Binding Affinity of Full–length and Extracellular Domains of Recombinant Human (Pro)renin Receptors to Human Renin When Expressed in the Fat Body and Hemolymph of Silkworm Larvae

Dongning Du¹, Tatsuya Kato², Fumiaki Suzuki³, Enoch Y. Park^{1,2*}

Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga ku, Shizuoka 422–8529, Japan,¹ Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga ku, Shizuoka 422–8529, Japan,² Laboratory of Animal Biochemistry, Faculty of Applied Biological Sciences, Gifu University, 1 1 Yanagido, Gifu 501 1193, Japan³

Running title: Human (Pro)renin Receptors Expressed in Silkworm Larvae

Email addresses:

DD: dongningdu@hotmail.com TK: actkato@agr.shizuoka.ac.jp FS: aob3073@cc.gifu-u.ac.jp EYP: acypark@ipc.shizuoka.ac.jp

^{*} Corresponding author. e-mail: acypark@ipc.shizuoka.ac.jp phone/fax: +81-(0)54- 238- 4887

1 Abstract

2	Transmembrane domains of some receptors have been found to be very important
3	in the process of constitutive oligomerization, and in the stability and functioning
4	of the receptor. The human (pro)renin receptor (hPRR) is composed of an
5	extracellular domain, a transmembrane domain and a cytoplasmic domain, which
6	binds to both renin and prorenin. In this study, full-length of hPRR (hPRR) and
7	hPRR lacking cytoplasmic domain (hPRR– Δ CD) were found to be expressed in
8	fat body of silkworm larvae, and the extracellular domain of hPRR
9	(hPRR– Δ TM Δ CD) in hemolymph. Three forms of hPRR were investigated the
10	mechanism of interaction between receptor and ligand using real-time monitored
11	surface plasmon resonance (SPR) equipped with immobilized human renin onto
12	one cuvette channel. As a result, the transmembrane domain of hPRR is
13	indispensable in the formation of functional hPRR. The dissociation equilibrium
14	constants (K_D) of purified hPRR and hPRR– Δ CD were estimated to be 46 nM and
15	330 nM, respectively. No evidence of binding by hPRR– Δ TM Δ CD located in
16	hemolymph was found either before or after purification. To our knowledge, these
17	are the first findings describing the interaction of transmembrane and
18	extracellular domains of hPRR with ligand and this may help towards the
19	understanding of binding affinity of hPRR to ligand.
20	(Key words: human (pro)renin receptor; binding affinity; surface plasmon resonance;
21	silkworm larvae)

 $\mathbf{2}$

INTRODUCTION

1

 $\mathbf{2}$

3	Human (pro)renin receptor (hPRR) is composed of an extracellular domain, a
4	transmembrane domain and a cytoplasmic domain. Following cloning from a human
5	kidney cDNA library, hPRR was found to bind to both renin and prorenin (1). Suzuki
6	et al. showed that specific protein binding with the "handle" region of the prosegment
7	in human prorenin led to its non-proteolytic activation presumably by conformational
8	changes, and predicted that such a region played a key role in the binding with specific
9	proteins (2). Recently, a large number of studies have reported that this receptor, and
10	its mechanism of binding to renin/prorenin, involves the generation or action of
11	angiotensin, leading to numerous cardiovascular diseases (3-5). Consequently, the
12	development of hPRR receptor blockers is receiving considerable attention at present.
13	Also, an understanding of the functional properties of hPRR through detailed
14	biochemical and biophysical analysis is urgently required.
15	Many reports examining receptor functionality and structure have found the
16	extracellular domain to play a key role in affecting the binding affinity with the
17	receptor's ligand (6, 7). Given this, expression of the typically soluble extracellular
18	domain of a receptor, rather than its full-length form, can be employed to study the
19	functions of a protein. Through this approach, the use of detergents can be avoided and
	randens of a protonic rindagin and approach, the use of accentions can be avoided and
20	research on protein structure and function would be facilitated. In contrast, the
20 21	research on protein structure and function would be facilitated. In contrast, the transmembrane domains of some receptors have been found to be very important in the

