花崗岩の貫入に伴い少し隆起したことを意味するか も知れない。

謝 辞

この研究を進めるにあたり,静岡大学理学部地 球科学教室の長沢敬之助教授,黒田 直助教授, 和田秀樹博士に有益なご助言をいただいた。EPMA による鉱物の化学分析に対しては,名古屋大学理学 部地球科学教室の鈴木和博博士にご助力をいただい た。野外のサンプリングに対しては,富山営林署濁 谷治山事業所の職員の方々に多大の便宜をはかって いただいた。これらの方々に厚く謝意を表します。

本研究には、文部省科学研究費(一般研究 B,課 題番号60470053)を使用した。当局に厚くお礼申し 上げる.

文 献

- ASHWORTH, J. R. and CHINNER, G. A. (1978), Coexisting garnet and cordierite in migmatites from the Scotish Caledonides. *Contrib. Mineral. Petrol.*, **65**, 379-394.
- FERRY, J. M. and SPEAR, F. S. (1978), Experimental calibration of the Partitioning of Fe and Mg between biotite and garnet. *Contrib. Mineral. Petrol.*, 66, 113-117.
- FUJIYOSHI, A. (1970), Potassium feldspars from gneisses and granites in the uppere Hayatsuki-gawa area, central Japan. *Jour. Earth Sci. Nagoya Univ.*, 18, 1-27.
- 藤吉 瞭(1973), 富山県立山川(早月川上流)地域の飛驒 変成帯中の泥質片麻岩に含まれる特徴的鉱物およびそ の産状.地質雑, 79, 761-770.
- HIROI, Y. (1983), Progressive metamorphism of the Unazuki pelitic schists in the Hida Terrane, central Japan. *Contrib. Mineral. Petrol.*, 82, 334-350.
- ISHIOKA, K. and SUWA, K. (1956), Metasomatic development of staurolite schist from rhyolite in the Kurobe-gawa area, central Japan, a preliminary report. *Jour. Earth Sci.*, *Nagoya Univ.*, **4**, 123-140.
- ONO, A.(1977), Temperature and pressure of the Ryoke gneisses estimated by garnet-cordierite geothemometer. Jour. Jap. Assoc. Mineral. Petrol. Econ. Geol., 72, 114-117.
- PHILLIPS, G. N. (1980), Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. *Contrib. Mineral. Petrol.*, 75, 377-386.
- RAASE, P. (1974), A1 and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. *Contrib. Mineral. Petrol.*, 45, 231-236.
- THOMPSON, A. B. (1976), Mineral reactions in pelitic rocks: . Calculation of some P-T-X (Fe-Mg) phase relations. *Am. Jour. Sci.*, 276, 425-454.
- TURNER, F. J. (1968), *Metamorphic Petrology*. McGraw Hill, New York.