1	Enhancement of lipase catalyzed-fatty acid methyl esters production
2	from waste activated bleaching earth by nullification of lipase
3	inhibitors
4	
5	Lies Dwiarti ^a , Ehsan Ali ^a and Enoch Y. Park ^{a,b*}
6	^a Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of
7	Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
8	^b Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of
9	Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-
10	8529, Japan

^{*} Corresponding author. Tel./fax: +81 54 238 4887.

Email address: acypark@ipc.shizuoka.ac.jp (E. Y. Park).

11 ABSTRACT

This study sought to identify inhibitory factors of lipase catalyzed-fatty acid 12 methyl esters (FAME) production from waste activated bleaching earth (wABE). 13 During the vegetable oil refinery process, activated bleaching earth (ABE) is used for 14 15 removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted 16 from the wABE with methanol and evaluated by infra-red (IR)-spectroscopy, which 17 revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the 18 lipase during FAME conversion from wABE. The inhibition by a mixture of 19 chlorophyll a and b was found to be competitive. The inhibition of the enzymatic 20 hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was 21 competitive, while the inhibition by chlorophyll b alone was non-competitive. 22 Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and 23 accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to 24 the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum 25 FAME production rate improved 120-fold, as compared to that without the addition of 26 KOH. The alkali-combined lipase significantly enhanced the FAME production rate 27 from wABE, in spite of the presence of the plant pigments, and even when a lower 28 29 amount of lipase was used as a catalyst.

- *Keywords:* Activated bleaching earth (ABE); Lipase; Chlorophyll; Fatty acid methyl
- 31 ester (FAME); Biodiesel; Biorefinery.

1. Introduction

33	Due to the desires for worldwide environmental protection and the conservation
34	of non-renewable natural resources, the use of biodiesel or fatty acid methyl esters
35	(FAME) as replacements for fossil fuels has gained importance. The carbon present in
36	biodiesel exhaust was originally fixed from the atmosphere, which makes it a bio-
37	neutral fuel. Additionally, the levels of SO ₂ , CO, halogens and soot in the exhaust gas
38	produced by the combustion of biodiesel are much lower than those produced by
39	petroleum diesel (Ulusoy et al., 2009).
40	Biodiesel is produced by alcoholysis of triglycerides with short chain alcohols,
41	including methanol. The triglycerides are obtained from vegetable oils, such as soybean
42	oil, rapeseed oil, palm oil, jatropha oil, sunflower oil, corn oil, peanut oil, canola oil and
43	cotton seed oil (Fukuda et al., 2001). In 2006-2007, biodiesel production in the United
44	States increased dramatically, by 80%, from 7.9 million tons in 2006 to an estimated
45	14.2 million tons in 2007 (Demirbas and Balat, 2006). Similarly, the overall biodiesel
46	production in the European Union increased by 53%, from 3.2 million tons in 2005 to
47	nearly 4.9 million tons in 2006 (Du et al., 2008). The EU has set a target for all-
48	transport-related petrol and diesel to contain 5.75% biofuel by 2010.
49	Biodiesel is produced by either a chemical transesterification reaction or a
50	biocatalyzed-transesterification conversion. Although chemical transesterification
51	results in the high conversion of triglycerides to FAME in a short time, it requires
50 51	biocatalyzed-transesterification conversion. Although chemical transesterification results in the high conversion of triglycerides to FAME in a short time, it requires

52	further downstream treatment, due to the formation of soap when alkali catalysts are
53	used or the corrosion of equipment when acid catalysts are used. Furthermore, chemical
54	transesterification is more energy-intensive, requiring a glycerol recovery process and
55	the removal of the acidic or alkali catalysts from the FAME product, as well as alkaline
56	waste-water treatment. Finally, free fatty acids and water can interfere with the reaction
57	(Meher et al., 2006). In contrast to chemical transesterification, biocatalyzed-
58	transesterification can convert the free fatty acids in used oil to FAME easily, under
59	moderate conditions. Furthermore, the purification of the FAME product and the
60	recovery of glycerol are much easier than those processes after a chemical
61	transesterification reaction. However, the high cost of the biocatalyzed-
62	transesterification process has hampered its industrial application (Fukuda et al., 2001).
63	Biodiesel fuel can be used in regular diesel vehicles without any engine modifications.
64	Additionally, because biodiesel is oxygenated, it is a better lubricant than diesel fuel,
65	which increases the life of the engine, and it is combusted more completely
66	(Anastopoulus et al., 2001). Moreover, the higher flash point of biodiesel makes it a
67	safer fuel to use, handle and store, which is particularly advantageous in sensitive
68	environments, such as cities (Vasudevan and Briggs, 2008).
69	Activated bleaching earth (ABE) is a high capacity absorbent that is commonly
70	used to absorb the dark color of crude oil, which is caused by chromophoric chloroplast-
71	related materials, during the crude oil refinery process. Almost of all impure compounds

72	can be adsorbed by ABE, but vegetable oil is adsorbed by up to 35%-40% on a weight
73	basis, and a large amount of wABE is discarded from vegetable oil-refinery industries
74	(Kojima et al., 2004; Park et al., 2008). The ABE dosage is usually based on the
75	reduction in color required during the vegetable oil refinery process. Currently, Japan
76	discards more than 80,000 metric tons of wABE annually (Park et al., 2006). Therefore,
77	it would be useful to utilize the oil contained in discarded wABE and convert it to more
78	valuable products, such as biodiesel. The conversion of discarded oil in wABE to
79	biodiesel has previously been reported (Lara and Park, 2004; Park and Mori, 2005;
80	Pizzaro and Park, 2003). However, when wABE was used as a triglyceride source for
81	FAME conversion, the FAME yield was not satisfactory, as compared to the use of
82	ABE that contained vegetable oil. These findings suggest that the presence of some
83	factors inhibited the lipase activity during the transesterification reaction. Therefore, in
84	this study, the effects of the pigment components extracted from wABE on the
85	transesterification reaction were investigated, as well as on the lipase activity.
86	Furthermore, combining alkali with the lipase was found to enhance significantly the
87	transesterification reaction in wABE.