1	the receptor (10). If this is the case, preparation of the full-length of protein will be
2	necessary. However, to our knowledge, the direct binding affinity of full-length hPRR
3	and its extracellular domain to ligand has not been reported until now.
4	In a previous study, we successfully expressed full-length hPRR in silkworm
5	larvae, and identified its location in the microsomal fraction of the fat body (11). In this
6	study, the full–length hPRR (hPRR), hPRR lacking cytoplasmic domain (hPRR– Δ CD),
7	and extracellular domain of hPRR (hPRR– Δ TM Δ CD) were expressed in silkworm
8	larvae to investigate the mechanism of interaction between receptor and ligand using
9	real-time monitored surface plasmon resonance (SPR).
10	
11	MATERIALS AND METHODS
12	
13	Construction of recombinant BmMNPV/hPRR, /hPRR−∆CD,
14	/hPRR-ΔTMΔCD, and /ΔBmgp64-hPRR-ΔTMΔCD bacmids The full-length
15	human PRR gene and recombinant BmMNPV/hPRR bacmid were prepared as
16	previously described (11). In a similar manner, the hPRR gene lacking the
17	transmembrane and cytoplasmic domain (hPRR- Δ TM Δ CD) was amplified for
18	secretory expression by PCR with the concurrent introduction of cloning sites Pst I and
19	EcoR I at the 5' and 3' terminus, respectively, and the introduction of a FLAG tag
20	behind the Pst I site. The 5'primer sequence (F1) was
21	TCA <u>CTGCA</u> GACTACAAGGACGACGACGACAAGAACGAGTTTAGTATATTAA
22	AATCACCAG whilst that of the 3'primer (R1) was

1	GAC <u>GAATTC</u> CTAATATTCAAAATT (cloning sites are underlined, the FLAG codons
2	are fenced). The stop codon was introduced immediately following the last
3	extracellular domain codon (Tyr311) and before the EcoRI site to prevent further
4	translation. The amplified hPRR- Δ TM Δ CD digested by <i>Pst</i> I and <i>Eco</i> R I was cloned
5	into pBlueBacHis2/GFP _{uv} which was also digested by <i>Pst</i> I and <i>Eco</i> R I (12). For
6	addition of the foreign bombyxin signal sequence, the resulting construct was
7	amplified using
8	5'-CACCATGAAGATACTCCTTGCTATTGCATTAATGTTGTCAACAGTAATGTG
9	<u>GGTGTCAACA</u> CAACCGCGGGGTTCTCATCATC-3' as the 5' primer (F2) and the
10	3' primer (R1) described above. The PCR product was inserted into pENTR
11	(Invitrogen, Carlsbad, CA, USA) by TOPO cloning. After verification of the DNA
12	sequence, the resulting pENTR/D-hPRR- Δ TM Δ CD was transferred into pDEST 8 by
13	Gateway Cloning Technology (Invitrogen). The pDEST8/hPRR- Δ TM Δ CD plasmid
14	generated was transformed into E. coli Bm DH10Bac competent cells containing the
15	BmMNPV bacmid (13) and the white Kanamycin and Gentamicin-resistant colonies
16	were selected. The recombinant BmMNPV/hPRR- Δ TM Δ CD bacmid was isolated and
17	its identity confirmed by PCR using the 5' primer described above and M13 reverse
18	sequencing primer (Invitrogen).
19	The human PRR gene lacking the cytoplasmic domain (hPRR– Δ CD) was
20	amplified from the pENTR/D-hPRR (11) by PCR with the 5'primer (F2) as described
21	above and 5'-TCAGTAAGAGGTGATAATCACAGCCAAGGCCAAGGCGATC-3'
22	as the 3'primer (R2). The PCR product was inserted into pENTR by TOPO cloning,

 $\mathbf{5}$

1 and the following procedures were performed in the same construction of

2	BmMNPV/hPRR- Δ TM Δ CD bacmid as described above.
3	BmMNPV bacmid containing Δ Bmgp64–hPRR– Δ TM Δ CD fusion gene was
4	constructed as follows. The gp64 gene from BmMNPV was amplified by PCR using
5	the Bmgp64F primer 5'-CACCGGTACCATGGTAGGCGCTAATGTTTTATACG-3'
6	and Bmgp64R primer 5'-CCCAAGCTTTTAATATTGTCTACTATTACGGTTTC-3'.
7	The amplified fragment was cut by Kpn I and Hind III, and inserted into pUC18
8	digested by Kpn I and Hind III. The plasmid thus constructed was named
9	pUC-Bmgp64. The hPRR- Δ TM Δ CD gene was amplified by PCR using
10	BGL-hPRR-F 5'-GAAGATCTCGACTACAAGGACGACGACGACAAAG-3' and
11	SPH-hPRR-R 5'-ACATGCATGCATATATTCAAAATTATACTTATATGC-3' and
12	digested by Bgl I and Sph I. The digested hPRR gene was inserted into the BamH
13	I-Sph I site of the gp64 gene in pUC-Bmgp64 to yield phPRR- Δ Bmgp64. The
14	Δ Bmgp64–hPRR– Δ TM Δ CD fusion gene was amplified by PCR using Bmgp64F and
15	Bmgp64R, and inserted into a pENTR/D/TOPO vector by TOPO cloning. The
16	procedures which followed after this process were performed using the same protocol
17	as for the construction of the recombinant BmMNPV/hPRR- Δ TM Δ CD bacmid.
18	Injection of recombinant BmMNPV bacmids into silkworm larvae
19	Fifth-instar silkworm larvae (Ehime Sansyu, Ehime, Japan) were injected with the
20	recombinant BmMNPV bacmid DNA solutions (4 μ g of bacmid DNA, 5 μ l of
21	DMRIE–C transfection reagent (Invitrogen), dissolved in PBS buffer to 45 μ l per
22	larva). Five days post-injection, the hemolymph and fat body were collected by cutting

1 a caudal leg and dissection, respectively.

