BLP-1 / ISS2008

Submitted 27 October 2008

Revised 22 December 2008

Accepted 22 January 2009

Effects of RE_2O_3 (RE=Tm, Sc, Yb) addition on the superconducting properties of $ErBa_2Cu_3O_y$

R. Kita^{a*}, N. Hosoya^a, N. Otawa^a, S. Kawabata^a, T. Nakamura^a, O. Miura^b, M. Mukaida^c,
K. Yamada^c, A. Ichinose^d, K. Matsumoto^e, M, S. Horii^f, Y. Yoshida^g

^a Shizuoka University, Johoku 3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
^b Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0364, Japan
^c Kyushu University, Hakozaki 6-10-1, Higashi-ku 4-3-16, Fukuoka 992-8510, Japan
^d CRIEPI, Nagasaka 2-6-1, Yokohama, Kanagawa 240-0916, Japan
^e Kyusyu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan

^f University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8586, Japan

^g Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract

We investigated the effects of added Tm₂O₃, Sc₂O₃, and Yb₂O₃ on the superconducting properties of sintered Er123 samples. Tm₂O₃ addition caused the least T_c degradation, exhibiting a T_c above 90 K even for 17 vol% addition. Samples with added Sc₂O₃ maintained a T_c at above 90 K up to an addition of 7.2 vol%, while Yb₂O₃-containing samples showed a monotonic decrease in T_c with increased vol% of added Yb₂O₃. Tm₂O₃-containing samples exhibited a slight increase in $J_c(0.1 \text{ T})/J_c(0)$ and had constant J_c values even for 17 vol% addition. XRD and SEM results indicate that the Tm₂O₃ is very stable in the superconducting matrix. PACS codes: 74.72.Dn, 74.72.Jt

Keywords: RE₂O₃, Tm₂O₃, Sc₂O₃, Yb₂O₃, Artificial pinning center

*Corresponding Author:

Dr. Ryusuke Kita

Graduate school of science and technology, Shizuoka University,

Johoku3-5-1, Naka-ku, Hamamatsu, Shizuoka 432-8651, Japan

Phone:+81-53-478-1129

Fax: +81-53-478-1129

E-mail: terkita@ipc.shizuoka.ac.jp

1. Introduction

Improvement of the critical current density (J_c) of REBa₂Cu₃O_y (RE123) superconductors is essential for the application of RE123 superconducting melt-textured bulk and thin films to high-performance permanent magnets or high-current-carrying wires. Introduction of artificial pinning centers (APC) into RE123 superconducting phases is a very effective technique for enhancing J_c . Significant improvements in J_c have been reported for melt-textured REBCO by adding RE₂BaCuO₅ (RE211) [1], $Y_2Ba_4CuMO_y$ [2], ZrO_2 [3], barium oxides (BaZrO_3 [3], BaCeO_3 [4], or BaSnO_3 [5]) to create APCs. For RE123 thin films, the J_c -B properties were also enhanced significantly by the introduction of nanometer-sized rod-shaped barium oxide into superconducting matrices [6-9]. Recently, we reported a good correlation between the stability of barium oxides in RE123 films and sintered compounds [10]. This suggests that the study of the addition of various materials into sintered samples will be of great help in the search for new APC materials suitable for high- J_c thin films in high-magnetic fields. RE₂O₃ is known to have high thermal stability and to be relatively chemically inert. However, there are few reports on the stability of RE_2O_3 in the superconducting phase [11].

In the present study, we have investigated the effects of Tm₂O₃, Sc₂O₃ and Yb₂O₃

additions on the superconducting properties of Er123 and compared their stability in the RE123 matrix.

2. Experimental

Er123 samples were prepared from Er2O3 (99.9%), BaCO3 (99.95%), and CuO (99.99%) using a standard solid-phase reaction technique. Appropriate amounts of the reagents were thoroughly ground and calcined at 1173 K for two periods of 12 h in air, with intermediate regrinding. The resultant Er123 powder was pressed into pellets and sintered at 1233 K in air for two periods of 12 h, with intermediate regrinding. High-purity (99.9%) Tm₂O₃, Sc₂O₃, and Yb₂O₃ powders were then added to the pulverized Er123 pellets in concentrations of 1-17 vol%. The resulting powders were thoroughly ground, pressed into pellets and then sintered at 1233 K in air for 12 h. All samples were subsequently annealed in flowing oxygen at 1183 K for 12 h, cooled to 773 K with a 12 h stay, then cooled to room temperature in a furnace. The electrical resistivity of the samples was measured by a standard four-probe technique to determine their critical temperatures (T_c). J_c of the samples at 77 K was calculated from B-M curves measured by a superconducting quantum interference device (SQUID) at

magnetic fields of 0-1.0 T. X-ray diffractometry (XRD) was employed to identify the phases present in the samples and determine lattice constants. The sample surfaces were characterized using a scanning electron microscope (SEM). The chemical compositions of the precipitates on the sample surfaces were determined by energy-dispersive X-ray spectroscopy (EDX).