88 2. Materials and methods

89 2.1. Materials

90	ABE and wABE were provided by Mizusawa Ind. Chem. Ltd. (Niigata, Japan).
91	Palm oil, hexane, methanol, acetone, propanol, and chlorophyll a and b were purchased
92	from WAKO Pure Chem. Ltd. (Tokyo, Japan). QLM lipase was purchased from Meito
93	Sangyo Ltd. (Nagoya, Japan). The artificial wABE was composed of ABE that had
94	adsorbed 35% (w/w) crude palm oil.

95 2.2. Pigment extraction from wABE and purification

96 Palm oil was extracted from 10 g of wABE, by suspending the sample in 20 ml of hexane, shaking it for 1 min and then centrifuging the sample at $4000 \times g$ for 5 min. 97 98 This process was repeated three times. After centrifugation, the organic liquid phase was separated, and the hexane was evaporated by placing the sample in a heating block 99 (80°C). The oil-extracted wABE that remained was then combined with 20 ml of 100 methanol, shaken mildly for 1 min, and then centrifuged at $4000 \times g$ for 5 min. This 101 process was repeated twice. The supernatant containing the methanol was then 102 103 evaporated, by placing the sample in a heating block at 80°C. The extracted pigment was then separated by partial column chromatography ($18 \text{ mm} \times 100 \text{ mm}$), in a column 104 105 packed with 22 ml of Silica gel 60 (40-63 µm), using a mixture of petroleum ether and 106 acetone at a ratio of 3:1 as the eluent.

107 2.3. wABE-extracted pigment analysis

108	The pigment extracted from the wABE was analyzed by thin layer
109	chromatography (TLC) and infra-red (IR) spectroscopy. For TLC analysis, the pigment
110	fractions were diluted 10-fold with methanol. Pure chlorophyll a (0.37%, w/v) and b
111	(0.28%, w/v) were diluted 3-fold with methanol and used as standards. Pure acetone
112	was used as the solvent.
113	IR spectroscopy was conducted at wavelengths ranging from 450 to 800 nm.
114	Pure chlorophyll a (1.1 mg/ml) and b (0.55 mg/ml) dissolved in methanol were used as
115	standards for the IR spectroscopy.
116	The chlorophyll contained in the wABE was quantified by colorimetric
117	determination. Briefly, 0.5 g of pigment-containing wABE were suspended in 3 ml of
118	80% acetone, vortexed, and then diluted to 5 ml with 80% acetone. The sample was
119	vortexed again, and then was centrifuged for 5 min. The absorbances at 663.6 nm and
120	646.6 nm were used to measure the levels of chlorophyll a and b, respectively (Yang et
121	al., 1998). Specifically, the contents of chlorophyll a and b were calculated as follows:
122	Chlorophyll a (μ g/ml) = 12.25A _{663.6} - 2.55A _{646.6}
123	Chlorophyll b (μ g/ml) = 20.31A _{646.6} - 4.91A _{663.6}
124	Chlorophyll a + b (μ g/ml) = 17.76A _{646.6} + 7.34A _{663.6}
125	The weight of chlorophyll a, b or a and b per gram of sample ($\mu g/g$ sample) was
126	then obtained by multiplying the concentration by the appropriate dilution factor and
127	dividing this value by the weight of the sample (g).

129	Analytical grade chlorophyll a (370 $\mu g/ml)$ and b (280 $\mu g/ml)$ were added to
130	hexane (60%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). The mixtures were
131	then incubated for 4 h at 28°C and 120 rpm in a rotary shaker, during which time
132	sampling was conducted every hour, and the organic solvent contained in the samples
133	was evaporated. The resulting enzyme powder (2.5 mg) was then dissolved in 1 ml of
134	water for the lipase assay.
135	2.5. Effects of lipase-catalyzed FAME conversion from wABE in the presence of plant
136	pigments
137	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil
137 138	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the
137 138 139	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the inhibitory effect of pigments on lipase, two types of substrate were used: pure palm oil
137 138 139 140	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the inhibitory effect of pigments on lipase, two types of substrate were used: pure palm oil and palm oil extracted from wABE. In addition, pure chlorophyll a (0.37%, w/v) and b
137 138 139 140 141	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the inhibitory effect of pigments on lipase, two types of substrate were used: pure palm oil and palm oil extracted from wABE. In addition, pure chlorophyll a (0.37%, w/v) and b (0.28%, w/v) were used as the reference pigments, respectively. Sampling was
137 138 139 140 141 142	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the inhibitory effect of pigments on lipase, two types of substrate were used: pure palm oil and palm oil extracted from wABE. In addition, pure chlorophyll a (0.37%, w/v) and b (0.28%, w/v) were used as the reference pigments, respectively. Sampling was conducted every 2 h, after which the lipase activity was measured. All reactions were
 137 138 139 140 141 142 143 	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the inhibitory effect of pigments on lipase, two types of substrate were used: pure palm oil and palm oil extracted from wABE. In addition, pure chlorophyll a (0.37%, w/v) and b (0.28%, w/v) were used as the reference pigments, respectively. Sampling was conducted every 2 h, after which the lipase activity was measured. All reactions were conducted at 28°C and 120 rpm in a rotary shaker.
 137 138 139 140 141 142 143 	The reaction was conducted in the presence of hexane (60%, w/w), vegetable oil (35%, w/w), methanol (4.5%, w/w), and lipase (1.0%, w/w). To investigate the inhibitory effect of pigments on lipase, two types of substrate were used: pure palm oil and palm oil extracted from wABE. In addition, pure chlorophyll a (0.37%, w/v) and b (0.28%, w/v) were used as the reference pigments, respectively. Sampling was conducted every 2 h, after which the lipase activity was measured. All reactions were conducted at 28°C and 120 rpm in a rotary shaker.