2	Preparation of crude samples The fat body was sonicated in homogenization
3	buffer comprising 50 mM sodium phosphate, 150 mM NaCl and protease inhibitors
4	(Roche, Lewes, Sussex, UK) (pH 7.4; Buffer A). Unsonicated cells and cellular debris
5	were removed by centrifugation at $600 \times g$ for 10 min followed by a second
6	centrifugation of the supernatant at $8000 \times g$ for 30 min. The microsomal fraction was
7	collected from the resulting supernatant by centrifugation at 114,000 \times g for 60 min
8	and was washed twice with buffer A. To solubilize hPRR from the microsomal fraction,
9	a solubility test using various detergents was performed (see supplementary file 1). The
10	pelleted membrane fraction was resuspended in extraction buffer (50 mM sodium
11	phosphate, 150 mM NaCl, protease inhibitors and 1.5% dodecyl $-\beta$ -D-maltoside
12	(DDM), pH 8.0; Buffer B) to a final concentration of 5 mg/ml. Solubilized membrane
13	proteins were recovered by collection of the supernatant after centrifugation at 114,000
14	× g for 60 min.
15	Hemolymph was pre-treated by a 10-fold dilution with Buffer A and
16	centrifugation at 114,000 \times g for 60 min to allow the complete removal of insoluble
17	materials.
18	Every procedure described above was carried out at 4°C whilst the prepared
19	samples were stored at -80° C for use in future binding assays or for purification.
20	Purification of hPRRs The soluble microsomal fraction of the fat body was

21 incubated in batches with 0.5 ml of anti-FLAG M2 antibody agarose resin (Sigma-

22 Aldrich, St. Louis, MO, USA) for 1.5 hours at 4°C. And then the resin was loaded into

 $\overline{7}$

1	a gravity column and washed with 10 ml of wash buffer (50 mM sodium phosphate,
2	150 mM NaCl, protease inhibitors and 0.2% DDM, pH 8.0; Buffer C). The hPRR was
3	eluted with 4.5 ml of elution buffer (50 mM sodium phosphate, 150 mM NaCl, 0.2%
4	DDM, 100 µg/ml of FLAG peptide and protease inhibitors, pH 8.0; Buffer D).
5	Purification from pre-treated hemolymph was performed by following a similar
6	procedure using anti-FLAG M2 antibody agarose resin, but without the addition of
7	detergent to the buffers.
8	The protein concentration was measured by using a BCA protein assay reagent kit
9	(Thermo Scientific Rockford, IL, USA) and bovine serum albumin as a standard.
10	SDS-PAGE and Western blotting analysis SDS-PAGE was performed in
11	10% polyacrylamide gel in a Mini-protean II system (Bio-Rad, Hercules, CA, USA).
12	The GFP _{uv} -fused protein was visualized using a Molecular-FX multi-imager
13	(Bio-Rad) and/or by stained with Coomassie Brilliant Blue (CBB) R-250. Western
14	blotting was performed by using anti-FLAG-M2 antibody (10,000-fold dilution,
15	Sigma) as the primary antibody and anti-mouse IgG antibody conjugated to
16	horseradish peroxidase (20,000-fold dilution; GE Healthcare, Buckinghamshire, UK)
17	as the secondary antibody. The immunoreactive proteins were visualized by ECL plus
18	Western blotting detection reagents (GE Healthcare) and detected using a
19	Fluor-S/MAX multi-imager (Bio-Rad).
20	Surface plasmon resonance assays Real-time monitored SPR assays were
21	performed at 25°C using an IAsys plus biosensor (Labsystems Affinity Sensors,
22	Cambridge, UK). The instrument employs a dual-well stirred cuvette (Labsystems