3. Results and discussion

The T_c of the RE₂O₃-containing Er123 sintered samples are shown as a function of the amount added in Fig. 1. Samples with Tm₂O₃ added showed the least degradation of T_c , and maintained T_c above 90 K even for 17.3 vol% addition. Maintaining high T_c is comparable to BaSnO₃ with high stability in the superconducting phase [10]. Sc₂O₃-containing samples maintained a T_c above 90 K up to 7.2 vol% added, but showed degradation of T_c above 10 vol% added. Yb₂O₃-containing samples showed a monotonic decrease in T_c with increasing Yb₂O₃ content. These results indicate that Tm₂O₃ oxides are relatively stable in the superconducting matrix.

XRD patterns for RE_2O_3 -containing samples are shown in Fig. 2. The (222) main peak of RE_2O_3 increased with increasing RE_2O_3 content for all doped samples. On the

other hand, the RE123 (103) main peak decreased drastically above 10 vol% addition of Sc₂O₃ and Yb₂O₃. However, the (103) peak of Tm₂O₃-containing samples showed no distinct degradation for the addition of 17 vol%. This indicates that Tm₂O₃ addition is less liable to prevent crystal growth in RE123 than Sc₂O₃ or Yb₂O₃ addition. In further support of this conclusion, the degradation of T_c was least in the Tm₂O₃-containing samples. BaCuO₂ and RE₂BaCuO₅ phases were clearly observed in 17 vol% Tm₂O₃ and 10 vol% Yb₂O₃-containing samples. The formation of BaCuO₂ and RE₂BaCuO₅ is presumably due to the reaction of RE₂O₃ and RE123. No BaCuO₂ phase was observed in Sc₂O₃-containing samples, probably because Sc does not tend to form an RE123 structure [12-13]. Fig. 3 shows the lattice constants of the doped RE123 samples calculated from the XRD patterns as a function of the amount of RE₂O₃ added. The c-axis lattice constant of the Yb₂O₃-containing sample decreased with the amount of Yb₂O₃ added. This is likely caused by the substitution of Yb into the Er site of Er123, which is supported by the observed decrease in both the *a*-axis and *b*-axis lattice constants. On the other hand, there is no clear change in the c-axis lattice constants of the Tm₂O₃-containing and Sc₂O₃-containing samples.

Fig. 4 shows SEM images of RE_2O_3 -containing Er123 samples. Fine RE_2O_3 particles, 0.5-1.0 µm in diameter, and their agglomerates were observed on the surfaces of Er123

samples with ~5 vol% addition (Figs. 4(a), (b) and (c)). Tm₂O₃ particles were clearly observed on the well-grown Er123 grain surface, as shown in Fig. 4(a). Evidence of partial-melting was observed on the surfaces with 10 vol% added Tm₂O₃ or Yb₂O₃ Er123 samples (Figs. 4 (d) and (f)). This is consistent with the XRD results. Fig. 5 shows the dependence of normalized J_c on the amount of RE₂O₃ added. $J_c(0.1 \text{ T})$, $J_c(0.5 \text{ T})$, and $J_c(0)$ indicate J_c values at 0.1 T, 0.5 T, and self field, respectively. $J_c(0.1 \text{ T})/J_c(0)$ decreased with increasing Yb₂O₃ addition. For Tm₂O₃ and Sc₂O₃ addition, $J_c(0.1 \text{ T})/J_c(0)$ increased slightly with increasing RE₂O₃ content (Fig. 5(a)). $J_c(0.5 \text{ T})/J_c(0)$ remained nearly constant up to 17 vol% of added Tm₂O₃, though it decreased above 10 vol% Sc₂O₃ added (Fig. 5(b)). These results suggest that Tm₂O₃ is a good candidate APC material for RE123 thin films.