pigments

146	To analyze the kinetic activity of the lipase in the presence of chlorophyll a and
147	b, artificial wABE that adsorbed chlorophyll a and b at a similar ratio as in wABE was
148	used. The effects of chlorophyll a alone and chlorophyll b alone were also measured.
149	The reaction conditions were as follows: ABE: 60 g; crude palm oil: various
150	concentrations ranging from 0 M to 0.3 M; methanol: 4 moles to oil; hexane as the
151	solvent: 100 ml; and lipase, 1% (w/w ABE). Various concentrations of pure chlorophyll
152	dissolved in methanol (Table 1) were added this reaction condition and then, the
153	reaction was conducted at 35°C. The maximum reaction velocity (V_{max}) and the
154	Michaelis-Menten constant (K_m) were determined from a Lineweaver-Burk plot of the
155	Michaelis-Menten kinetics, respectively.
156	The following equations were used to evaluate the inhibition kinetics:
157	
158	$\frac{\mathbf{I}}{\mathbf{F}} = \frac{\mathbf{F}_{\mathbf{h}}}{\mathbf{F}_{\mathbf{h}\mathbf{k}}} \left(1 + \frac{\mathbf{f}}{\mathbf{f}_{\mathbf{f}}} \right) \frac{\mathbf{I}}{\mathbf{f}} + \frac{\mathbf{I}}{\mathbf{F}_{\mathbf{h}}} \tag{1}$
159	
160	where V, I, S, K_I denote the reaction velocity (conversion %/min), the concentrations of
161	inhibitor and substrate, and the inhibition constant, respectively.
162	
163	$K_{\mathbf{m} \ \mathbf{obs}} = K_{\mathbf{m}} \left(1 + \frac{I}{R_{\mathbf{i}}} \right) \tag{2}$

165 where $K_{\rm m \, obs}$ denotes the apparent Michaelis-Menten constant.

166 Rearranging equation (1),

167

168
$$\frac{\mathbf{l}}{\mathbf{v}} = \frac{\mathbf{r}_{\mathbf{m}}}{\mathbf{r}_{\mathbf{m}}} \cdot \frac{1}{\mathbf{s}} + \frac{1}{\mathbf{r}_{\mathbf{m}}}$$
(3)

169

170 $K_{\rm m \ obs}$ was obtained from a Lineweaver-Burk plot of 1/V and 1/S. From equation (2), the 171 Michaelis-Menten constant and the inhibition constant were obtained.

172 2.7. Nullification of inhibition by using alkali-combined lipase as a catalyst in the

173 *presence of plant pigments and its kinetics*

174 In order to nullify the inhibitory effect on FAME conversion, KOH (1%, w/w) was added into the reaction mixture containing hexane (60%, w/w), vegetable oil (35%, 175 w/w), methanol (4.5%, w/w), pure chlorophyll a (0.37%, w/v) and b (0.28%, w/v) and 176 lipase (1% or 0.05%, w/w). Sampling was performed every 3 h, and the lipase activity 177 was measured. All reactions were conducted at 28°C and 120 rpm in a rotary shaker. 178 To investigate the effect of KOH addition on FAME production from the 179 vegetable oil contained in wABE in the presence of plant pigments, the KOH 180 concentration was varied from 0 to 1.5% (w/w ABE), with a fixed lipase concentration 181 (0.05% w/w ABE). The reaction mixture contained ABE (60 g), crude palm oil (from 0 182 183 M to 0.3 M), pure chlorophyll a and b (0.37% and 0.28% w/v, respectively, dissolved in methanol), methanol (4 moles to oil), hexane as the solvent (100 ml), lipase (0.05% w/w 184

ABE), and KOH (0, 0.3, 0.6, 0.9, 1.2 and 1.5% w/w ABE). The reaction was conducted at 35°C. The maximum reaction velocity (V_{max}) and the apparent Michaelis-Menten constant ($K_{m obs}$) were determined from a Lineweaver-Burk plot of Michaelis-Menten kinetics, respectively.

189 *2.8 Lipase assay*

The lipase activity (in international units (IU)) was measured using a Lipase Kit 190 191 S (Dainippon Sumitomo Pharmaceutical Co., Osaka, Japan), according to the protocol specified by the supplier. Briefly, the reaction mixture was centrifuged at $4000 \times g$ for 192 193 10 min, and the supernatant was then used for the enzyme assay. The supernatant was diluted with distilled water, and the reaction mixture was maintained at 30°C (Kurooka 194 and Kitamura, 1978), while the optical density of the samples was measured at 412 nm. 195 The activity was then determined as follows: 196 Lipase activity (IU/ml) = $0.147 \times A_{412} \times dilution$ factor. 197

198

199 **3. Results**

200 3.1 Extraction and analysis of pigments within wABE

A total of 3.5 g (35%, w/w) and 0.75 g (7.5%, w/w) of oil and pigment were extracted from 10 g of wABE, respectively. The extracted pigment was sticky and dark