1	Affinity Sensors) precoated with carboxymethyl dextran (CMD). The amine coupling
2	method was used for the immobilization of purified recombinant human renin
3	(Cayman, ANN Arbor, MI, USA) onto one cuvette channel (C1). The other cuvette
4	channel (C2) was used as a control for non-specific binding. Unreacted carboxymethyl
5	groups of the sensor cuvette lacking immobilized protein were blocked with
6	ethanolamine. The chip surface was regenerated by adding 10 mM HCl until the
7	response signal returned to base line. The experimental data were processed using the
8	IAsys FAST fit software. The association rate constant k_{ass} was obtained as a slope of
9	the measured k_{on} values plotted against the protein concentration used in this
10	experiment. The dissociation rate constant k_{diss} was determined from the dissociation
11	experiment. The dissociation equilibrium constant (K_D) was defined as:
12	$K_{\rm D} = k_{\rm diss}/k_{\rm ass}.$
13	
1314	RESULTS AND DISCUSSION
13 14 15	RESULTS AND DISCUSSION
13 14 15 16	RESULTS AND DISCUSSION Expression and purification of three forms of hPRRs The hPRR and
13 14 15 16 17	RESULTS AND DISCUSSION Expression and purification of three forms of hPRRs The hPRR and hPRR-ΔTMΔCD fusion proteins (Fig. 1A) collected from the hemolymph of silkworm
13 14 15 16 17 18	RESULTS AND DISCUSSION Expression and purification of three forms of hPRRs The hPRR and hPRR-ΔTMΔCD fusion proteins (Fig. 1A) collected from the hemolymph of silkworm larvae were analyzed by Western blotting using anti-FLAG-M2 antibody (Fig. 1B).
13 14 15 16 17 18 19	RESULTS AND DISCUSSION Expression and purification of three forms of hPRRs The hPRR and hPRR-ΔTMΔCD fusion proteins (Fig. 1A) collected from the hemolymph of silkworm larvae were analyzed by Western blotting using anti-FLAG-M2 antibody (Fig. 1B). Compared with the weak band detected for hPRR in the hemolymph, hPRR-ΔTMΔCD
 13 14 15 16 17 18 19 20 	RESULTS AND DISCUSSION Expression and purification of three forms of hPRRs The hPRR and hPRR-ΔTMΔCD fusion proteins (Fig. 1A) collected from the hemolymph of silkworm larvae were analyzed by Western blotting using anti-FLAG-M2 antibody (Fig. 1B). Compared with the weak band detected for hPRR in the hemolymph, hPRR-ΔTMΔCD lacking its transmembrane and cytoplasmic domains showed a single strong band on
 13 14 15 16 17 18 19 20 21 	RESULTS AND DISCUSSION Expression and purification of three forms of hPRRs The hPRR and hPRR-ΔTMΔCD fusion proteins (Fig. 1A) collected from the hemolymph of silkworm larvae were analyzed by Western blotting using anti-FLAG-M2 antibody (Fig. 1B). Compared with the weak band detected for hPRR in the hemolymph, hPRR-ΔTMΔCD lacking its transmembrane and cytoplasmic domains showed a single strong band on during Western blotting, indicating that it was secreted extracellularly. Additionally,

1 detected in the mock-injected silkworm larvae.

2	The hPRR and hPRR- Δ CD fusion proteins were mostly expressed in fat body as
3	shown in their GFP_{uv} fluorescence analysis (Fig. 1C), but were not detected in the
4	hemolymph of silkworm larvae (data not shown). The size of the hPRR and
5	hPRR– Δ CD was estimated to be 69 and 65 kDa, respectively, which was found to be
6	principally located in the microsomal fraction of the fat body (11).
7	The hPRR, hPRR– Δ CD, and hPRR– Δ TM Δ CD fusion proteins expressed in the fat
8	body were purified by simple one-step anti-FLAG affinity chromatography. The
9	results of SDS–PAGE and GFP _{uv} fluorescence analysis of purified hPRR, hPRR– Δ CD,
10	and hPRR- Δ TM Δ CD are shown in Fig. 2A. For hPPR and hPRR- Δ CD, a major band
11	of 69 and 65 kDa was observed. In the case of hPRR– Δ TM Δ CD, SDS–PAGE showed
12	the predicted band of 64 kDa, whereas some degraded bands below the main band
13	were also detected by the GFP_{uv} fluorescence analysis. This suggests that the lack of a
14	transmembrane domain may render hPRR unstable and be readily degraded compared
15	with the full-length version during the same purification procedure. In addition,
16	hPRR- Δ TM Δ CD could not be purified with the insect cell expression system (12)
17	either because of this extracellular instability or because of its low expression level.
18	Binding assay for crude and purified hPRRs In order to compare and
19	characterize the binding affinities of hPRR and hPRR– Δ TM Δ CD, SPR experiments
20	were carried out using an IAsys plus biosensor. Four hundred arc seconds of human
21	renin were coupled on the cuvette of the IAsys plus biosensor. According to the
22	method described by Li et al (14), the amount of immobilized renin was calculated as