4. Conclusions

The dependence of superconducting properties of Er123 sintered samples on the amount of added Tm₂O₃, Sc₂O₃, or Yb₂O₃ was investigated. Adding Tm₂O₃ resulted in the least degradation of T_c . Tm₂O₃-containing samples maintained a T_c above 90 K, showed a slight increase in $J_c(0.1 \text{ T})/J_c(0)$, and had constant J_c values up to 17 vol%

added. BaCuO₂ and RE₂BaCuO₅ phases were observed in Tm_2O_3 and Yb_2O_3 -containing samples, though not in Sc₂O₃-containing samples. The *c*-axis lattice constant of the superconducting phase was unchanged for both Tm_2O_3 and Sc_2O_3 -containing samples, but decreased in Yb_2O_3 -containing samples. SEM results indicated that Tm_2O_3 was relatively stable in the superconducting matrix. Tm_2O_3 is the most promising of the three candidate materials for creating APC's in RE123 thin films. Tm_2O_3 is a good candidate APC material for RE123 films.

References

- [1] M. Murakami, M. Morita, K. Doi, K. Miyamoto, Jpn. J. Appl. Phys. 28 (1989) 1189.
- [2] N. H. Babu, K. Iida, Y. Shi, T. D. Withnell, D. A. Cardwell, Supercond. Sci. Technol.19 (2006) S461.
- [3] M. Matsui, N. Sakai, S. Nariki, M. Murakami, Physica C 357-360 (2001) 697.
- [4] S. Nariki, N. Sakai, M. Murakami, I. Hirabayashi, Physica C 426-431(2005) 602.
- [5] P. McGinn, W. Chen, N. Zhu, L. Tan, C. Varanasi, S. Sengupta, Appl. Phys. Lett. Appl. Phys. Lett. 59(1991) 120.
- [6] T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, M. Sumption, Nature 430 (2004) 867.
- [7] M. Mukaida, T. Horide, R. Kita, S. Horii, A. Ichinose, Y. Yoshida, O. Miura, K. Matsumoto, K. Yamada, <u>N. Mori, Jpn. J. Appl. Phys. 44(2005) L952.</u>
- [8] S. Horii, M. Takamura, M. Mukaida, A. Ichinose, K. Yamada, R. Teranishi, K.
- Matsumoto, R. Kita, Y. Yoshida, J. Shimoyama, K. Kishio, Appl. Phys. Lett. 92 (2008) 132502.
- [9] P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Supercond. Sci. Technol. 21 (2008) 32002.

[10] R. Kita, S. Kato, T. Nakamura, O. Miura, R. Teranishi, S. Yasunaga, H. Kai, M. Mukaida, A. Ichinose, K. Matsumoto, <u>S. Horii</u>, Y. Yoshida, Physica C 468 (2008) 1391.

[11] S. Xu, X. S. Wu, G. B. Ma, Z. H. Wang, J. Gao, J. Appl. Phys. 103 (2008)7C714.

- [12] L. Hedman, L. Wang, O. Rapp, Z. Hegedus, M. Nygren, Solid State Commun. 71 (1989) 991.
- [13] J. H. Xing, S. Xu, X. M. Lu, B. Qian, G. B. Ma, Z. H. Wang, Z. S. Jiang, X. S. Wu,
- Int. J. Mod. Phys. B 21 (2007) 3180.

Figure captions

Fig. 1 Dependence of T_c on the amount of RE₂O₃ added to ErBCO sintered samples.

Fig. 2 XRD θ -2 θ spectra for (a) Tm₂O₃, (b) Sc₂O₃, and (c) Yb₂O₃-containing ErBCO sintered samples.

Fig. 3 Lattice constants of the RE_2O_3 -containing samples calculated from the XRD patterns as a function of the amount of RE_2O_3 added.

Fig. 4 SEM surface images of various RE_2O_3 -containing samples. (a) 4.89 vol% Tm_2O_3 , (d) 10.2 vol% Tm_2O_3 , (b) 5.42 vol% Sc_2O_3 , (e) 10.0 vol% Sc_2O_3 , (c) 5.56 vol% Yb_2O_3 , and (f) 10.0 vol% Yb_2O_3 added.

Fig. 5 Dependence of normalized J_c at 77 K on the amount of RE₂O₃ added. $J_c(0.1 \text{ T})$, $J_c(0.5 \text{ T})$, and $J_c(0)$ indicate J_c values at 0.1 T, 0.5 T and self field, respectively.

Fig. 1 BLP-1/ISS2008

Fig. 2 BLP-1/ISS2008

Fig. 3 BLP-1/ISS2008

Fig. 4 BLP-1/ISS2008

Fig. 5 BLP-1/ISS2008