203	brown. After separation using partial column chromatography, 2 thick bands were
204	observed in the silica column, but the components of the pigment could not be separated
205	by TLC, due to poor mobility. This hindered mobility may have been a consequence of
206	other impurities or the oil. Therefore, IR spectroscopy was used to identify the
207	composition of the extracted pigment. The IR spectroscopic analysis revealed that the
208	pigment extracted from wABE had spectra similar to those of chlorophyll a and b (data
209	not shown). These results indicated that the pigments extracted from the wABE
210	originated from plant seeds and were adsorbed on the ABE during the refinement of the
211	vegetable oils. Additionally, the chlorophyll extracted from wABE containing soybean
212	oil or rapeseed oil also had spectra similar to the control spectra of chlorophyll a and b.
213	Furthermore, 788 μ g of chlorophyll/100 g wABE were extracted from the wABE
214	containing rapeseed oil, while 413 $\mu g/100$ g wABE were extracted from the wABE
215	containing soybean oil. The chlorophyll a and b contents of 100 g of wABE containing
216	palm oil were generally found to be 370 μg and 280 μg , respectively. Finally, since the
217	extracted chlorophyll only represented a small portion of the total amount of extracted
218	pigment, it seems that the extracted pigment from the vegetable oils within wABE
219	contained not only chlorophyll, but also other impure pigments.

3.2. Enzyme stability in the presence of chlorophyll a and b without oil

221	When lipase was mixed with hexane and methanol without oil, it was dispersed
222	properly throughout the mixture and resulted in the production of a powder; however,
223	after the addition of chlorophyll, the enzyme coagulated and formed beads or gelatinous
224	pellets (data not shown). Lipase QLM was stable in the presence of water, hexane, and
225	methanol, but the activity of the lipase decreased to around 70% in the presence of
226	chlorophyll (Fig. 1). These findings strongly support the idea that the low yield of
227	biodiesel conversion from wABE is caused by the presence of plant pigments as
228	impurities.

3.3. Effects of extracted pigments on the lipase-catalyzed FAME conversion from wABE

The effect of the pigment extracted from wABE on the lipase activity was 230 investigated in the presence of hexane and methanol. The effects of hexane, methanol 231 and biodiesel on the enzyme activity were negligible, as compared to the effects of 232 chlorophyll and pigment extracted from wABE (Fig. 2). In the presence of chlorophyll, 233 the enzyme activity was inhibited and gradually decreased to 60%. Moreover, in the 234 235 presence of pigment extracted from wABE, the enzyme activity decreased drastically, 236 suggesting that the pigment may have a strong inhibitory effect against the lipase activity. 237

238 *3. 4. Inhibitory effect of chlorophyll on lipase activity*

239	To investigate the inhibitory effect of chlorophyll on the lipase activity, artificial
240	wABE, containing chlorophyll a and b and vegetable oil, was used. To evaluate the
241	lipase activity during the initial FAME conversion from wABE, the temperature was
242	maintained at 35°C. The mixture of chlorophyll a and b was added, and then a double
243	reciprocal plot of the initial reaction velocity and the substrate concentration was
244	constructed (Fig. 3). The V_{max} , which was determined from Eq. 3, remained constant at
245	0.74 %/min. However, the $K_{\rm mobs}$ value increased as the chlorophyll concentration
246	increased (data not shown). These findings indicate that the affinity between the
247	substrate and enzyme decreased as the concentration of the inhibitor increased. Based
248	on the relationship between $K_{\text{m obs}}$ and the inhibitor, the K_{m} and K_{I} were determined to
249	be 30.4 mM and 0.36 mg of chlorophyll a and b per liter, respectively. As indicated in
250	Fig. 3, the type of inhibition induced by the chlorophyll a and b mixture was
251	competitive reversible.

To investigate the individual effects of chlorophyll a and b, the experiments were conducted separately, using various concentrations of chlorophyll a and b (Table 1). When only chlorophyll a was added as an inhibitor, the type of inhibition was competitive reversible (Fig. 4A, Table 2). However, when only chlorophyll b was added (Fig. 4B), the $K_{m obs}$ values remained around 60.3 mM-68.3 mM, but the V_{max} values decreased as the concentration of the inhibitor increased (Table 2). A comparison of the $K_{m obs}$ values of chlorophyll a and chlorophyll b (Table 2) indicated that the $K_{m obs}$ values

259 of chlorophyll a sharply increased with greater chlorophyll a concentrations, while the increase of $K_{\rm m \, obs}$ of chlorophyll b was essentially constant. Thus, the inhibition induced 260 by chlorophyll b was non-competitive reversible. 261 The $K_{\rm m}$ and $K_{\rm I}$ values were 40.5 mM and 0.52 mg/l, respectively, in the presence 262 263 of chlorophyll a, while they were 57.12 mM and 24.91 mg/l, respectively, in the presence of chlorophyll b (Table 3). Chlorophyll a showed a higher inhibitory effect 264 than chlorophyll b; therefore, it was assumed that chlorophyll a plays a dominant role in 265 inhibiting the FAME conversion from wABE by QLM lipase. 266

3.5. Nullification of inhibitory effect by using alkali-combined lipase as a catalyst and
its kinetics in the presence of chlorophylls

When 1% KOH (w/w wABE) was added into the reaction mixture containing 269 270 1% lipase as a catalyst, the FAME conversion was 100% complete within a 3 h reaction. Furthermore, when the lipase concentration was decreased to 0.05%, but 1% KOH was 271 272 present in the reaction mixture, 45.5% of FAME conversion was achieved within 12 h, and 90.8% FAME conversion was acquired at 36 h (data not shown). The KOH-273 274 combined lipase significantly enhanced the FAME conversion, by nullifying the 275 inhibitory effect of chlorophyll in wABE. 276 The enhanced effect of FAME conversion by alkali-combined lipase was

analyzed. When 0.05% of lipase was used in the presence of various amounts of KOH