1	2.45 pmol. The prepared soluble microsomal fraction of fat body expressed hPRR and
2	the hemolymph expressed hPRR- Δ TM Δ CD were diluted to 3 mg/ml and injected into
3	the renin immobilized cuvette. The same treatments were also performed using the
4	microsomal fraction and hemolymph of mock-injected silkworm larvae as a control.
5	The results derived from the real-time response curve showed the binding of hPRR
6	from the fat body to be three times higher than that of the mock controls at the point of
7	maximum response. The difference detected was 84 arc seconds (Fig. 2B). It can be
8	calculated that 1 μ g of crude protein containing hPRR increased the response by 0.56
9	arc seconds. However, no difference was observed between hPRR- Δ TM Δ CD obtained
10	from the hemolymph and the mock controls (Fig. 2B). The hPRR- Δ TM Δ CD was
11	expressed partly in hemolymph (Fig. 1B) and partly in fat body. Binding affinity
12	showed only in the microsomal fraction of fat body. The hPRR- Δ TM Δ CD is
13	composed of hydrophilic and hydrophobic parts that might be associated with
14	membrane, which might be the reason of showing binding affinity.
15	To further determine the binding affinities of hPRR– Δ TM Δ CD, purified hPRR
16	and hPRR- Δ TM Δ CD were diluted to the same concentration in 50 mM sodium
17	phosphate buffer containing 150 mM NaCl and 0.2% DDM, and then analyzed using
18	the biosensor. The binding affinity of hPRR was confirmed whilst hPRR- Δ TM Δ CD
19	was found to show no such affinity (Fig. 2C). This suggests that full-length hPRR, but
20	not the secreted extracellular domain, possesses the ability to bind with human renin.
21	Binding assays using different concentrations (0.13~1 μ M) of purified hPRR and
22	hPRR $-\Delta$ CD were also performed. The response of hPRR $-$ bound renin showed a

1	typical concentration-dependent distribution as shown in Fig. 2D. The specific binding
2	responses at various hPRR concentrations (0.13, 0.25, 0.5, 1μ M) were calculated as 5.1,
3	5.5, 6.8 and 9.1 arc seconds/ μ g, respectively; values which were almost 10 times
4	higher than that of crude protein. The dissociation equilibrium constant (K_D) was
5	estimated by the IAsys FASTfit software to be 46 nM (see supplementary file 2). To
6	verify the action of cytoplasmic domain of PRR, the binding assay of purified hPRR-
7	Δ CD was performed at various concentrations (0.13-1µM). Also, this purified one
8	showed binding affinity (Fig. 2D). The K_D was estimated to be 330 nM.
9	The K_D of hPRR when bound to prorenin has previously been reported as 6.6 nM
10	when measured using an ELISA method (12). In another study, the K_D values for rat
11	PRR binding rat prorenin and renin were 8.3 nM and 20 nM, respectively (15). The
12	range of binding affinities obtained from rats is similar to that of humans, probably due
13	to an amino acid sequence homology of greater than 83% between the receptors of the
14	two species.
15	Binding assay for hPRR– Δ TM Δ CD fused with BmMNPV gp64 protein
16	To further investigate whether the binding properties of hPRR were affected by the
17	native transmembrane domain, $\Delta Bmgp64$ -hPRR- $\Delta TM\Delta CD$ consisting of three
18	domains; Bmgp64 N-terminal domain (1-82 amino acids), hPRR- Δ TM Δ CD and a
19	Bmgp64 C-terminal domain (321-511 amino acids) (Fig. 3A), was constructed. Since
20	the Δ Bmgp64–hPRR– Δ TM Δ CD has a heterologous transmembrane domain, it was
21	expressed in the fat body, as confirmed by Western blotting (Fig. 3B). The
22	Δ Bmgp64–hPRR– Δ TM Δ CD in the microsomal fraction showed a binding affinity

1	$(0.51 \text{ arc seconds/}\mu\text{g} \text{ crude protein})$ (Fig. 3C) but the purified one did not (Fig. 3D). It
2	is inferred that the heterologous transmembrane domain cannot be replaced by a native
3	transmembrane domain from hPRR.
4	Binding assay for hPRR–ΔTMΔCD expressed in the fat body To make clear
5	why the binding affinity of Δ Bmgp64–hPRR– Δ TM Δ CD in the microsomal fraction
6	was lost by its purification, hPRR- Δ TM Δ CD was expressed in the fat body. The
7	microsomal and soluble fractions of the fat body were extracted from
8	BmMNPV/hPRR- Δ TM Δ CD bacmid-injected silkworm larvae as described in the
9	Materials and Method section. The amount of hPRR- Δ TM Δ CD in the microsomal
10	fraction was smaller than that of soluble fraction (Fig. 4A). Interestingly, however, its
11	binding affinity was similar to that of hPRR (Fig. 4B; see Fig. 2B). On the other hand,
12	the hPRR- Δ TM Δ CD in the soluble fraction showed a similar binding affinity to the
13	corresponding fraction of the mock control samples (Fig. 4B). The specific response of
14	hPRR- Δ TM Δ CD in the microsomal fraction was 0.48 arc seconds/µg crude protein.
15	Unexpectedly, the purified hPPR- Δ TM Δ CD from the microsomal fraction was not
16	found to bind with renin (Fig. 4C). However, when the microsomal fraction of the
17	mock-injected fat body of silkworm larvae was mixed into the purified
18	hPPR- Δ TM Δ CD with the ratio of 1:1, the binding affinity recovered to 64% of the
19	microsomal fraction of hPRR- Δ TM Δ CD (Fig. 4D).
20	The solubilized microsomal fraction of both hPRR– Δ TM Δ CD and
21	Δ Bmgp64-hPRR- Δ TM Δ CD expressed in the fat body showed specific affinity, but,
22	when they were purified, they lost the binding affinity. When microsomal fraction of

1	mock-injected fat body of silkworm larvae was added in the purified hPRR- Δ TM Δ CD,
2	its binding affinity was recovered. It is probable that an artificial transmembrane
3	domain stabilizes the hPRR- Δ TM Δ CD and native conformation may be structurally
4	recovered. Otherwise, the microsomal fraction mixture contains some unknown factor
5	(for example, substrate or lipid) that attaches to detergent-hPRR-micelles and either
6	forms. Artificial transmembrane domain and an unknown factor appear to be absent
7	following purification, thereby losing the binding affinity.
8	Mendrola et al. (16) reported that epidermal growth factor (ErB) receptor was
9	stabilized by transmembrane domain interaction. Chiang and Knowles (17) reported
10	that transmembrane domain interactions affected the stability of the extracellular
11	domain of the human triphosphate diphosphohydrolase (NTPDase). However, Chen et
12	al. (18) reported that when human granulocyte-macrophage colony-stimulating factor
13	was expressed in silkworm pupae, its activity was lost due to its purification process.
14	In conclusion, we demonstrated that the native transmembrane domain of hPRR
15	plays an important role in the mechanism of binding with human renin. The
16	extracellular domain in the microsomal fraction of the fat body was observed to be
17	bound with human renin whilst no affinity was observed after purification. This
18	indicates that either any conformation change of hPRR due to deletion of
19	transmembrane domain or unidentified factor in the microsomal fraction of the fat
20	body may interact with the extracellular domain of hPRR. This clarification is highly
21	important in elucidating the interaction of hPRR with its ligand.

1		ACKNOWLEDGMENTS
2		This work was supported by the Program of Basic Research Activities for
3	Inn	ovative Biosciences (PRBRAIN), Japan.
4		
5		REFERENCES
6	1.	Nguyen, G., Delarue, F., Burcklé, C., Bouzhir, L., Giller, T., Sraer, J.D.: Pivotal
7		role of the renin/prorenin receptor in angiotensin II production and cellular
8		responses to renin. J. Clin. Invest., 109, 1417–1427 (2002).
9	2.	Suzuki, F., Hayakawa, M., Nakagawa, T., Uddin, M.N., Ebihara, A., Iwasawa,
10		A., Ishida, Y., Nakamura, Y., and Kazuo, M.: Human prorenin has "Gate and
11		Handle" regions for its non-proteolytic activation. J. Biol. Chem., 278,
12		22217-22222 (2003).
13	3.	Ichihara, A., Hayashi, M., Kaneshiro, Y., Suzuki, F., Nakagawa, T., Tada, Y.,
14		Koura, Y., Nishiyama, A., Okada, H., Uddin, MN., Nabi, AH., Ishida, Y.,
15		Inagami, T., Saruta, T.: Inhibition of diabetic nephropathy by a decoy peptide
16		corresponding to the "handle" region for nonproteolytic activation of prorenin. J.
17		Clin. Invest., 114 , 1128–1135 (2004).
18	4.	Prescott, G., Silversides, D.W., Reudelhuber, T.L.: Tissue activity of circulating
19		prorenin. Am. J. Hypertension, 15, 280-285 (2002).
20	5.	Burcklé, C.A., Danser, A.H.J., Müller, D.N., Garrelds, I.M., Gasc, J.M.,
21		Popova, E., Plehm, R., Peters, J., Bader, M., Nguyen, G.: Elevated blood
22		pressure and heart rate in human renin receptor transgenic rats. Hypertension, 47,

1 552–556 (2006).