278	in the reaction, the $K_{\rm m obs}$ and $V_{\rm max}$ values were determined according to Eq. (3), as
279	shown in Table 4. When the amount of KOH was 0.9%, the $K_{\rm m obs}$ and $V_{\rm max}$ values were
280	19.44 mM and 30.03%/min, respectively, whereas without KOH in the FAME reaction
281	mixture, the $K_{\rm m}$ and $V_{\rm max}$ value were 0.16 mM and 0.25%/min, respectively (Table 4).
282	Although the affinity decreased in the presence of 0.9% of KOH, the initial velocity
283	increased 120-fold, as compared to that without KOH addition. Thus, KOH nullified the
284	inhibitory effect of chlorophyll in the presence of wABE and worked as an enhancer for
285	FAME conversion in wABE.

4. Discussion

287	Many studies have been conducted to evaluate the regeneration of wABE.
288	Kalam and Joshi (1988) reported the regeneration of wABE in aqueous medium using
289	hexane extraction and autoclaving at 235°C, but found that the adsorption capacity of
290	the regenerated waste bleaching earth was decreased by up to 50% after the fourth cycle
291	of regeneration. They also regenerated waste bleaching earth using wet oxidation
292	(Zimmerman process) after hexane extraction and a thermal process at 200°C, using an
293	oxygen intake pressure of 0.5 MPa, but obtained only 80-82% regeneration when a 35%
294	slurry concentration was used.
295	Low et al. (1996) investigated carbonized and hexane-extracted bleaching earth

that was used to remove organic dyes from aqueous medium. They found that the

297	maximum capacities to adsorb basic dyes were larger than those of acid dyes and
298	reactive dyes, and that this was likely due to the negatively charged surface of the
299	bleaching earth. Boukerroui and Ouali (2000) regenerated waste bleaching earth by
300	thermal processing at 500°C, followed by washing with a hydrochloric acid solution.
301	Additionally, Tsai et al. (2002, 2003) regenerated waste bleaching earth by pyrolysis in
302	a rotary furnace at temperatures of 500-660°C, followed by chemical activation with
303	chloride salts. Chang et al. (2006) regenerated waste bleaching earth by lye-extraction
304	and thermal processing at 500°C and 800°C. Waldmann and Eggers (1991) regenerated
305	waste bleaching clay by high-pressure extraction at 350-750 bars, while King et al.
306	(1992) regenerated waste bleaching clay by using supercritical carbon oxide (SC-CO ₂)
307	extraction at 10,000-12,000 psig. All of the methods described above require a
308	carbonizing method, a high temperature or a pressurized condition, which leads to
309	increased costs.
310	Alternative utilization of wABE is to produce biodiesel from wABE without
311	separating the oil from the wABE or any other pretreatment; therefore, high temperature
312	and high pressure were not required. Unfortunately, some materials, which were mainly
313	composed of pigments and residual gum, could not be saponified and remained in the
314	wABE. These materials may cause increased viscosity and negatively influence the
315	FAME conversion (Pizzaro and Park, 2003). Another limitation was that the cost of
316	lipase is relatively high, making the industrial scale production of biodiesel unfeasible.

317	In this study, the pigment extracted from the wABE was analyzed, with the intent of
318	breaking down the vegetable oil that remained in the wABE for biodiesel, using less
319	lipase. The total amounts of oil and pigment extracted were 35% and 7.5% of the wABE,
320	respectively, on a per weight basis, which indicates that the pigment content in the oil
321	extracted from the wABE was up to 21.43%. Additionally, the pigments could not be
322	separated by TLC; therefore, they were evaluated by IR spectroscopy. The results of the
323	IR analysis revealed that the spectra of the extracted pigments were similar to those of
324	chlorophyll a and b (data not shown). In addition, the results demonstrated that the
325	extracts contained 3.7 and 2.8 mg of chlorophyll a and b per kilogram of wABE,
326	respectively. These findings indicate that other components were also present in the
327	pigment extracted from the wABE. Although the chlorophyll content in the wABE was
328	low, the lipase activity was decreased by 30% in its presence. During FAME conversion,
329	chlorophyll and pigment resulted in the lipase activity decreasing to 60% and 40%,
330	respectively. Additionally, chlorophyll a was found to have a higher inhibitory effect
331	than chlorophyll b. Although previous studies demonstrated that methanol showed
332	dead-end inhibition in the Ping Pong Bi Bi mechanism of FAME conversion from waste
333	cooking palm oil (Halim and Kamaruddin, 2008; Zuhair et al., 2007), the inhibitory
334	effect of the chlorophyll is dominant in biodiesel production from wABE containing
335	palm oil. Albertsson et al., (2007) reported that chloroplast membranes (thylakoids)
336	inhibited the lipase/co-lipase-catalyzed hydrolysis of triacylglycerols. Specifically, they

337	found that the addition of chloroplast membranes to refined food resulted in the
338	suppression of the food intake by rats, which caused a reduction in blood lipids.
339	In order to nullify the inhibitory effect of chlorophyll in the FAME conversion
340	reaction several methods were tried. The extraction of chlorophyll using methanol,
341	followed by evaporation (at 80°C), was still an impractical method and an expensive
342	process on an industrial scale. Therefore, trapping the plant pigments using chemical
343	agents may prevent the pigments from releasing from the wABE. For chlorophyll
344	blocking agents, CaCO ₃ , SiO ₂ , ZnSO ₄ , NiSO ₄ , EDTA, lecithin, citric acid and
345	polyethylene glycol (PEG) were tested. The addition of CaCO ₃ , SiO ₂ , ZnSO ₄ , EDTA,
346	lecithin and citric acid did not yield any improvement of the FAME conversion, as
347	compared to that without the addition of the blocking agents (data not shown). When
348	1% PEG (w/w wABE) was added to the FAME reaction mixture, the FAME conversion
349	increased by 12% over that without the PEG addition. PEG was able to trap or to
350	chelate chlorophyll, and formed a PEG-chlorophyll complex. However, when a lipase
351	concentration of 0.05% (w/w wABE) was used, the PEG was unable to nullify the
352	inhibitory effect of chlorophyll in the FAME reaction (unpublished data).
353	Surprisingly, the addition of 1% KOH (w/w wABE) to the reaction mixture
354	facilitated 100% FAME conversion within only 3 h. Furthermore, when the lipase
355	concentration was decreased to 1/20 of 1%, 91% FAME conversion could be achieved
356	in a 36 h reaction. When 0.9% KOH was added, the V_{max} value was 30.03%/min, which

357	was 120-fold higher than that without KOH addition. Thus, it concluded that KOH
358	seems to enhance the FAME conversion by nullifying the inhibitory effect of
359	chlorophyll in wABE. In this process, since the wABE adsorbs ionic compounds in the
360	reaction mixture the amount of potassium ion in the FAME assumes very little. If the
361	potassium ion is detected higher than the diesel oil standard, it should be removed.
362	If it is possible to produce lipase in the presence of an organic solvent, then the
363	FAME conversion reaction will be economized, because of the lower lipase cost. Many
364	organic solvent-tolerant bacteria and yeast, such as Pseudomonas aeruginosa, which
365	tolerates cyclo-hexane, and Bacillus sphaericus, Staphylococcus saprophyticus,
366	Burkholderia cepacia, Burkholderia multivorans, and Candida cylindracea, which
367	tolerate <i>n</i> -hexane solvents, are able to produce stable extracellular lipases (Dandavate et
368	al., 2009; Fang et al., 2006; Hun et al., 2003; Ito et al., 2001, Shu et al., 2009; Warwel
369	and Borgdorf, 2000). Candida cylindracea lipase showed a high activity in n-hexane,
370	and produced more than 78 \pm 6% (w/w) biodiesel within the first 4 h of the reaction (Lara
371	and Park, 2004). However, when Candida cylindracea cells were cultured in wABE-
372	containing medium, it was difficult to grow cells in wABE medium, resulting in very
373	low lipase activity in the culture broth (Mori et al., 2009). At present, immobilized
374	lipases or immobilized whole cells have been utilized for biodiesel production in
375	harmful organic solvents, but the cost of the final product is still too high, as compared
376	to that of the chemical transesterification process (Akoh et al., 2007). However, the

wABE contains lipase inhibitors. To reduce the production cost, less lipase should be
used for biodiesel production from wABE, by adding KOH to the reaction mixture.
Only 0.05% lipase combined with 0.9% KOH was satisfactory for achieving higher than
90% FAME conversion within 36 h.

381 **5.** Conclusions

382	The presence of chlorophylls was shown to be responsible for the inhibition of
383	lipase during lipase-catalyzed FAME production from wABE. The inhibition by
384	chlorophylls was found to be competitive. Interestingly, the addition of a small amount
385	of alkali could nullify this inhibitory effect and accelerate the FAME production rate.
386	When 0.9% (w/w wABE) KOH was added to the transesterification reaction in the
387	presence of only 0.05% lipase (w/w wABE), the maximum FAME production rate
388	improved 120-fold, as compared to that without the addition of KOH. Alkali-combined
389	lipase significantly enhanced the FAME production rate from wABE, even in the
390	presence of the plant pigments

391 Acknowledgements

This study was performed as a research project of the New Energy and Industrial
Technology Development Organization (NEDO), Japan, in collaboration with Shizuoka
University, Japan and Mizusawa Industrial Chemicals Ltd., Japan.

395 **References**

396	Akoh, C.C., Chang, S.W., Lee, G.C., Shaw, J.F., 2007. Enzymatic approach to biodiesel
397	production. Journal of Agricultural and Food Chemistry 55, 8995-9005.
398	Albertsson, P.A., Kohnke, R., Emek, S.C., Mei, J., Rehfeld, J.F., Akerlund, H.E.,
399	Erlanson-Albertsson, C., 2007. Chloroplast membranes retard fat digestion and
400	induce satiety: effect of biological membranes on pancreatic lipase/co-lipase.
401	Biochemical Journal 401, 727-733.
402	Anastopoulus, G., Lois, E., Serdari, A., Zanikos, F., Stournas, S., Kalligeros, S., 2001.
403	Lubrication properties of low-sulfur diesel fuels in the presence of specific types of
404	fatty acid derivatives. Energy & Fuels 15: 106-112.
405	Boukerroui, A., Ouali, M.S., 2000. Regeneration of a spent bleaching earth and its reuse
406	in the refining of an edible oil. Journal of Chemical Technology and Biotechnology
407	75, 773-776.
408	Chang, J.I., Tai H.S., Huang, T.H., 2006. Regeneration of spent bleaching earth by lye-
409	extraction. Environmental Progress 25(4), 373-378.
410	Dandavate, V., Jinjala, J., Keharia, H., Madamwar, D., 2009. Production, partial
411	purification and characterization of organic solvent tolerant lipase from
412	Burkholderia multivorans V2 and its application for ester synthesis. Bioresource
413	Technology 100, 3374-4481.