2	6.	Zhang, W., Ding, T., Zhang, J., Su, J., Yu, J., Li, J., Li, F., Wang, C., Liu, N.,
3		Liu, X., Ma, X., Yao, L.: Fusion expression of DDR2 extracellular domain in
4		insect cells and its purification and function characterization. J. Cell. Biochem.,
5		102 , 41–51 (2007).
6	7.	De Crescenzo, G., Pham, P.L., Durocher, Y., O'Connor–McCourt, M.D.:
7		Transforming growth factor-beta (TGF-beta) binding to the extracellular domain
8		of the type II TGF-beta receptor: receptor capture on a biosensor surface using a
9		new coiled-coil capture system demonstrates that avidity contributes significantly
10		to high affinity binding. J. Mol. Biol., 328 , 1173-1183 (2003).
11	8.	Harikumar, K.G., Pinon, D.I., Miller, L.J.: Transmembrane segment IV
12		contributes a functionally important interface for oligomerization of the Class II G
13		protein-coupled secretin receptor. J. Biol. Chem., 282, 30363-30372 (2007).
14	9.	Chiang, W.C., Knowles, A.F.: Transmembrane domain interactions affect the
15		stability of the extracellular domain of the human NTPDase 2, Arch. Biochem.
16		Biophys., 472 , 89–99 (2008).
17	10.	Xue, R., Wang, S., Qi, H., Song, Y., Wang, C., Li, F.: Structure analysis of the
18		fourth transmembrane domain of Nramp1 in model membranes. Biochim. Biophys.
19		Acta., 1778, 1442-1452 (2008).
20	11.	Du, D., Kato, T., Nabi, A.H., Suzuki, F., Park, E.Y.: Expression of functional
21		(pro)renin receptor in silkworm larvae using BmMNPV bacmid. Biotechnol. Appl.
22		Biochem., 49 , 195–202 (2008).

1	12.	Kato, T., Kageshima, A., Suzuki, F., Park, E.Y.: Expression and purification of
2		human (pro)renin receptor in insect cells using baculovirus expression system.
3		Protein. Expr. Purif., 58, 242–248 (2008).
4	13.	Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., Park, E.Y.:
5		Efficient large-scale protein production of larvae and pupae of silkworm by
6		Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem. Biophys. Res.
7		Commun., 326 , 564–569 (2005).
8	14.	Li, J., Huang, J.D., Wu, B.Y., Chen, Q.: Effects of propyl gallate on interaction
9		between TNF– α and sTNFR–I using an affinity biosensor. Acta. Pharmacol. Sin.,
10		26 , 1212–1216 (2005).
11	15.	Nabi, A.H., Kageshima, A., Uddin, M.N., Nakagawa, T., Park, E.Y., Suzuki,
12		F.: Binding properties of rat prorenin and renin to the recombinant rat
13		renin/prorenin receptor prepared by a baculovirus expression system. Int. J. Mol.
14		Med., 18, 483–488 (2006).
15	16.	Mendrola, J.M., Berger, M.B., King, M.C., and Lemmon, M.A.: The single
16		transmembrane domains of ErbB receptors self-associate in cell membranes. J.
17		Biol. Chem., 277, 4704-4712 (2002).
18	17.	Chiang, W.C. and Knowles, A.F.: Transmembrane domain interactions affects
19		the stability of the extracellular domain of the human NTPDase 2. Arch. Biochem.
20		Biophys., 472 , 89-99 (2008).
21	18.	Chen, J., Nie, Z.M., Lü, Z.B., Zhu, C.G., Xu, C.Z., Jin, Y.F., Wu, X.F., Zhang,
22		Y.Z.: Large-scale purification of human granulocyte-macrophage

- 1 colony–stimulating factor expressed in *Bombyx mori* pupae. Appl. Biochem.
- 2 Biotechnol., **141**, 149-160 (2007).

1 Figure legends

2	FIG. 1. Expression and Western blotting analysis of hPRR, hPRR– Δ CD, and
3	hPRR- Δ TM Δ CD. (A) Schematic diagram of the hPRR, hPRR- Δ CD, and
4	hPRR- Δ TM Δ CD fused with GFP _{uv} . (B) Western blotting analysis of the hemolymph
5	of BmMNPV/hPRR– Δ TM Δ CD bacmid– (lane 1) and BmMNPV/hPRR bacmid–
6	injected silkworm larvae (lane 2). M and lane 3 denote the molecular marker and mock
7	-injected larvae, respectively. Closed and open arrows indicate hPRR (69 kDa) and
8	hPRR- Δ TM Δ CD (64 kDa) fusion protein, respectively. (C) GFP _{uv} fluorescence
9	analysis of fusion hPRR (lane 1, straight arrow) and hPRR– Δ CD (lane 2, dotted arrow)
10	expressed in the fat body.
11	FIG. 2. Purification of three forms of hPRR, and binding assay for crude and
12	purified proteins. (A) SDS-PAGE and GFP _{uv} fluorescence analysis of purified fusion
13	hPRR, hPRR- Δ CD, and hPRR- Δ TM Δ CD. Recombinant hPRR and hPRR- Δ CD were
14	collected from the fat body, and hPRR- Δ TM Δ CD from hemolymph, and they were
15	purified. The resulting gels were either stained with Coomassie Brilliant blue (CBB) or
16	visualized using a fluorescent imager by GFP _{uv} . Closed arrows with straight- and
17	dotted-lines indicate purified hPRR and hPRR- Δ CD from the fat body, respectively.
18	Open arrow indicates purified hPRR- Δ TM Δ CD from hemolymph. (B) Three mg/ml of
19	crude hPRR and hPRR– Δ TM Δ CD were used for binding assay. (C) Purified hPRR and
20	hPRR- Δ TM Δ CD were diluted to 60 µg/ml by Buffer C, and used for its binding assay.
21	Running buffer was injected as a control. (D) Evaluation of the dissociation
22	equilibrium constant (K_D) of purified hPRR and hPRR- Δ CD bound to immobilized