- Demirbas, M.F., Balat, M., 2006. Recent advances on the production and utilization
 trends of bio-fuels: A global perspective. Energy Conversion and Management 47,
 2371-2381.
- 417 Du, W., Li, W., Sun, T., Chen, X., Liu, D., 2008. Perspectives for biotechnological
- 418 production of biodiesel and impacts. Applied Microbiology and Biotechnology 79,
 419 331-337.
- 420 Fang, Y.W., Lu, Z.X., Lv, F.X., Bie, X.M, Liu, S., Ding, Z.Y., Xu, W.F., 2006. A newly
- 421 isolated organic solvent tolerant *Staphylococcus saprophyticus* M36 produced
 422 organic solvent-stable lipase. Current Microbiology 53, 510-515.
- Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by transesterification
 of oils. Journal of Bioscience and Bioengineering 92, 405-416.
- 425 Halim A.S.F., Komaruddin, A.H. 2008. Catalytic studies of lipase on FAME production
- from waste cooking palm oil in *tert*-butanol system. Process Biochemistry 43,
- 427 1430-1439.
- 428 Hun, C.J., Rahman, R.N.A., Salleh, A.B., Basri, M., 2003. A newly isolated organic
- 429 solvent tolerant *Bacillus sphaericus* 205y producing organic solvent-stable
- 430 lipase. Biochemical Engineering Journal 15(2), 147-151.
- 431 Ito, T., Kikuta, H., Nagamori, E., Honda, H., Ogino, H., Ishikawa, H. Kobayashi, T.,
- 432 2001. Lipase production in two-step fed-batch culture of organic solvent-tolerant

- *Pseudomonas aeruginosa* LST-03. Journal of Bioscience and Bioengineering 91(3),
 245-250.
- 435 Kalam, A., Joshi, J.B., 1988. Regeneration of spent earth in aqueous medium. Journal of
- the American Oil Chemists' Society 65, 1917-1921.
- King, J.W., List, G.R., Johnson, J.H., 1992. Supercritical carbon dioxide extraction of
 spent bleaching clays. The Journal of Supercritical Fluids 5, 38-41.
- 439 Kojima, S., Du, D., Sato, M., Park, E.Y., 2004. Efficient production of fatty acid methyl
- ester from waste activated bleaching earth using diesel oil as organic solvent.
- Journal of Bioscience and Bioengineering 98, 420-424.
- 442 Kurooka, S., Kitamura, T., 1978. Properties of serum lipase in patients with various
- 443 pancreatic diseases. Analysis by a new serum lipase assay method (the BALB-
- 444 DTNB method) in combination with gel-filtration and iso-electrofocusing
- techniques. The Journal Biochemistry 84, 1459-1466.
- Lara, P.V., Park, E.Y., 2004. Potential application of waste activated bleaching earth on
- the production of fatty acid methyl esters using *Candida cylindracea* lipase in
- 448 organic solvent system. Enzyme and Microbial Technology 34, 270-277.
- Low, K.S., Lee, C.K., Wong, A.M., 1996. Carbonized spent bleaching earth as a sorbent
- 450 for some organic dyes. The Journal of Environmental Science and Health 31(3),
- **451 673-685**.

452	Meher, L.C., Sagar, D.V., Naik, S,N., 2006. Technical aspects of biodiesel production
453	by transesterification-a review. Renewable and Sustainable Energy Reviews 10,
454	248–268.
455	Mori, M., Ali, E., Du, D., Park, E.Y., 2009. Characterization and optimization of

- extracellular alkaline lipase production by *Alcaligenes* sp. using stearic acid as
 carbon source. Biotechnology and Bioprocess Engineering 14, 193-201.
- 458 Park, E.Y., Sato, M., Kojima, S., 2008. Lipase-catalyzed biodiesel production from
- 459 waste activated bleaching earth as raw material in a pilot plant. Bioresource
- 460 Technology 99, 3130-3135.
- 461 Park, E.Y., Mori, M., 2005. Kinetic study of esterification of rapeseed oil contained in

462 waste activated bleaching earth using *Candida rugosa* lipase in organic solvent

463 system. Journal of Molecular Catalysis B: Enzymatic 37, 95-100.

- 464 Park, E.Y., Sato, M., Kojima, S., 2006. Fatty acid methyl ester production using lipase-
- 465 immobilizing silica particles with different particle sizes and different specific surface

areas. Enzyme and Microbial Technology 39: 889-896.

467 Pizarro, A.V.L., Park, E.Y., 2003. Lipase-catalyzed production of biodiesel fuel from

vegetable oils contained in waste activated bleaching earth. Process Biochemistry 38,

469 1077-1082.

- 470 Shu, Z., Lin, R., Jiang, H., Zhang, Y., Wang, M., Huang, J., 2009. A rapid and efficient
- 471 method for directed screening of lipase-producing *Burkholderia cepacia* complex

- 472 strains with organic solvent tolerance from rhizosphere. Journal of Bioscience and473 Bioengineering 107(6), 658-661.
- 474 Tsai, W.T., Chen, H.P., Hsieh, M.F., Sun, H.F., Chien, S.F., 2002. Regeneration of
- 475 spent bleaching earth by pyrolysis in a rotary furnace. Journal of Analytical and476 Applied Pyrolysis 63, 157-170.
- 477 Tsai, W.T., Chen, H.P., Hsieh, M. F., Sun, H.F., Lai, C.W., 2003. Regeneration of
- bleaching clay waste by chemical activation with chloride salts. The Journal of
 Environmental Science and Health 38(4), 685-696.
- 480 Ulusoy, Y., Arslan, R., Kaplan, C., 2009. Emission characteristics of sunflower oil
- 481 methyl ester. Energy Sources, Part A: Recovery, Utilization, and Environmental
 482 Effects 31, 906-910.
- 483 Vasudevan, P.T., Briggs, M., 2008. Biodiesel production-current state of the art and
- 484 challenges. Journal of Industrial Microbiology and Biotechnology 35, 421-430.
- 485 Waldmann, C., Eggers, R., 1991. De-oiling contaminated bleaching clay by high-
- 486 pressure extraction. Journal of the American Oil Chemists' Society 68(12), 922-
- 487 930.
- 488 Warwel, S., Borgdorf, R., 2000. Substrate selectivity of lipases in the esterification of
- 489 cis/trans-isomers and positional isomers of conjugated linoleic acid (CLA).
- Biotechnology Letters 22, 1151-1155.