1	human renin by SPR. Sensorgram overlays of various concentrations of hPRR and
2	hPRR- Δ CD injected over immobilized renin are shown. a, b, c and d denote the hPRR
3	concentrations of 1, 0.5, 0.25 and 0.13 $\mu M,$ respectively. e, f, g and h denote the hPRR
4	– Δ CD concentrations of 1, 0.75, 0.5, and 0.25 μ M, respectively. i indicates the running
5	buffer as a control. K_D was estimated based on these results by the IAsys FASTfit
6	software. The vertical arrows in B, C and D indicate the injection time.
7	FIG. 3. Expression and binding assay of Δ Bmgp64– hPRR– Δ TM Δ CD. (A)
8	Schematic diagram of Δ Bmgp64–hPRR– Δ TM Δ CD. (B) SDS–PAGE Western blotting
9	of Δ Bmgp64–hPRR– Δ TM Δ CD expressed in the fat body of silkworm larvae. The
10	arrow indicates the estimated molecular weight. (C) Binding assay of Δ Bmgp64–
11	hPRR- Δ TM Δ CD in the microsomal fraction of the fat body and its corresponding
12	fraction in the mock larvae. (D) Binding assay of purified Δ Bmgp64–hPRR– Δ TM Δ CD.
13	The vertical arrows in C and D indicate the injection time. The concentration of protein
14	was 60 µg/ml. Running buffer was injected as a control.
15	FIG. 4. Expression of hPRR- Δ TM Δ CD in the fat body and its binding assay. (A)
16	Western blotting of the microsomal and soluble fractions obtained from fat bodies
17	expressing hPRR- Δ TM Δ CD. (B) The microsomal fraction, soluble fraction, and their
18	corresponding mock protein fractions were examined for their binding affinity at a
19	concentration of 3 mg/ml. (C) Binding affinity of purified hPRR- Δ TM Δ CD from the
20	microsomal fraction of the fat body. The concentration of protein was 60 μ g/ml.
21	Running buffer was injected as a control. (D) Binding affinity of crude
22	hPRR- Δ TM Δ CD from the microsomal fraction of fat body (a), mixture of purified

- 1 hPRR-ATMACD and microsomal fraction of fat body from mock-infected larvae with
- 2 ratio of 1:1 (b), and its corresponding microsomal fraction of mock-infected fat body
- 3 (c). The concentration of protein was 1.3 mg/ml. The vertical arrow indicates the
- 4 injection time.

B

hPRR

hPRR-∆CD

1 Supplementary file 1

 $\mathbf{2}$

3 For the solubility test, the following non-ionic detergents were tested: DDM, n-octyl

 4β -D-glucoside, Triton X-100, CHAPS, sodium cholate and sucrose monolaurate. These

5 detergents were of the highest grade and purchased from Wako Pure Chem. Ind. Ltd.

6 (Osaka, Japan). 1.2 ml of the microsomal fraction of the fat body (to 5 mg/ml) was

7 incubated with various detergents (0.1- 3%, w/v) for 1 h at 4 °C. Samples of each

8 homogenate (0.1 ml) were transferred to separate tubes as controls, and the remaining

- 9 homogenate was centrifuged for 60 min at 114,000 x g at 4 °C. The aliquots from the
 10 homogenates, supernatants and pellets were analyzed by SDS-PAGE and Western
- blotting. Band intensity was quantified by Quantity ONE software (Bio-Rad, Hercules,

12 CA, USA).

14

Fig. Result of detergent screening for solubilization of hPRR from the microsomalfraction

17

18 When DDM and sucrose monolaurate were used, more than 60% of the expressed

19 protein was solubilized, as shown in the figure. DDM was used in this study for

20 solubilization of hPRR from the microsomal fraction.

21

 $\mathbf{2}$

 $\frac{3}{4}$

$$K_{\rm D} = k_{\rm diss} / k_{\rm ass} = {\rm intercept/gradient}$$

× 10³

k on

Intercept = 0.000333712 ± 0.00076344 Gradient = 7259.15 ± 1324.27 Corr Coeff = 0.97

Intercept = 0.00293281 ± 0.00041272 Gradient = 8882.78 ± 715.909 Corr Coeff = 0.99

 $\frac{6}{7}$