492	determination of the chlorophylls and their derivatives. Taiwania 43(2), 116-122.
493	Zuhair, S.A., Ling, F.W., Jun, L.S., 2007. Proposed kinetic mechanism of the
494	production of biodiesel from palm oil using lipase. Process Biochemistry 42, 951-

Yang, C.M., Chang, K.W., Yin, M.H., Huang, H.M., 1998. Methods for the

495 960.

496

Run no.	Chlorophyll a (mg/l)	Chlorophyll b (mg/l)	Total concentration
			(mg/l)
1	2.85	2.15	5.00
2	2.28	1.72	4.00
3	1.71	1.29	3.00
4	1.14	0.86	2.00
5	0.57	0.43	1.00
6	4.00	0	4.00
7	3.00	0	3.00
8	2.00	0	2.00
9	1.00	0	1.00
10	0	4.00	4.00
11	0	3.00	3.00
12	0	2.00	2.00
13	0	1.00	1.00

Table 1. The concentrations of chlorophyll a and b used to evaluate their inhibitory

498 effects on the lipase activity

- Table 2. $K_{\rm m \, obs}$ and $V_{\rm max}$ of lipase in the presence of various concentrations of
- 501 chlorophyll a or b as an inhibitor during the initial FAME conversion from artificial
- 502 wABE

Chlorophyll	a or b (mg/l)	0	1	2	3	4
$K_{\rm m obs} ({ m mM})$	Chlorophyll a	55.55	113.18	187.72	248.74	377.99
	Chlorophyll b	55.55	62.83	61.61	60.26	68.30
V _{max} (%/min)	Chlorophyll a	0.74	0.68	0.73	0.73	0.74
	Chlorophyll b	0.74	0.36	0.33	0.33	0.32

	Chlorophyll a and b mixture	Chlorophyll a	Chlorophyll b	
$K_{\rm m}$ (mM)	30.40	40.5	57.12	
$K_{\rm I}$ (mg/l)	0.36	0.52	24.91	

Table 3. $K_{\rm m}$ and $K_{\rm I}$ of QLM lipase in the presence of a mixture of chlorophyll a and b or

chlorophyll a or b alone during the initial FAME conversion from artificial wABE

506

KOH (%, w/w)	0	0.3	0.6	0.9	1.2	1.5
$K_{\rm mobs}~({ m mM})$	0.16	0.25	0.44	19.44	2.35	0.30
V _{max} (%/min)	0.25	0.39	0.67	30.03	3.60	0.45

509 FAME conversion from artificial wABE

511 Figure legends

512 Fig. 1. Lipase stability in the solvent used in a FAME reaction without oil. QLM lipase

- 513 (1%, w/w) was added to a mixture of hexane (60%, w/w) and methanol (4.5%, w/w) at
- 514 25° C and then shaken at 120 rpm for 4 h. Chlorophyll a (0.37%, w/v) and b (0.28%,
- w/v) were dissolved in methanol and added to the reaction, respectively. The mixtures
- 516 were lipase and water (circles); lipase, chlorophyll a, hexane and methanol (solid
- triangles); lipase, chlorophyll b, hexane and methanol (solid squares); lipase,
- 518 chlorophyll a and b, hexane and methanol (solid circles).
- 519 Fig. 2. Effects of reaction components on lipase stability during FAME conversion. The
- reaction solution contained hexane (60%, w/w), oil (35%, w/w), methanol (4.5%, w/w),
- 521 QLM lipase (1%, w/w), chlorophyll a (0.37%, w/v) and chlorophyll b (0.28%, w/v).
- 522 Reactions were conducted at 25°C and 120 rpm for 10 h. The reaction contents were
- 523 lipase, pure palm oil and hexane (circles); lipase, pure palm oil, methanol and biodiesel
- 524 (triangle); lipase, wABE extracted palm oil, hexane and methanol (solid circles); lipase,
- chlorophyll a, chlorophyll b, pure palm oil, hexane and methanol (squares); lipase, pure
- palm oil, wABE extracted pigment, hexane and methanol (solid triangles); and lipase,
- 527 wABE extracted palm oil, wABE extracted pigment, hexane and methanol (solid
- 528 squares).

529	Fig. 3. Lineweaver-Burk plots in the presence of mixtures of chlorophyll a and b as an
530	inhibitor in artificial wABE. The inhibitory concentrations were 0 mg/l (rhombuses), 1
531	mg/l (squares), 2 mg/l (triangles), 3 mg/l (solid triangles), 4 mg/l (circles) and 5 mg/l
532	(solid circles).

- **Fig. 4.** Lineweaver-Burk plots in the presence of chlorophyll a (A) and b (B) as
- inhibitors in the artificial wABE. The inhibitor concentrations were 0 mg/l (rhombuses),
- 1 mg/l (squares), 2 mg/l (triangles), 3 mg/l (solid circles), and 4 mg/l (circles).

Time (h)

